code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a__ ( _UpperCAmelCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=64 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , __lowercase=2 , __lowercase=2 , __lowercase=2 , __lowercase=2 , __lowercase=4 , __lowercase=1 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_labels
__lowerCAmelCase = num_choices
__lowerCAmelCase = scope
__lowerCAmelCase = q_groups
__lowerCAmelCase = k_groups
__lowerCAmelCase = v_groups
__lowerCAmelCase = post_attention_groups
__lowerCAmelCase = intermediate_groups
__lowerCAmelCase = output_groups
def _snake_case (self ):
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case (self ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = SqueezeBertModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
__lowerCAmelCase = model(lowercase_ , lowercase_ )
__lowerCAmelCase = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = SqueezeBertForMaskedLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
__lowerCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = SqueezeBertForQuestionAnswering(config=lowercase_ )
model.to(lowercase_ )
model.eval()
__lowerCAmelCase = model(
lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = SqueezeBertForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
__lowerCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = SqueezeBertForTokenClassification(config=lowercase_ )
model.to(lowercase_ )
model.eval()
__lowerCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.num_choices
__lowerCAmelCase = SqueezeBertForMultipleChoice(config=lowercase_ )
model.to(lowercase_ )
model.eval()
__lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = model(
lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case (self ):
__lowerCAmelCase = self.prepare_config_and_inputs()
(__lowerCAmelCase) = config_and_inputs
__lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class a__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Tuple = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCamelCase : Any = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase : str = False
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : str = False
def _snake_case (self ):
__lowerCAmelCase = SqueezeBertModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=lowercase_ , dim=37 )
def _snake_case (self ):
self.config_tester.run_common_tests()
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*lowercase_ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase_ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase_ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase_ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase_ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase_ )
@slow
def _snake_case (self ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = SqueezeBertModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _snake_case (self ):
__lowerCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' )
__lowerCAmelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] )
__lowerCAmelCase = model(lowercase_ )[0]
__lowerCAmelCase = torch.Size((1, 3) )
self.assertEqual(output.shape , lowercase_ )
__lowerCAmelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] )
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
| 370 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_UpperCAmelCase : Dict = """true"""
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6):
set_seed(4_2)
__lowerCAmelCase = RegressionModel()
__lowerCAmelCase = deepcopy(lowerCamelCase)
__lowerCAmelCase = RegressionDataset(length=lowerCamelCase)
__lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase)
model.to(accelerator.device)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return model, ddp_model, dataloader
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''')
def tokenize_function(lowerCamelCase):
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
with accelerator.main_process_first():
__lowerCAmelCase = dataset.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
if use_longest:
return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''')
return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''')
return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6)
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase)
__lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for batch in dataloader:
__lowerCAmelCase , __lowerCAmelCase = batch.values()
with torch.no_grad():
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
__lowerCAmelCase , __lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase)
targs.append(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase)
return logits, targs
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert (
len(lowerCamelCase) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}"""
def __magic_name__( lowerCamelCase = False, lowerCamelCase = False):
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
__lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase)
# First do baseline
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no''']
model.to(lowerCamelCase)
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase)
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=lowerCamelCase, references=batch['''labels'''])
__lowerCAmelCase = metric.compute()
# Then do distributed
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase = batch['''labels''']
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase)
__lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __magic_name__( ):
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""")
test_mrpc(lowerCamelCase, lowerCamelCase)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""")
test_torch_metrics(lowerCamelCase, 9_9)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''')
__lowerCAmelCase = Accelerator()
test_torch_metrics(lowerCamelCase, 5_1_2)
accelerator.state._reset_state()
def __magic_name__( lowerCamelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_UpperCAmelCase : Tuple = {
"""configuration_encodec""": [
"""ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EncodecConfig""",
],
"""feature_extraction_encodec""": ["""EncodecFeatureExtractor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Union[str, Any] = [
"""ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EncodecModel""",
"""EncodecPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 371 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCAmelCase : Tuple = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : int = [
"""UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""UniSpeechForCTC""",
"""UniSpeechForPreTraining""",
"""UniSpeechForSequenceClassification""",
"""UniSpeechModel""",
"""UniSpeechPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 350 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 0 |
'''simple docstring'''
import re
def __magic_name__( lowerCamelCase):
return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''', str_)]
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = split_input(str_)
return "".join(
[''''''.join([char.capitalize() for char in sub_str]) for sub_str in string_split])
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
try:
__lowerCAmelCase = split_input(_snake_case)
if upper:
__lowerCAmelCase = ''''''.join(
[
separator.join([char.upper() for char in sub_str])
for sub_str in string_split
])
else:
__lowerCAmelCase = ''''''.join(
[
separator.join([char.lower() for char in sub_str])
for sub_str in string_split
])
return res_str
except IndexError:
return "not valid string"
def __magic_name__( lowerCamelCase):
return to_simple_case(_snake_case)
def __magic_name__( lowerCamelCase):
try:
__lowerCAmelCase = to_simple_case(_snake_case)
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def __magic_name__( lowerCamelCase, lowerCamelCase):
return to_complex_case(_snake_case, _snake_case, '''_''')
def __magic_name__( lowerCamelCase, lowerCamelCase):
return to_complex_case(_snake_case, _snake_case, '''-''')
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 351 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 0 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = False):
if radian_mode:
return [magnitude * cos(_A), magnitude * sin(_A)]
return [magnitude * cos(radians(_A)), magnitude * sin(radians(_A))]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1_0**-1):
__lowerCAmelCase = cross(_A, _A)
__lowerCAmelCase = sum(_A)
return abs(_A) < eps
if __name__ == "__main__":
# Test to check if it works
_UpperCAmelCase : Tuple = array(
[
polar_force(7_1_8.4, 1_8_0 - 3_0),
polar_force(8_7_9.5_4, 4_5),
polar_force(1_0_0, -9_0),
]
)
_UpperCAmelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
_UpperCAmelCase : List[Any] = array(
[
polar_force(3_0 * 9.81, 1_5),
polar_force(2_1_5, 1_8_0 - 4_5),
polar_force(2_6_4, 9_0 - 3_0),
]
)
_UpperCAmelCase : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
_UpperCAmelCase : Optional[Any] = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]])
_UpperCAmelCase : Any = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 352 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase, lowerCamelCase):
if digit_amount > 0:
return round(number - int(lowerCamelCase), lowerCamelCase)
return number - int(lowerCamelCase)
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.3_45, 1))
print(decimal_isolate(35.3_45, 2))
print(decimal_isolate(35.3_45, 3))
print(decimal_isolate(-14.7_89, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.1_23, 1))
print(decimal_isolate(-14.1_23, 2))
print(decimal_isolate(-14.1_23, 3))
| 353 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class a__ ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : List[Any] = RoCBertTokenizer
__UpperCamelCase : Tuple = None
__UpperCamelCase : Tuple = False
__UpperCamelCase : Optional[Any] = True
__UpperCamelCase : Dict = filter_non_english
def _snake_case (self ):
super().setUp()
__lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
__lowerCAmelCase = {}
__lowerCAmelCase = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_ ):
__lowerCAmelCase = i
__lowerCAmelCase = i
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ )
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__lowerCAmelCase = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _snake_case (self ):
__lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def _snake_case (self ):
__lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
__lowerCAmelCase = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_ ):
__lowerCAmelCase = i
__lowerCAmelCase = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def _snake_case (self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def _snake_case (self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def _snake_case (self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
__lowerCAmelCase = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def _snake_case (self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
__lowerCAmelCase = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
__lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , '''do_lower_case''' ) else False
__lowerCAmelCase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def _snake_case (self ):
__lowerCAmelCase = ["""的""", """人""", """有"""]
__lowerCAmelCase = """""".join(SCREAMING_SNAKE_CASE_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = True
__lowerCAmelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = False
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
# it is expected that only the first Chinese character is not preceded by "##".
__lowerCAmelCase = [
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ )
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__lowerCAmelCase = tokenizer.encode('''你好''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.encode('''你是谁''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__lowerCAmelCase = """你好,你是谁"""
__lowerCAmelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 354 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 0 |
'''simple docstring'''
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
_UpperCAmelCase : List[Any] = {
"""/attention/""": """/0/SelfAttention/""",
"""/self_attention/""": """/0/SelfAttention/""",
"""/encoder_decoder_attention/""": """/1/EncDecAttention/""",
"""value""": """v""",
"""query""": """q""",
"""key""": """k""",
"""out""": """o""",
"""pre_self_attention_layer_norm""": """0/layer_norm""",
"""pre_cross_attention_layer_norm""": """1/layer_norm""",
"""pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong
"""token_embedder""": """shared""",
"""encoder_norm""": """final_layer_norm""",
"""decoder_norm""": """final_layer_norm""",
"""relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""",
"""router/router_weights/w/""": """router/classifier/""",
"""roer/roer_weights/w/""": """router/classifier/""",
"""logits_dense""": """lm_head""",
}
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = list(s_dict.keys())
for key in keys:
__lowerCAmelCase = R""".*/layers_(\d+)"""
__lowerCAmelCase = key
if re.match(lowercase__, lowercase__):
__lowerCAmelCase = re.sub(r'''layers_(\d+)''', r'''block/\1/layer''', lowercase__)
__lowerCAmelCase = R"""(encoder|decoder)\/"""
if re.match(lowercase__, lowercase__):
__lowerCAmelCase = re.match(lowercase__, lowercase__).groups()
if groups[0] == "encoder":
__lowerCAmelCase = re.sub(r'''/mlp/''', r'''/1/mlp/''', lowercase__)
__lowerCAmelCase = re.sub(r'''/pre_mlp_layer_norm/''', r'''/1/layer_norm/''', lowercase__)
elif groups[0] == "decoder":
__lowerCAmelCase = re.sub(r'''/mlp/''', r'''/2/mlp/''', lowercase__)
__lowerCAmelCase = re.sub(r'''/pre_mlp_layer_norm/''', r'''/2/layer_norm/''', lowercase__)
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
__lowerCAmelCase = new_key.replace(lowercase__, lowercase__)
print(F"""{key} -> {new_key}""")
__lowerCAmelCase = s_dict.pop(lowercase__)
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
__lowerCAmelCase = s_dict[
"""encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"""
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
__lowerCAmelCase = s_dict[
"""decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"""
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys()):
if "expert" in key:
__lowerCAmelCase = s_dict[key].shape[0]
__lowerCAmelCase = s_dict[key]
for idx in range(lowercase__):
__lowerCAmelCase = expert_weihts[idx]
print(F"""{key} -> {key.replace("expert/", "nested fstring")}""")
s_dict.pop(lowercase__)
return s_dict
_UpperCAmelCase : str = {
"""NUM_ENCODER_LAYERS""": """num_layers""",
"""NUM_DECODER_LAYERS""": """num_decoder_layers""",
"""NUM_HEADS""": """num_heads""",
"""HEAD_DIM""": """d_kv""",
"""EMBED_DIM""": """d_model""",
"""MLP_DIM""": """d_ff""",
"""NUM_SELECTED_EXPERTS""": """num_selected_experts""",
"""NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""",
"""NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""",
"""dense.MlpBlock.activations""": """feed_forward_proj""",
}
def __magic_name__( lowerCamelCase, lowerCamelCase):
import regex as re
with open(lowercase__, '''r''') as f:
__lowerCAmelCase = f.read()
__lowerCAmelCase = re.findall(r'''(.*) = ([0-9.]*)''', lowercase__)
__lowerCAmelCase = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
__lowerCAmelCase = float(lowercase__) if """.""" in value else int(lowercase__)
__lowerCAmelCase = re.findall(r'''(.*activations) = \(\'(.*)\',\)''', lowercase__)[0]
__lowerCAmelCase = str(activation[1])
__lowerCAmelCase = num_experts
__lowerCAmelCase = SwitchTransformersConfig(**lowercase__)
return config
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase="./", lowerCamelCase=8):
print(F"""Loading flax weights from : {flax_checkpoint_path}""")
__lowerCAmelCase = checkpoints.load_tax_checkpoint(lowercase__)
if gin_file is not None:
__lowerCAmelCase = convert_gin_to_config(lowercase__, lowercase__)
else:
__lowerCAmelCase = SwitchTransformersConfig.from_pretrained(lowercase__)
__lowerCAmelCase = SwitchTransformersForConditionalGeneration(lowercase__)
__lowerCAmelCase = flax_params["""target"""]
__lowerCAmelCase = flatten_dict(lowercase__, sep='''/''')
__lowerCAmelCase = rename_keys(lowercase__)
__lowerCAmelCase = unflatten_dict(lowercase__, sep='''/''')
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(lowercase__, lowercase__)
print(F"""Save PyTorch model to {pytorch_dump_path}""")
pt_model.save_pretrained(lowercase__)
if __name__ == "__main__":
_UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--switch_t5x_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the"""
""" model architecture. If not provided, a `gin_file` has to be provided."""
),
)
parser.add_argument(
"""--gin_file""",
default=None,
type=str,
required=False,
help="""Path to the gin config file. If not provided, a `config_file` has to be passed """,
)
parser.add_argument(
"""--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model."""
)
parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""")
_UpperCAmelCase : List[Any] = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 355 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
_UpperCAmelCase : List[Any] = {
"""uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""",
"""uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""",
"""uclanlp/visualbert-vqa-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json"""
),
"""uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""",
"""uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""",
"""uclanlp/visualbert-vcr-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json"""
),
"""uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""",
"""uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""",
"""uclanlp/visualbert-nlvr2-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json"""
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class a__ ( __lowerCamelCase ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] = 'visual_bert'
def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=5_12 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=False , __lowercase=True , __lowercase=1 , __lowercase=0 , __lowercase=2 , **__lowercase , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = hidden_size
__lowerCAmelCase = visual_embedding_dim
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = initializer_range
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = bypass_transformer
__lowerCAmelCase = special_visual_initialize
| 356 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def __magic_name__( lowerCamelCase):
return "".join(sorted(lowerCamelCase))
def __magic_name__( lowerCamelCase):
return word_by_signature[signature(lowerCamelCase)]
_UpperCAmelCase : int = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""")
_UpperCAmelCase : Dict = sorted({word.strip().lower() for word in data.splitlines()})
_UpperCAmelCase : List[Any] = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
_UpperCAmelCase : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open("""anagrams.txt""", """w""") as file:
file.write("""all_anagrams = \n """)
file.write(pprint.pformat(all_anagrams))
| 357 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 0 |
'''simple docstring'''
import argparse
_UpperCAmelCase : List[Any] = "docs/source/_static/js/custom.js"
def __magic_name__( lowerCamelCase):
with open(_UpperCamelCase, encoding='''utf-8''', newline='''\n''') as f:
__lowerCAmelCase = f.readlines()
__lowerCAmelCase = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion ='''):
index += 1
__lowerCAmelCase = F"""const stableVersion = \"v{version}\"\n"""
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {'''):
index += 1
# We go until the end
while not lines[index].startswith('''}'''):
index += 1
# We add the new version at the end
lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n"""
with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''') as f:
f.writelines(_UpperCamelCase)
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
_UpperCAmelCase : List[Any] = parser.parse_args()
update_custom_js(args.version)
| 358 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = RobertaTokenizer
__UpperCamelCase : Dict = RobertaTokenizerFast
__UpperCamelCase : List[str] = True
__UpperCamelCase : List[str] = {'cls_token': '<s>'}
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowerCAmelCase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True)
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''Encode this sequence.'''
__lowerCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
__lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing spaces after special tokens
__lowerCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
__lowerCAmelCase = '''Encode <mask> sequence'''
__lowerCAmelCase = '''Encode <mask>sequence'''
__lowerCAmelCase = tokenizer.encode(__lowerCAmelCase )
__lowerCAmelCase = encoded.index(__lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
__lowerCAmelCase = tokenizer.encode(__lowerCAmelCase )
__lowerCAmelCase = encoded.index(__lowerCAmelCase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
def _snake_case (self ):
pass
def _snake_case (self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__lowerCAmelCase = '''A, <mask> AllenNLP sentence.'''
__lowerCAmelCase = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def _snake_case (self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowerCAmelCase )
self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowerCAmelCase )
self.assertEqual(post_processor_state['''trim_offsets'''] , __lowerCAmelCase )
def _snake_case (self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__lowerCAmelCase = F"""{text_of_1_token} {text_of_1_token}"""
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
__lowerCAmelCase = F""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
__lowerCAmelCase = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
| 359 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 0 |
'''simple docstring'''
_UpperCAmelCase : Tuple = {
'Pillow': 'Pillow',
'accelerate': 'accelerate>=0.11.0',
'compel': 'compel==0.1.8',
'black': 'black~=23.1',
'datasets': 'datasets',
'filelock': 'filelock',
'flax': 'flax>=0.4.1',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.13.2',
'requests-mock': 'requests-mock==1.10.0',
'importlib_metadata': 'importlib_metadata',
'invisible-watermark': 'invisible-watermark',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2',
'jaxlib': 'jaxlib>=0.1.65',
'Jinja2': 'Jinja2',
'k-diffusion': 'k-diffusion>=0.0.12',
'torchsde': 'torchsde',
'note_seq': 'note_seq',
'librosa': 'librosa',
'numpy': 'numpy',
'omegaconf': 'omegaconf',
'parameterized': 'parameterized',
'protobuf': 'protobuf>=3.20.3,<4',
'pytest': 'pytest',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'ruff': 'ruff>=0.0.241',
'safetensors': 'safetensors',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'scipy': 'scipy',
'onnx': 'onnx',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'tensorboard': 'tensorboard',
'torch': 'torch>=1.4',
'torchvision': 'torchvision',
'transformers': 'transformers>=4.25.1',
'urllib3': 'urllib3<=2.0.0',
}
| 360 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = ConsistencyModelPipeline
__UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCamelCase : List[Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def _snake_case (self , __lowercase=False ):
if class_cond:
__lowerCAmelCase = self.dummy_cond_unet
else:
__lowerCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _snake_case (self , __lowercase , __lowercase=0 ):
if str(__lowercase ).startswith('''mps''' ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
else:
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
__lowerCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
__lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
__lowerCAmelCase = latents
return inputs
def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
if type(__lowercase ) == str:
__lowerCAmelCase = torch.device(__lowercase )
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase, lowerCamelCase):
return base * power(lowercase_, (exponent - 1)) if exponent else 1
if __name__ == "__main__":
print("""Raise base to the power of exponent using recursion...""")
_UpperCAmelCase : Optional[int] = int(input("""Enter the base: """).strip())
_UpperCAmelCase : Tuple = int(input("""Enter the exponent: """).strip())
_UpperCAmelCase : Optional[int] = power(base, abs(exponent))
if exponent < 0: # power() does not properly deal w/ negative exponents
_UpperCAmelCase : Tuple = 1 / result
print(f"""{base} to the power of {exponent} is {result}""")
| 361 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCAmelCase : List[Any] = datasets.load_iris()
_UpperCAmelCase : Dict = np.array(data["""data"""])
_UpperCAmelCase : int = np.array(data["""target"""])
_UpperCAmelCase : str = data["""target_names"""]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y)
def __magic_name__( lowerCamelCase, lowerCamelCase):
return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5):
__lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase)
# List of distances of all points from the point to be classified
__lowerCAmelCase = []
for data_point in data:
__lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase)
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances.
__lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 9 | 0 |
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class a__ ( __A ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
__lowerCAmelCase = 5
# Realm tok
__lowerCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__lowerCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' )
os.makedirs(_a , exist_ok=_a )
__lowerCAmelCase = os.path.join(_a , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__lowerCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' )
os.makedirs(_a , exist_ok=_a )
def _snake_case (self ):
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = RealmConfig(num_block_records=self.num_block_records )
return config
def _snake_case (self ):
__lowerCAmelCase = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
} )
return dataset
def _snake_case (self ):
__lowerCAmelCase = np.array(
[
b'''This is the first record''',
b'''This is the second record''',
b'''This is the third record''',
b'''This is the fourth record''',
b'''This is the fifth record''',
b'''This is a longer longer longer record''',
] , dtype=_a , )
return block_records
def _snake_case (self ):
__lowerCAmelCase = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def _snake_case (self ):
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.get_dummy_retriever()
__lowerCAmelCase = retriever.tokenizer
__lowerCAmelCase = np.array([0, 3] , dtype='''long''' )
__lowerCAmelCase = tokenizer(['''Test question'''] ).input_ids
__lowerCAmelCase = tokenizer(
['''the fourth'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids
__lowerCAmelCase = config.reader_seq_len
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = retriever(
_a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def _snake_case (self ):
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.get_dummy_retriever()
__lowerCAmelCase = retriever.tokenizer
__lowerCAmelCase = np.array([0, 3, 5] , dtype='''long''' )
__lowerCAmelCase = tokenizer(['''Test question'''] ).input_ids
__lowerCAmelCase = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids
__lowerCAmelCase = config.reader_seq_len
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = retriever(
_a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' )
self.assertEqual([False, True, True] , _a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a )
def _snake_case (self ):
__lowerCAmelCase = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
# Test local path
__lowerCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download:
__lowerCAmelCase = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME )
__lowerCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
| 362 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' )
__lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = inputs['''input_ids''']
__lowerCAmelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
_UpperCAmelCase : Optional[Any] = 0
_UpperCAmelCase : str = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_UpperCAmelCase : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
_UpperCAmelCase : int = tuple[int, int]
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ):
__lowerCAmelCase = pos_x
__lowerCAmelCase = pos_y
__lowerCAmelCase = (pos_y, pos_x)
__lowerCAmelCase = goal_x
__lowerCAmelCase = goal_y
__lowerCAmelCase = g_cost
__lowerCAmelCase = parent
__lowerCAmelCase = self.calculate_heuristic()
__lowerCAmelCase = self.g_cost + self.h_cost
def _snake_case (self ):
__lowerCAmelCase = self.pos_x - self.goal_x
__lowerCAmelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE )
else:
return sqrt(dy**2 + dx**2 )
def __lt__(self , __lowercase ):
return self.f_cost < other.f_cost
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
__lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase = [self.start]
__lowerCAmelCase = []
__lowerCAmelCase = False
def _snake_case (self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__lowerCAmelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(_SCREAMING_SNAKE_CASE )
self.closed_nodes.append(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.get_successors(_SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
__lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(_SCREAMING_SNAKE_CASE )
return [self.start.pos]
def _snake_case (self , __lowercase ):
__lowerCAmelCase = []
for action in delta:
__lowerCAmelCase = parent.pos_x + action[1]
__lowerCAmelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) )
return successors
def _snake_case (self , __lowercase ):
__lowerCAmelCase = node
__lowerCAmelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__lowerCAmelCase = current_node.parent
path.reverse()
return path
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
__lowerCAmelCase = AStar(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase = AStar(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase = False
def _snake_case (self ):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 )
__lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.fwd_astar.closed_nodes.append(_SCREAMING_SNAKE_CASE )
self.bwd_astar.closed_nodes.append(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase = current_bwd_node
__lowerCAmelCase = current_fwd_node
__lowerCAmelCase = {
self.fwd_astar: self.fwd_astar.get_successors(_SCREAMING_SNAKE_CASE ),
self.bwd_astar: self.bwd_astar.get_successors(_SCREAMING_SNAKE_CASE ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(_SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
__lowerCAmelCase = astar.open_nodes.pop(
astar.open_nodes.index(_SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(_SCREAMING_SNAKE_CASE )
else:
astar.open_nodes.append(_SCREAMING_SNAKE_CASE )
return [self.fwd_astar.start.pos]
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = self.fwd_astar.retrace_path(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.bwd_astar.retrace_path(_SCREAMING_SNAKE_CASE )
bwd_path.pop()
bwd_path.reverse()
__lowerCAmelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
_UpperCAmelCase : List[str] = (0, 0)
_UpperCAmelCase : Dict = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_UpperCAmelCase : int = time.time()
_UpperCAmelCase : Tuple = AStar(init, goal)
_UpperCAmelCase : Dict = a_star.search()
_UpperCAmelCase : Dict = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
_UpperCAmelCase : List[Any] = time.time()
_UpperCAmelCase : Union[str, Any] = BidirectionalAStar(init, goal)
_UpperCAmelCase : List[Any] = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 363 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import MutableSequence
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
if len(UpperCAmelCase_ ) != degree + 1:
raise ValueError(
'''The number of coefficients should be equal to the degree + 1.''' )
__lowerCAmelCase = list(UpperCAmelCase_ )
__lowerCAmelCase = degree
def __add__(self , __lowercase ):
if self.degree > polynomial_a.degree:
__lowerCAmelCase = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , UpperCAmelCase_ )
else:
__lowerCAmelCase = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , UpperCAmelCase_ )
def __sub__(self , __lowercase ):
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__(self ):
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__(self , __lowercase ):
__lowerCAmelCase = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , UpperCAmelCase_ )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__(self ):
__lowerCAmelCase = ""
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCAmelCase_ )
return polynomial
def __repr__(self ):
return self.__str__()
def _snake_case (self ):
__lowerCAmelCase = [0] * self.degree
for i in range(self.degree ):
__lowerCAmelCase = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , UpperCAmelCase_ )
def _snake_case (self , __lowercase = 0 ):
__lowerCAmelCase = [0] * (self.degree + 2)
__lowerCAmelCase = constant
for i in range(self.degree + 1 ):
__lowerCAmelCase = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , UpperCAmelCase_ )
def __eq__(self , __lowercase ):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__(self , __lowercase ):
return not self.__eq__(UpperCAmelCase_ )
| 364 |
'''simple docstring'''
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ):
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1]
# Ensure proper dimensionality.
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase)
__lowerCAmelCase = np.iscomplexobj(lowerCamelCase)
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCamelCase, input_matrix.conj().T)
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__lowerCAmelCase = False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
# Normalize the resulting output vector.
__lowerCAmelCase = w / np.linalg.norm(lowerCamelCase)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__lowerCAmelCase = vector.conj().T if is_complex else vector.T
__lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase))
# Check convergence.
__lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__lowerCAmelCase = True
__lowerCAmelCase = lambda_
if is_complex:
__lowerCAmelCase = np.real(lambda_)
return lambda_, vector
def __magic_name__( ):
__lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]])
__lowerCAmelCase = np.array([4_1, 4, 2_0])
__lowerCAmelCase = real_input_matrix.astype(np.complexaaa)
__lowerCAmelCase = np.triu(1J * complex_input_matrix, 1)
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa)
for problem_type in ["real", "complex"]:
if problem_type == "real":
__lowerCAmelCase = real_input_matrix
__lowerCAmelCase = real_vector
elif problem_type == "complex":
__lowerCAmelCase = complex_input_matrix
__lowerCAmelCase = complex_vector
# Our implementation.
__lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase)
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase)
# Last eigenvalue is the maximum one.
__lowerCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__lowerCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 | 0 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=2 , __lowercase=True , __lowercase=False , __lowercase=10 , __lowercase=3 , __lowercase=32 * 8 , __lowercase=32 * 8 , __lowercase=4 , __lowercase=64 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = is_training
__lowerCAmelCase = use_auxiliary_loss
__lowerCAmelCase = num_queries
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_size
__lowerCAmelCase = max_size
__lowerCAmelCase = num_labels
__lowerCAmelCase = hidden_dim
__lowerCAmelCase = hidden_dim
def _snake_case (self ):
__lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCAmelCase__ )
__lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase__ )
__lowerCAmelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase__ ) > 0.5
).float()
__lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase__ ) > 0.5).long()
__lowerCAmelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _snake_case (self ):
__lowerCAmelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCAmelCase = self.num_queries
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = [1, 1, 1, 1]
__lowerCAmelCase = self.num_channels
__lowerCAmelCase = 64
__lowerCAmelCase = 1_28
__lowerCAmelCase = self.hidden_dim
__lowerCAmelCase = self.hidden_dim
__lowerCAmelCase = self.hidden_dim
return config
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask}
return config, inputs_dict
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = output.encoder_hidden_states
__lowerCAmelCase = output.pixel_decoder_hidden_states
__lowerCAmelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCAmelCase__ ) , config.decoder_layers )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=False ):
with torch.no_grad():
__lowerCAmelCase = MaskaFormerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__lowerCAmelCase = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ )
__lowerCAmelCase = model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCAmelCase__ , lowerCAmelCase__ )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = MaskaFormerForUniversalSegmentation(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
def comm_check_on_output(__lowercase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCAmelCase = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ )
__lowerCAmelCase = model(lowerCAmelCase__ )
comm_check_on_output(lowerCAmelCase__ )
__lowerCAmelCase = model(
pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ )
comm_check_on_output(lowerCAmelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
__UpperCamelCase : Optional[Any] = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
__UpperCamelCase : int = False
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : Dict = False
__UpperCamelCase : str = False
def _snake_case (self ):
__lowerCAmelCase = MaskaFormerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ )
def _snake_case (self ):
self.config_tester.run_common_tests()
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCAmelCase__ )
@unittest.skip(reason='''Mask2Former does not use inputs_embeds''' )
def _snake_case (self ):
pass
@unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' )
def _snake_case (self ):
pass
@unittest.skip(reason='''Mask2Former is not a generative model''' )
def _snake_case (self ):
pass
@unittest.skip(reason='''Mask2Former does not use token embeddings''' )
def _snake_case (self ):
pass
@require_torch_multi_gpu
@unittest.skip(
reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def _snake_case (self ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def _snake_case (self ):
pass
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(lowerCAmelCase__ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
@slow
def _snake_case (self ):
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCAmelCase = MaskaFormerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = (self.model_tester.min_size,) * 2
__lowerCAmelCase = {
'''pixel_values''': torch.randn((2, 3, *size) , device=lowerCAmelCase__ ),
'''mask_labels''': torch.randn((2, 10, *size) , device=lowerCAmelCase__ ),
'''class_labels''': torch.zeros(2 , 10 , device=lowerCAmelCase__ ).long(),
}
__lowerCAmelCase = self.model_tester.get_config()
__lowerCAmelCase = MaskaFormerForUniversalSegmentation(lowerCAmelCase__ ).to(lowerCAmelCase__ )
__lowerCAmelCase = model(**lowerCAmelCase__ )
self.assertTrue(outputs.loss is not None )
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ )
__lowerCAmelCase = model(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
self.assertTrue(outputs.attentions is not None )
def _snake_case (self ):
if not self.model_tester.is_training:
return
__lowerCAmelCase = self.all_model_classes[1]
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
__lowerCAmelCase = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.train()
__lowerCAmelCase = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).loss
loss.backward()
def _snake_case (self ):
__lowerCAmelCase = self.all_model_classes[1]
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ )
model.train()
__lowerCAmelCase = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ )
__lowerCAmelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCAmelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCAmelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCAmelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCAmelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
_UpperCAmelCase : Tuple = 1E-4
def __magic_name__( ):
__lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
return image
@require_vision
@slow
class a__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _snake_case (self ):
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def _snake_case (self ):
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase__ )
__lowerCAmelCase = self.default_image_processor
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ )
__lowerCAmelCase = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCAmelCase__ , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__lowerCAmelCase = model(**lowerCAmelCase__ )
__lowerCAmelCase = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(lowerCAmelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) )
__lowerCAmelCase = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(lowerCAmelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) )
__lowerCAmelCase = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(lowerCAmelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) )
def _snake_case (self ):
__lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase__ ).eval()
__lowerCAmelCase = self.default_image_processor
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ )
__lowerCAmelCase = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCAmelCase__ , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__lowerCAmelCase = model(**lowerCAmelCase__ )
# masks_queries_logits
__lowerCAmelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCAmelCase = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
__lowerCAmelCase = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) )
# class_queries_logits
__lowerCAmelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCAmelCase = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) )
def _snake_case (self ):
__lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase__ ).eval()
__lowerCAmelCase = self.default_image_processor
__lowerCAmelCase = image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , )
__lowerCAmelCase = inputs['''pixel_values'''].to(lowerCAmelCase__ )
__lowerCAmelCase = [el.to(lowerCAmelCase__ ) for el in inputs['''mask_labels''']]
__lowerCAmelCase = [el.to(lowerCAmelCase__ ) for el in inputs['''class_labels''']]
with torch.no_grad():
__lowerCAmelCase = model(**lowerCAmelCase__ )
self.assertTrue(outputs.loss is not None ) | 365 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_UpperCAmelCase : str = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
return [
int(1_0_0_0 * (box[0] / width)),
int(1_0_0_0 * (box[1] / height)),
int(1_0_0_0 * (box[2] / width)),
int(1_0_0_0 * (box[3] / height)),
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None):
__lowerCAmelCase = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
__lowerCAmelCase = to_pil_image(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = pil_image.size
__lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()]
__lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase)
# finally, normalize the bounding boxes
__lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase))
assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = apply_ocr
__lowerCAmelCase = ocr_lang
__lowerCAmelCase = tesseract_config
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__lowerCAmelCase = (size['''height'''], size['''width'''])
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowerCAmelCase = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
__lowerCAmelCase = []
__lowerCAmelCase = []
for image in images:
__lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase )
words_batch.append(__lowercase )
boxes_batch.append(__lowercase )
if do_resize:
__lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase )
if apply_ocr:
__lowerCAmelCase = words_batch
__lowerCAmelCase = boxes_batch
return data
| 9 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
_UpperCAmelCase : Union[str, Any] = False
class a__ ( unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self ):
__lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
__lowerCAmelCase = '''A painting of a squirrel eating a burger '''
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = pipe(
prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCamelCase )
__lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
__lowerCAmelCase = generator.manual_seed(0 )
__lowerCAmelCase = pipe(
prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def _snake_case (self ):
__lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
__lowerCAmelCase = '''A painting of a squirrel eating a burger '''
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = pipe(
prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
__lowerCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCAmelCase = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 366 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['torch', 'scipy']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 9 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : int = {"""vocab_file""": """sentencepiece.bpe.model"""}
_UpperCAmelCase : Optional[int] = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
}
}
_UpperCAmelCase : Tuple = {
"""camembert-base""": 5_1_2,
}
_UpperCAmelCase : Union[str, Any] = """▁"""
class a__ ( A_ ):
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__(self , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=["<s>NOTUSED", "</s>NOTUSED"] , __lowercase = None , **__lowercase , ):
# Mask token behave like a normal word, i.e. include the space before it
__lowerCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
__lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
__lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCamelCase ) )
__lowerCAmelCase = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__lowerCAmelCase = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3}
__lowerCAmelCase = len(self.fairseq_tokens_to_ids )
__lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def _snake_case (self , __lowercase , __lowercase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
__lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCamelCase )) + [1]
return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1]
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case (self ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def _snake_case (self ):
__lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case (self , __lowercase ):
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def _snake_case (self , __lowercase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_lowerCamelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_lowerCamelCase )
def _snake_case (self , __lowercase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = []
__lowerCAmelCase = ''''''
__lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCamelCase ) + token
__lowerCAmelCase = True
__lowerCAmelCase = []
else:
current_sub_tokens.append(_lowerCamelCase )
__lowerCAmelCase = False
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __getstate__(self ):
__lowerCAmelCase = self.__dict__.copy()
__lowerCAmelCase = None
return state
def __setstate__(self , __lowercase ):
__lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__lowerCAmelCase = {}
__lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case (self , __lowercase , __lowercase = None ):
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
__lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 367 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 | 0 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
class a__ :
"""simple docstring"""
__UpperCamelCase : Optional[int] = 42
__UpperCamelCase : List[Any] = None
@staticmethod
def _snake_case ():
raise NotImplementedError
def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ):
raise NotImplementedError
def _snake_case (self , __lowercase ):
raise NotImplementedError
def _snake_case (self ):
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def _snake_case (cls ):
return F"""`pip install {cls.pip_package or cls.name}`"""
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'optuna'
@staticmethod
def _snake_case ():
return is_optuna_available()
def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ):
return run_hp_search_optuna(_a , _a , _a , **_a )
def _snake_case (self , __lowercase ):
return default_hp_space_optuna(_a )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict = 'ray'
__UpperCamelCase : str = '\'ray[tune]\''
@staticmethod
def _snake_case ():
return is_ray_available()
def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ):
return run_hp_search_ray(_a , _a , _a , **_a )
def _snake_case (self , __lowercase ):
return default_hp_space_ray(_a )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'sigopt'
@staticmethod
def _snake_case ():
return is_sigopt_available()
def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ):
return run_hp_search_sigopt(_a , _a , _a , **_a )
def _snake_case (self , __lowercase ):
return default_hp_space_sigopt(_a )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] = 'wandb'
@staticmethod
def _snake_case ():
return is_wandb_available()
def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ):
return run_hp_search_wandb(_a , _a , _a , **_a )
def _snake_case (self , __lowercase ):
return default_hp_space_wandb(_a )
_UpperCAmelCase : int = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def __magic_name__( ):
__lowerCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(_snake_case) > 0:
__lowerCAmelCase = available_backends[0].name
if len(_snake_case) > 1:
logger.info(
F"""{len(_snake_case)} hyperparameter search backends available. Using {name} as the default.""")
return name
raise RuntimeError(
'''No hyperparameter search backend available.\n'''
+ '''\n'''.join(
F""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
| 368 |
'''simple docstring'''
# Imports
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
if red is not None:
__lowerCAmelCase = red
if green is not None:
__lowerCAmelCase = green
if blue is not None:
__lowerCAmelCase = blue
if red_edge is not None:
__lowerCAmelCase = red_edge
if nir is not None:
__lowerCAmelCase = nir
return True
def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
__lowerCAmelCase = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def _snake_case (self ):
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case (self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case (self ):
return self.nir * (self.red / (self.green**2))
def _snake_case (self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case (self ):
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case (self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case (self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case (self ):
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case (self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case (self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case (self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case (self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case (self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case (self ):
return (self.nir / self.green) - 1
def _snake_case (self ):
return (self.nir / self.redEdge) - 1
def _snake_case (self ):
return (self.red - self.blue) / self.red
def _snake_case (self ):
__lowerCAmelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case (self ):
return self.nir - self.green
def _snake_case (self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case (self ):
__lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case (self , __lowercase=0.1_6 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case (self , __lowercase=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case (self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case (self , __lowercase=None , __lowercase=None ):
return (self.nir - b) / (a * self.red)
def _snake_case (self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case (self ):
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case (self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case (self ):
return self.green / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.nir / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.red / (self.nir + self.red + self.green)
def _snake_case (self ):
return (self.green - self.red) / (self.green + self.red)
def _snake_case (self ):
return (self.red - self.green) / (self.red + self.green)
def _snake_case (self ):
__lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case (self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case (self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 9 | 0 |
'''simple docstring'''
import math
class a__ :
"""simple docstring"""
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = 0.0
__lowerCAmelCase = 0.0
for i in range(len(_a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ):
for i in range(len(_a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def __magic_name__( ):
# Training Examples ( m, n )
__lowerCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
__lowerCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
__lowerCAmelCase = SelfOrganizingMap()
__lowerCAmelCase = 3
__lowerCAmelCase = 0.5
for _ in range(lowerCamelCase):
for j in range(len(lowerCamelCase)):
# training sample
__lowerCAmelCase = training_samples[j]
# Compute the winning vector
__lowerCAmelCase = self_organizing_map.get_winner(lowerCamelCase, lowerCamelCase)
# Update the winning vector
__lowerCAmelCase = self_organizing_map.update(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# classify test sample
__lowerCAmelCase = [0, 0, 0, 1]
__lowerCAmelCase = self_organizing_map.get_winner(lowerCamelCase, lowerCamelCase)
# results
print(F"""Clusters that the test sample belongs to : {winner}""")
print(F"""Weights that have been trained : {weights}""")
# running the main() function
if __name__ == "__main__":
main()
| 369 |
'''simple docstring'''
from math import sqrt
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' must been an int and positive"
__lowerCAmelCase = True
# 0 and 1 are none primes.
if number <= 1:
__lowerCAmelCase = False
for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowerCAmelCase = False
break
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool"
return status
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowerCAmelCase = list(range(2, n + 1))
__lowerCAmelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase)):
for j in range(i + 1, len(lowerCamelCase)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowerCAmelCase = 0
# filters actual prime numbers.
__lowerCAmelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
__lowerCAmelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(lowerCamelCase):
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0"
__lowerCAmelCase = [] # this list will be returns of the function.
# potential prime number factors.
__lowerCAmelCase = 2
__lowerCAmelCase = number
if number == 0 or number == 1:
ans.append(lowerCamelCase)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase):
while quotient != 1:
if is_prime(lowerCamelCase) and (quotient % factor == 0):
ans.append(lowerCamelCase)
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = max(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = min(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 == 0
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 != 0
def __magic_name__( lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase)
), "'number' must been an int, even and > 2"
__lowerCAmelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowerCAmelCase = get_prime_numbers(lowerCamelCase)
__lowerCAmelCase = len(lowerCamelCase)
# run variable for while-loops.
__lowerCAmelCase = 0
__lowerCAmelCase = None
# exit variable. for break up the loops
__lowerCAmelCase = True
while i < len_pn and loop:
__lowerCAmelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowerCAmelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (len(lowerCamelCase) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 0
while numbera != 0:
__lowerCAmelCase = numbera % numbera
__lowerCAmelCase = numbera
__lowerCAmelCase = rest
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = prime_factorization(lowerCamelCase)
elif numbera == 1 or numbera == 1:
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = max(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(max(lowerCamelCase, lowerCamelCase)):
ans *= n
else:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int"
__lowerCAmelCase = 0
__lowerCAmelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase):
ans += 1
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime(
lowerCamelCase), "'ans' must been a prime number and from type int"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowerCAmelCase = p_number_a + 1 # jump to the next number
__lowerCAmelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase)
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and ans[0] != p_number_a
and ans[len(lowerCamelCase) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1"
__lowerCAmelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(lowerCamelCase)
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number > 1
), "'number' must been an int and >= 1"
__lowerCAmelCase = get_divisors(lowerCamelCase)
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase))
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0"
__lowerCAmelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0"
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1 # this will be return
for _ in range(n - 1):
__lowerCAmelCase = ans
ans += fiba
__lowerCAmelCase = tmp
return ans
| 9 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : int = logging.get_logger(__name__)
_UpperCAmelCase : List[Any] = {
"""facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class a__ ( _a ):
"""simple docstring"""
__UpperCamelCase : str = 'wav2vec2'
def __init__(self , __lowercase=32 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=1e-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=1_28 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.0_5 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=3_20 , __lowercase=2 , __lowercase=0.1 , __lowercase=1_00 , __lowercase=2_56 , __lowercase=2_56 , __lowercase=0.1 , __lowercase="sum" , __lowercase=False , __lowercase=False , __lowercase=2_56 , __lowercase=(5_12, 5_12, 5_12, 5_12, 15_00) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=5_12 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=False , __lowercase=3 , __lowercase=2 , __lowercase=3 , __lowercase=None , __lowercase=None , **__lowercase , ):
super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ )
__lowerCAmelCase = hidden_size
__lowerCAmelCase = feat_extract_norm
__lowerCAmelCase = feat_extract_activation
__lowerCAmelCase = list(snake_case_ )
__lowerCAmelCase = list(snake_case_ )
__lowerCAmelCase = list(snake_case_ )
__lowerCAmelCase = conv_bias
__lowerCAmelCase = num_conv_pos_embeddings
__lowerCAmelCase = num_conv_pos_embedding_groups
__lowerCAmelCase = len(self.conv_dim )
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_dropout
__lowerCAmelCase = attention_dropout
__lowerCAmelCase = activation_dropout
__lowerCAmelCase = feat_proj_dropout
__lowerCAmelCase = final_dropout
__lowerCAmelCase = layerdrop
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = initializer_range
__lowerCAmelCase = vocab_size
__lowerCAmelCase = do_stable_layer_norm
__lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCAmelCase = apply_spec_augment
__lowerCAmelCase = mask_time_prob
__lowerCAmelCase = mask_time_length
__lowerCAmelCase = mask_time_min_masks
__lowerCAmelCase = mask_feature_prob
__lowerCAmelCase = mask_feature_length
__lowerCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__lowerCAmelCase = num_codevectors_per_group
__lowerCAmelCase = num_codevector_groups
__lowerCAmelCase = contrastive_logits_temperature
__lowerCAmelCase = feat_quantizer_dropout
__lowerCAmelCase = num_negatives
__lowerCAmelCase = codevector_dim
__lowerCAmelCase = proj_codevector_dim
__lowerCAmelCase = diversity_loss_weight
# ctc loss
__lowerCAmelCase = ctc_loss_reduction
__lowerCAmelCase = ctc_zero_infinity
# adapter
__lowerCAmelCase = add_adapter
__lowerCAmelCase = adapter_kernel_size
__lowerCAmelCase = adapter_stride
__lowerCAmelCase = num_adapter_layers
__lowerCAmelCase = output_hidden_size or hidden_size
__lowerCAmelCase = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowerCAmelCase = list(snake_case_ )
__lowerCAmelCase = list(snake_case_ )
__lowerCAmelCase = list(snake_case_ )
__lowerCAmelCase = xvector_output_dim
@property
def _snake_case (self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 370 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_UpperCAmelCase : Dict = """true"""
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6):
set_seed(4_2)
__lowerCAmelCase = RegressionModel()
__lowerCAmelCase = deepcopy(lowerCamelCase)
__lowerCAmelCase = RegressionDataset(length=lowerCamelCase)
__lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase)
model.to(accelerator.device)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return model, ddp_model, dataloader
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''')
def tokenize_function(lowerCamelCase):
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
with accelerator.main_process_first():
__lowerCAmelCase = dataset.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
if use_longest:
return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''')
return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''')
return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6)
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase)
__lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for batch in dataloader:
__lowerCAmelCase , __lowerCAmelCase = batch.values()
with torch.no_grad():
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
__lowerCAmelCase , __lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase)
targs.append(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase)
return logits, targs
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert (
len(lowerCamelCase) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}"""
def __magic_name__( lowerCamelCase = False, lowerCamelCase = False):
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
__lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase)
# First do baseline
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no''']
model.to(lowerCamelCase)
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase)
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=lowerCamelCase, references=batch['''labels'''])
__lowerCAmelCase = metric.compute()
# Then do distributed
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase = batch['''labels''']
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase)
__lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __magic_name__( ):
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""")
test_mrpc(lowerCamelCase, lowerCamelCase)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""")
test_torch_metrics(lowerCamelCase, 9_9)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''')
__lowerCAmelCase = Accelerator()
test_torch_metrics(lowerCamelCase, 5_1_2)
accelerator.state._reset_state()
def __magic_name__( lowerCamelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 | 0 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = original_name.split('''.''')[0]
__lowerCAmelCase = key.split('''.''')
__lowerCAmelCase = int(key_list[key_list.index(__lowerCAmelCase) - 2])
__lowerCAmelCase = int(key_list[key_list.index(__lowerCAmelCase) - 1])
__lowerCAmelCase = orig_block_num - offset
__lowerCAmelCase = key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""", F"""block.{new_block_num}.{layer_num}.{new_name}""")
return key
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = OrderedDict()
__lowerCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('''network'''):
__lowerCAmelCase = key.replace('''network''', '''poolformer.encoder''')
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('''bias''') and "patch_embed" not in key:
patch_emb_offset += 1
__lowerCAmelCase = key[: key.find('''proj''')]
__lowerCAmelCase = key.replace(__lowerCAmelCase, F"""patch_embeddings.{total_embed_found}.""")
__lowerCAmelCase = key.replace('''proj''', '''projection''')
if key.endswith('''bias'''):
total_embed_found += 1
if "patch_embeddings" in key:
__lowerCAmelCase = '''poolformer.encoder.''' + key
if "mlp.fc1" in key:
__lowerCAmelCase = replace_key_with_offset(__lowerCAmelCase, __lowerCAmelCase, '''mlp.fc1''', '''output.conv1''')
if "mlp.fc2" in key:
__lowerCAmelCase = replace_key_with_offset(__lowerCAmelCase, __lowerCAmelCase, '''mlp.fc2''', '''output.conv2''')
if "norm1" in key:
__lowerCAmelCase = replace_key_with_offset(__lowerCAmelCase, __lowerCAmelCase, '''norm1''', '''before_norm''')
if "norm2" in key:
__lowerCAmelCase = replace_key_with_offset(__lowerCAmelCase, __lowerCAmelCase, '''norm2''', '''after_norm''')
if "layer_scale_1" in key:
__lowerCAmelCase = replace_key_with_offset(__lowerCAmelCase, __lowerCAmelCase, '''layer_scale_1''', '''layer_scale_1''')
if "layer_scale_2" in key:
__lowerCAmelCase = replace_key_with_offset(__lowerCAmelCase, __lowerCAmelCase, '''layer_scale_2''', '''layer_scale_2''')
if "head" in key:
__lowerCAmelCase = key.replace('''head''', '''classifier''')
__lowerCAmelCase = value
return new_state_dict
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(__lowerCAmelCase, stream=__lowerCAmelCase).raw)
return image
@torch.no_grad()
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = PoolFormerConfig()
# set attributes based on model_name
__lowerCAmelCase = '''huggingface/label-files'''
__lowerCAmelCase = model_name[-3:]
__lowerCAmelCase = 1_0_0_0
__lowerCAmelCase = '''imagenet-1k-id2label.json'''
__lowerCAmelCase = (1, 1_0_0_0)
# set config attributes
__lowerCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase, __lowerCAmelCase, repo_type='''dataset'''), '''r'''))
__lowerCAmelCase = {int(__lowerCAmelCase): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
__lowerCAmelCase = [2, 2, 6, 2]
__lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 0.9
elif size == "s24":
__lowerCAmelCase = [4, 4, 1_2, 4]
__lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 0.9
elif size == "s36":
__lowerCAmelCase = [6, 6, 1_8, 6]
__lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 1E-6
__lowerCAmelCase = 0.9
elif size == "m36":
__lowerCAmelCase = [6, 6, 1_8, 6]
__lowerCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 1E-6
__lowerCAmelCase = 0.95
elif size == "m48":
__lowerCAmelCase = [8, 8, 2_4, 8]
__lowerCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 1E-6
__lowerCAmelCase = 0.95
else:
raise ValueError(F"""Size {size} not supported""")
# load image processor
__lowerCAmelCase = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase)
# Prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = image_processor(images=__lowerCAmelCase, return_tensors='''pt''').pixel_values
logger.info(F"""Converting model {model_name}...""")
# load original state dict
__lowerCAmelCase = torch.load(__lowerCAmelCase, map_location=torch.device('''cpu'''))
# rename keys
__lowerCAmelCase = rename_keys(__lowerCAmelCase)
# create HuggingFace model and load state dict
__lowerCAmelCase = PoolFormerForImageClassification(__lowerCAmelCase)
model.load_state_dict(__lowerCAmelCase)
model.eval()
# Define image processor
__lowerCAmelCase = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase)
__lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='''pt''').pixel_values
# forward pass
__lowerCAmelCase = model(__lowerCAmelCase)
__lowerCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
__lowerCAmelCase = torch.tensor([-0.30_45, -0.67_58, -0.48_69])
elif size == "s24":
__lowerCAmelCase = torch.tensor([0.44_02, -0.13_74, -0.80_45])
elif size == "s36":
__lowerCAmelCase = torch.tensor([-0.60_80, -0.51_33, -0.58_98])
elif size == "m36":
__lowerCAmelCase = torch.tensor([0.39_52, 0.22_63, -1.26_68])
elif size == "m48":
__lowerCAmelCase = torch.tensor([0.11_67, -0.06_56, -0.34_23])
else:
raise ValueError(F"""Size {size} not supported""")
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3], __lowerCAmelCase, atol=1E-2)
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""")
Path(__lowerCAmelCase).mkdir(exist_ok=__lowerCAmelCase)
model.save_pretrained(__lowerCAmelCase)
print(F"""Saving image processor to {pytorch_dump_folder_path}""")
image_processor.save_pretrained(__lowerCAmelCase)
if __name__ == "__main__":
_UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""poolformer_s12""",
type=str,
help="""Name of the model you\'d like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
_UpperCAmelCase : Any = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 371 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
if length <= 0 or not isinstance(_UpperCAmelCase, _UpperCAmelCase):
raise ValueError('''Length must be a positive integer.''')
return [n * (2 * n - 1) for n in range(_UpperCAmelCase)]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 350 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=12 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=0.0_2 , __lowercase=0 , __lowercase=None , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = projection_dim
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = dropout
__lowerCAmelCase = attention_dropout
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = initializer_range
__lowerCAmelCase = scope
__lowerCAmelCase = bos_token_id
def _snake_case (self ):
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
__lowerCAmelCase = input_mask.numpy()
__lowerCAmelCase , __lowerCAmelCase = input_mask.shape
__lowerCAmelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = 1
__lowerCAmelCase = 0
__lowerCAmelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
def _snake_case (self ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = TFBlipTextModel(config=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case (self ):
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class a__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else ()
__UpperCamelCase : int = False
__UpperCamelCase : List[Any] = False
__UpperCamelCase : List[Any] = False
def _snake_case (self ):
__lowerCAmelCase = BlipTextModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def _snake_case (self ):
self.config_tester.run_common_tests()
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _snake_case (self ):
pass
def _snake_case (self ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def _snake_case (self ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def _snake_case (self ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def _snake_case (self ):
pass
@slow
def _snake_case (self ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = TFBlipTextModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _snake_case (self , __lowercase=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=__SCREAMING_SNAKE_CASE )
| 351 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""",
"""umberto-commoncrawl-cased-v1""": (
"""https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"""
),
"""umberto-wikipedia-uncased-v1""": (
"""https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"""
),
}
class a__ ( snake_case_ ):
"""simple docstring"""
__UpperCamelCase : str = 'camembert'
def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( snake_case_ ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 352 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 0 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
_UpperCAmelCase : List[str] = logging.get_logger(__name__)
_UpperCAmelCase : List[Any] = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
_UpperCAmelCase : List[str] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
for attribute in key.split('''.'''):
__lowerCAmelCase = getattr(_lowerCAmelCase, _lowerCAmelCase)
if weight_type is not None:
__lowerCAmelCase = getattr(_lowerCAmelCase, _lowerCAmelCase).shape
else:
__lowerCAmelCase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowerCAmelCase = value
elif weight_type == "weight_g":
__lowerCAmelCase = value
elif weight_type == "weight_v":
__lowerCAmelCase = value
elif weight_type == "bias":
__lowerCAmelCase = value
else:
__lowerCAmelCase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""")
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
__lowerCAmelCase = fairseq_model.state_dict()
__lowerCAmelCase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowerCAmelCase = None
for name, value in fairseq_dict.items():
__lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
__lowerCAmelCase = True
elif name.split('''.''')[0] == "proj":
__lowerCAmelCase = fairseq_model.proj
__lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]:
__lowerCAmelCase = True
if "*" in mapped_key:
__lowerCAmelCase = name.split(_lowerCAmelCase)[0].split('''.''')[-2]
__lowerCAmelCase = mapped_key.replace('''*''', _lowerCAmelCase)
if "weight_g" in name:
__lowerCAmelCase = '''weight_g'''
elif "weight_v" in name:
__lowerCAmelCase = '''weight_v'''
elif "bias" in name:
__lowerCAmelCase = '''bias'''
elif "weight" in name:
__lowerCAmelCase = '''weight'''
else:
__lowerCAmelCase = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase)
continue
if not is_used:
unused_weights.append(_lowerCAmelCase)
logger.warning(F"""Unused weights: {unused_weights}""")
return proj_weight
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = full_name.split('''conv_layers.''')[-1]
__lowerCAmelCase = name.split('''.''')
__lowerCAmelCase = int(items[0])
__lowerCAmelCase = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowerCAmelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowerCAmelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""")
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowerCAmelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowerCAmelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""")
else:
unused_weights.append(_lowerCAmelCase)
def __magic_name__( lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase = emb.weight.shape
__lowerCAmelCase = nn.Linear(_lowerCAmelCase, _lowerCAmelCase, bias=_lowerCAmelCase)
__lowerCAmelCase = emb.weight.data
return lin_layer
def __magic_name__( lowerCamelCase):
with open(_lowerCAmelCase, '''r''', encoding='''utf-8''') as f:
__lowerCAmelCase = f.readlines()
__lowerCAmelCase = [line.split(''' ''')[0] for line in lines]
__lowerCAmelCase = len(_lowerCAmelCase)
__lowerCAmelCase = {
'''<s>''': 0,
'''<pad>''': 1,
'''</s>''': 2,
'''<unk>''': 3,
}
vocab_dict.update(dict(zip(_lowerCAmelCase, range(4, num_words + 4))))
return vocab_dict
@torch.no_grad()
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ):
__lowerCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase)
__lowerCAmelCase = SpeechaTextaConfig.from_pretrained(
_lowerCAmelCase, vocab_size=_lowerCAmelCase, decoder_layers=_lowerCAmelCase, do_stable_layer_norm=_lowerCAmelCase)
__lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0, do_normalize=_lowerCAmelCase, return_attention_mask=_lowerCAmelCase, )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1])})
__lowerCAmelCase = model[0].eval()
# set weights for wav2vec2 encoder
__lowerCAmelCase = WavaVecaModel(_lowerCAmelCase)
__lowerCAmelCase = recursively_load_weights_wavaveca(model.encoder, _lowerCAmelCase)
__lowerCAmelCase = SpeechaTextaForCausalLM(_lowerCAmelCase)
__lowerCAmelCase , __lowerCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=_lowerCAmelCase)
# set output linear layer
unexpected_keys.remove('''embed_out''')
__lowerCAmelCase = nn.Parameter(model.decoder.embed_out.detach())
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""")
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""")
__lowerCAmelCase = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase, decoder=_lowerCAmelCase)
__lowerCAmelCase = False
# add projection layer
__lowerCAmelCase = nn.Parameter(projection_layer.weight)
__lowerCAmelCase = nn.Parameter(projection_layer.bias)
__lowerCAmelCase = create_vocab_dict(_lowerCAmelCase)
with open(os.path.join(_lowerCAmelCase, '''vocab.json'''), '''w''') as fp:
json.dump(_lowerCAmelCase, _lowerCAmelCase)
__lowerCAmelCase = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase, '''vocab.json'''))
tokenizer.save_pretrained(_lowerCAmelCase)
__lowerCAmelCase = hf_wavavec.config.to_dict()
__lowerCAmelCase = tokenizer.pad_token_id
__lowerCAmelCase = tokenizer.bos_token_id
__lowerCAmelCase = tokenizer.eos_token_id
__lowerCAmelCase = '''speech_to_text_2'''
__lowerCAmelCase = '''wav2vec2'''
__lowerCAmelCase = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase)
hf_wavavec.save_pretrained(_lowerCAmelCase)
feature_extractor.save_pretrained(_lowerCAmelCase)
if __name__ == "__main__":
_UpperCAmelCase : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
_UpperCAmelCase : Optional[int] = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 353 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 0 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = [10, 20, 30, 40, 50, 60]
__lowerCAmelCase = [2, 4, 6, 8, 10, 12]
__lowerCAmelCase = 1_00
self.assertEqual(kp.calc_profit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 2_10 )
def _snake_case (self ):
self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' )
def _snake_case (self ):
self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , '''Weight can not be negative.''' )
def _snake_case (self ):
self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , '''Profit can not be negative.''' )
def _snake_case (self ):
self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' )
def _snake_case (self ):
self.assertRaisesRegex(
_SCREAMING_SNAKE_CASE , '''The length of profit and weight must be same.''' )
if __name__ == "__main__":
unittest.main()
| 354 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 0 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
_UpperCAmelCase : Optional[Any] = logging.getLogger(__name__)
class a__ ( snake_case_ ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase=None ):
super().__init__(
__lowercase , question_encoder_tokenizer=__lowercase , generator_tokenizer=__lowercase , index=__lowercase , init_retrieval=__lowercase , )
__lowerCAmelCase = None
def _snake_case (self , __lowercase ):
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
__lowerCAmelCase = self._infer_socket_ifname()
# avoid clash with the NCCL port
__lowerCAmelCase = str(distributed_port + 1 )
__lowerCAmelCase = dist.new_group(ranks=__lowercase , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _snake_case (self ):
return dist.get_rank(group=self.process_group ) == 0
def _snake_case (self , __lowercase , __lowercase , __lowercase=torch.floataa ):
__lowerCAmelCase = torch.empty(__lowercase , dtype=__lowercase )
dist.scatter(__lowercase , src=0 , scatter_list=__lowercase , group=self.process_group )
return target_tensor
def _snake_case (self ):
__lowerCAmelCase = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__lowerCAmelCase = next((addr for addr in addrs if addr.startswith('''e''' )) , __lowercase )
return ifname
def _snake_case (self , __lowercase , __lowercase ):
if not dist.is_initialized():
__lowerCAmelCase = self._main_retrieve(__lowercase , __lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowercase )
# distributed training
__lowerCAmelCase = dist.get_world_size(group=self.process_group )
# gather logic
__lowerCAmelCase = None
if self._is_main():
__lowerCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowercase )]
dist.gather(torch.tensor(__lowercase ) , dst=0 , gather_list=__lowercase , group=self.process_group )
# scatter logic
__lowerCAmelCase = question_hidden_states.shape[0]
__lowerCAmelCase = []
__lowerCAmelCase = []
if self._is_main():
assert len(__lowercase ) == world_size
__lowerCAmelCase = self._main_retrieve(torch.cat(__lowercase ).numpy() , __lowercase )
__lowerCAmelCase = torch.tensor(__lowercase ), torch.tensor(__lowercase )
__lowerCAmelCase = self._chunk_tensor(__lowercase , __lowercase )
__lowerCAmelCase = self._chunk_tensor(__lowercase , __lowercase )
__lowerCAmelCase = self._scattered(__lowercase , [n_queries, n_docs] , target_type=torch.intaa )
__lowerCAmelCase = self._scattered(__lowercase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowercase )
| 355 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
_UpperCAmelCase : int = TypeVar("""T""")
class a__ ( Generic[T] ):
"""simple docstring"""
__UpperCamelCase : deque[T] # Cache store of keys
__UpperCamelCase : set[T] # References of the keys in cache
__UpperCamelCase : int = 10 # Maximum capacity of cache
def __init__(self , __lowercase ):
__lowerCAmelCase = deque()
__lowerCAmelCase = set()
if not n:
__lowerCAmelCase = sys.maxsize
elif n < 0:
raise ValueError('''n should be an integer greater than 0.''' )
else:
__lowerCAmelCase = n
def _snake_case (self , __lowercase ):
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
__lowerCAmelCase = self.dq_store.pop()
self.key_reference.remove(lowerCamelCase__ )
else:
self.dq_store.remove(lowerCamelCase__ )
self.dq_store.appendleft(lowerCamelCase__ )
self.key_reference.add(lowerCamelCase__ )
def _snake_case (self ):
for k in self.dq_store:
print(lowerCamelCase__ )
def __repr__(self ):
return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : LRUCache[str | int] = LRUCache(4)
lru_cache.refer("""A""")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("""A""")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 356 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase, lowerCamelCase):
if not (isinstance(A__, A__) and isinstance(A__, A__)):
raise ValueError('''longest_common_substring() takes two strings for inputs''')
__lowerCAmelCase = len(A__)
__lowerCAmelCase = len(A__)
__lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1)]
__lowerCAmelCase = 0
__lowerCAmelCase = 0
for i in range(1, texta_length + 1):
for j in range(1, texta_length + 1):
if texta[i - 1] == texta[j - 1]:
__lowerCAmelCase = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
__lowerCAmelCase = i
__lowerCAmelCase = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 0 |
'''simple docstring'''
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = np.inf
def set_batch_size(lowerCamelCase) -> None:
nonlocal batch_size
if isinstance(_UpperCAmelCase, _UpperCAmelCase):
__lowerCAmelCase = min(_UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS)
elif isinstance(_UpperCAmelCase, _UpperCAmelCase):
__lowerCAmelCase = min(_UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS)
elif isinstance(_UpperCAmelCase, _UpperCAmelCase) and feature.dtype == "binary":
__lowerCAmelCase = min(_UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS)
_visit(_UpperCAmelCase, _UpperCAmelCase)
return None if batch_size is np.inf else batch_size
class a__ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = None , **__lowercase , ):
super().__init__(
__lowercase , split=__lowercase , features=__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase , streaming=__lowercase , num_proc=__lowercase , **__lowercase , )
__lowerCAmelCase = path_or_paths if isinstance(__lowercase , __lowercase ) else {self.split: path_or_paths}
__lowerCAmelCase = _PACKAGED_DATASETS_MODULES['parquet'][1]
__lowerCAmelCase = Parquet(
cache_dir=__lowercase , data_files=__lowercase , features=__lowercase , hash=__lowercase , **__lowercase , )
def _snake_case (self ):
# Build iterable dataset
if self.streaming:
__lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
self.builder.download_and_prepare(
download_config=__lowercase , download_mode=__lowercase , verification_mode=__lowercase , base_path=__lowercase , num_proc=self.num_proc , )
__lowerCAmelCase = self.builder.as_dataset(
split=self.split , verification_mode=__lowercase , in_memory=self.keep_in_memory )
return dataset
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = dataset
__lowerCAmelCase = path_or_buf
__lowerCAmelCase = batch_size or get_writer_batch_size(dataset.features )
__lowerCAmelCase = parquet_writer_kwargs
def _snake_case (self ):
__lowerCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , '''wb+''' ) as buffer:
__lowerCAmelCase = self._write(file_obj=__lowercase , batch_size=__lowercase , **self.parquet_writer_kwargs )
else:
__lowerCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=__lowercase , **self.parquet_writer_kwargs )
return written
def _snake_case (self , __lowercase , __lowercase , **__lowercase ):
__lowerCAmelCase = 0
__lowerCAmelCase = parquet_writer_kwargs.pop('''path_or_buf''' , __lowercase )
__lowerCAmelCase = self.dataset.features.arrow_schema
__lowerCAmelCase = pq.ParquetWriter(__lowercase , schema=__lowercase , **__lowercase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , __lowercase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
__lowerCAmelCase = query_table(
table=self.dataset._data , key=slice(__lowercase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(__lowercase )
written += batch.nbytes
writer.close()
return written
| 358 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
from math import sqrt
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (
number >= 0
), "'number' must been an int and positive"
__lowerCAmelCase = True
# 0 and 1 are none primes.
if number <= 1:
__lowerCAmelCase = False
for divisor in range(2, int(round(sqrt(a__))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowerCAmelCase = False
break
# precondition
assert isinstance(a__, a__), "'status' must been from type bool"
return status
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowerCAmelCase = list(range(2, n + 1))
__lowerCAmelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a__)):
for j in range(i + 1, len(a__)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowerCAmelCase = 0
# filters actual prime numbers.
__lowerCAmelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a__, a__), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (n > 2), "'N' must been an int and > 2"
__lowerCAmelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(a__):
ans.append(a__)
# precondition
assert isinstance(a__, a__), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and number >= 0, "'number' must been an int and >= 0"
__lowerCAmelCase = [] # this list will be returns of the function.
# potential prime number factors.
__lowerCAmelCase = 2
__lowerCAmelCase = number
if number == 0 or number == 1:
ans.append(a__)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a__):
while quotient != 1:
if is_prime(a__) and (quotient % factor == 0):
ans.append(a__)
quotient /= factor
else:
factor += 1
else:
ans.append(a__)
# precondition
assert isinstance(a__, a__), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(a__)
__lowerCAmelCase = max(a__)
# precondition
assert isinstance(a__, a__), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(a__)
__lowerCAmelCase = min(a__)
# precondition
assert isinstance(a__, a__), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__), "'number' must been an int"
assert isinstance(number % 2 == 0, a__), "compare bust been from type bool"
return number % 2 == 0
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__), "'number' must been an int"
assert isinstance(number % 2 != 0, a__), "compare bust been from type bool"
return number % 2 != 0
def __magic_name__( lowerCamelCase):
assert (
isinstance(a__, a__) and (number > 2) and is_even(a__)
), "'number' must been an int, even and > 2"
__lowerCAmelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowerCAmelCase = get_prime_numbers(a__)
__lowerCAmelCase = len(a__)
# run variable for while-loops.
__lowerCAmelCase = 0
__lowerCAmelCase = None
# exit variable. for break up the loops
__lowerCAmelCase = True
while i < len_pn and loop:
__lowerCAmelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowerCAmelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(a__, a__)
and (len(a__) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(a__, a__)
and isinstance(a__, a__)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 0
while numbera != 0:
__lowerCAmelCase = numbera % numbera
__lowerCAmelCase = numbera
__lowerCAmelCase = rest
# precondition
assert isinstance(a__, a__) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(a__, a__)
and isinstance(a__, a__)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowerCAmelCase = prime_factorization(a__)
__lowerCAmelCase = prime_factorization(a__)
elif numbera == 1 or numbera == 1:
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = max(a__, a__)
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowerCAmelCase = prime_fac_a.count(a__)
__lowerCAmelCase = prime_fac_a.count(a__)
for _ in range(max(a__, a__)):
ans *= n
else:
__lowerCAmelCase = prime_fac_a.count(a__)
for _ in range(a__):
ans *= n
done.append(a__)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowerCAmelCase = prime_fac_a.count(a__)
for _ in range(a__):
ans *= n
done.append(a__)
# precondition
assert isinstance(a__, a__) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (n >= 0), "'number' must been a positive int"
__lowerCAmelCase = 0
__lowerCAmelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a__):
ans += 1
# precondition
assert isinstance(a__, a__) and is_prime(
a__), "'ans' must been a prime number and from type int"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
is_prime(a__) and is_prime(a__) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowerCAmelCase = p_number_a + 1 # jump to the next number
__lowerCAmelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a__):
number += 1
while number < p_number_a:
ans.append(a__)
number += 1
# fetch the next prime number.
while not is_prime(a__):
number += 1
# precondition
assert (
isinstance(a__, a__)
and ans[0] != p_number_a
and ans[len(a__) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (n >= 1), "'n' must been int and >= 1"
__lowerCAmelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(a__)
# precondition
assert ans[0] == 1 and ans[len(a__) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (
number > 1
), "'number' must been an int and >= 1"
__lowerCAmelCase = get_divisors(a__)
# precondition
assert (
isinstance(a__, a__)
and (divisors[0] == 1)
and (divisors[len(a__) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(a__, a__)
and isinstance(a__, a__)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowerCAmelCase = gcd(abs(a__), abs(a__))
# precondition
assert (
isinstance(a__, a__)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (n >= 0), "'n' must been a int and >= 0"
__lowerCAmelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(a__, a__) and (n >= 0), "'n' must been an int and >= 0"
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1 # this will be return
for _ in range(n - 1):
__lowerCAmelCase = ans
ans += fiba
__lowerCAmelCase = tmp
return ans
| 359 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 0 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_labels
__lowerCAmelCase = num_choices
__lowerCAmelCase = scope
def _snake_case (self ):
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
if self.use_token_type_ids:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case (self ):
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = NystromformerModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
__lowerCAmelCase = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
__lowerCAmelCase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = NystromformerForMaskedLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = NystromformerForQuestionAnswering(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowerCAmelCase = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = NystromformerForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = NystromformerForTokenClassification(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.num_choices
__lowerCAmelCase = NystromformerForMultipleChoice(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case (self ):
__lowerCAmelCase = self.prepare_config_and_inputs()
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
) = config_and_inputs
__lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class a__ ( __lowercase , __lowercase , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : int = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCamelCase : Dict = (
{
'''feature-extraction''': NystromformerModel,
'''fill-mask''': NystromformerForMaskedLM,
'''question-answering''': NystromformerForQuestionAnswering,
'''text-classification''': NystromformerForSequenceClassification,
'''token-classification''': NystromformerForTokenClassification,
'''zero-shot''': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase : List[Any] = False
__UpperCamelCase : Optional[Any] = False
def _snake_case (self ):
__lowerCAmelCase = NystromformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 )
def _snake_case (self ):
self.config_tester.run_common_tests()
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowerCAmelCase = type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ )
@slow
def _snake_case (self ):
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = NystromformerModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _snake_case (self ):
__lowerCAmelCase = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' )
__lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
__lowerCAmelCase = model(UpperCAmelCase__ )[0]
__lowerCAmelCase = torch.Size((1, 6, 7_68) )
self.assertEqual(output.shape , UpperCAmelCase__ )
__lowerCAmelCase = torch.tensor(
[[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) )
@slow
def _snake_case (self ):
__lowerCAmelCase = '''the [MASK] of Belgium is Brussels'''
__lowerCAmelCase = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' )
__lowerCAmelCase = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' )
__lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' )
with torch.no_grad():
__lowerCAmelCase = model(encoding.input_ids ).logits
__lowerCAmelCase = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(UpperCAmelCase__ ) , '''capital''' )
| 360 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = ConsistencyModelPipeline
__UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCamelCase : List[Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def _snake_case (self , __lowercase=False ):
if class_cond:
__lowerCAmelCase = self.dummy_cond_unet
else:
__lowerCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _snake_case (self , __lowercase , __lowercase=0 ):
if str(__lowercase ).startswith('''mps''' ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
else:
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
__lowerCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
__lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
__lowerCAmelCase = latents
return inputs
def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
if type(__lowercase ) == str:
__lowerCAmelCase = torch.device(__lowercase )
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 9 | 0 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase_ )
class a__ ( UpperCamelCase_ ):
"""simple docstring"""
__UpperCamelCase : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} )
__UpperCamelCase : ClassVar[Features] = Features({'audio': Audio()} )
__UpperCamelCase : ClassVar[Features] = Features({'transcription': Value('string' )} )
__UpperCamelCase : str = "audio"
__UpperCamelCase : str = "transcription"
def _snake_case (self , __lowercase ):
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , _a ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
__lowerCAmelCase = copy.deepcopy(self )
__lowerCAmelCase = self.input_schema.copy()
__lowerCAmelCase = features[self.audio_column]
__lowerCAmelCase = input_schema
return task_template
@property
def _snake_case (self ):
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 361 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCAmelCase : List[Any] = datasets.load_iris()
_UpperCAmelCase : Dict = np.array(data["""data"""])
_UpperCAmelCase : int = np.array(data["""target"""])
_UpperCAmelCase : str = data["""target_names"""]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y)
def __magic_name__( lowerCamelCase, lowerCamelCase):
return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5):
__lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase)
# List of distances of all points from the point to be classified
__lowerCAmelCase = []
for data_point in data:
__lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase)
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances.
__lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 9 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
_UpperCAmelCase : int = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class a__ ( _A ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] = 'mra'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=1 , __lowercase=0.0_2 , __lowercase=1e-5 , __lowercase="absolute" , __lowercase=4 , __lowercase="full" , __lowercase=0 , __lowercase=0 , __lowercase=1 , __lowercase=0 , __lowercase=2 , **__lowercase , ):
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = initializer_range
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = block_per_row
__lowerCAmelCase = approx_mode
__lowerCAmelCase = initial_prior_first_n_blocks
__lowerCAmelCase = initial_prior_diagonal_n_blocks
| 362 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' )
__lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = inputs['''input_ids''']
__lowerCAmelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Any = logging.get_logger()
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : Optional[Any] = 42
__UpperCamelCase : str = field(default_factory=__SCREAMING_SNAKE_CASE )
__UpperCamelCase : str = field(default_factory=__SCREAMING_SNAKE_CASE )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(_SCREAMING_SNAKE_CASE , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_SCREAMING_SNAKE_CASE )
def __call__(self , __lowercase ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_SCREAMING_SNAKE_CASE )
[x.remove() for x in self.handles]
return self
@property
def _snake_case (self ):
return list(filter(lambda __lowercase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : List[Any] = 42
__UpperCamelCase : Tuple = 42
__UpperCamelCase : Optional[Any] = 0
__UpperCamelCase : int = field(default_factory=__SCREAMING_SNAKE_CASE )
__UpperCamelCase : List[Any] = field(default_factory=__SCREAMING_SNAKE_CASE )
def __call__(self , __lowercase ):
__lowerCAmelCase = Tracker(self.dest )(_SCREAMING_SNAKE_CASE ).parametrized
__lowerCAmelCase = Tracker(self.src )(_SCREAMING_SNAKE_CASE ).parametrized
__lowerCAmelCase = list(filter(lambda __lowercase : type(_SCREAMING_SNAKE_CASE ) not in self.src_skip , _SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = list(filter(lambda __lowercase : type(_SCREAMING_SNAKE_CASE ) not in self.dest_skip , _SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(_SCREAMING_SNAKE_CASE )} operations while"""
F""" destination module has {len(_SCREAMING_SNAKE_CASE )}.""" )
for dest_m, src_m in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = True):
print(F"""Converting {name}...""")
with torch.no_grad():
__lowerCAmelCase = timm.create_model(__snake_case, pretrained=__snake_case).eval()
__lowerCAmelCase = ResNetForImageClassification(__snake_case).eval()
__lowerCAmelCase = ModuleTransfer(src=__snake_case, dest=__snake_case)
__lowerCAmelCase = torch.randn((1, 3, 2_2_4, 2_2_4))
module_transfer(__snake_case)
assert torch.allclose(from_model(__snake_case), our_model(__snake_case).logits), "The model logits don't match the original one."
__lowerCAmelCase = F"""resnet{"-".join(name.split("resnet"))}"""
print(__snake_case)
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='''Add model''', use_temp_dir=__snake_case, )
# we can use the convnext one
__lowerCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''')
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='''Add image processor''', use_temp_dir=__snake_case, )
print(F"""Pushed {checkpoint_name}""")
def __magic_name__( lowerCamelCase, lowerCamelCase = None, lowerCamelCase = True):
__lowerCAmelCase = "imagenet-1k-id2label.json"
__lowerCAmelCase = 1_0_0_0
__lowerCAmelCase = (1, num_labels)
__lowerCAmelCase = "huggingface/label-files"
__lowerCAmelCase = num_labels
__lowerCAmelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset'''), '''r'''))
__lowerCAmelCase = {int(__snake_case): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
__lowerCAmelCase = partial(__snake_case, num_labels=__snake_case, idalabel=__snake_case, labelaid=__snake_case)
__lowerCAmelCase = {
"resnet18": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2], layer_type='''basic'''),
"resnet26": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8], layer_type='''bottleneck'''),
"resnet34": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2], layer_type='''basic'''),
"resnet50": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8], layer_type='''bottleneck'''),
"resnet101": ImageNetPreTrainedConfig(
depths=[3, 4, 2_3, 3], hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8], layer_type='''bottleneck'''),
"resnet152": ImageNetPreTrainedConfig(
depths=[3, 8, 3_6, 3], hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8], layer_type='''bottleneck'''),
}
if model_name:
convert_weight_and_push(__snake_case, names_to_config[model_name], __snake_case, __snake_case)
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(__snake_case, __snake_case, __snake_case, __snake_case)
return config, expected_shape
if __name__ == "__main__":
_UpperCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported resnet* architecture,"""
""" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
_UpperCAmelCase : int = parser.parse_args()
_UpperCAmelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 363 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
_UpperCAmelCase : int = {
"""configuration_speecht5""": [
"""SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""",
"""SpeechT5Config""",
"""SpeechT5HifiGanConfig""",
],
"""feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""],
"""processing_speecht5""": ["""SpeechT5Processor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Optional[Any] = ["""SpeechT5Tokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[str] = [
"""SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SpeechT5ForSpeechToText""",
"""SpeechT5ForSpeechToSpeech""",
"""SpeechT5ForTextToSpeech""",
"""SpeechT5Model""",
"""SpeechT5PreTrainedModel""",
"""SpeechT5HifiGan""",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 364 |
'''simple docstring'''
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ):
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1]
# Ensure proper dimensionality.
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase)
__lowerCAmelCase = np.iscomplexobj(lowerCamelCase)
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCamelCase, input_matrix.conj().T)
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__lowerCAmelCase = False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
# Normalize the resulting output vector.
__lowerCAmelCase = w / np.linalg.norm(lowerCamelCase)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__lowerCAmelCase = vector.conj().T if is_complex else vector.T
__lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase))
# Check convergence.
__lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__lowerCAmelCase = True
__lowerCAmelCase = lambda_
if is_complex:
__lowerCAmelCase = np.real(lambda_)
return lambda_, vector
def __magic_name__( ):
__lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]])
__lowerCAmelCase = np.array([4_1, 4, 2_0])
__lowerCAmelCase = real_input_matrix.astype(np.complexaaa)
__lowerCAmelCase = np.triu(1J * complex_input_matrix, 1)
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa)
for problem_type in ["real", "complex"]:
if problem_type == "real":
__lowerCAmelCase = real_input_matrix
__lowerCAmelCase = real_vector
elif problem_type == "complex":
__lowerCAmelCase = complex_input_matrix
__lowerCAmelCase = complex_vector
# Our implementation.
__lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase)
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase)
# Last eigenvalue is the maximum one.
__lowerCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__lowerCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = len(SCREAMING_SNAKE_CASE_)
__lowerCAmelCase = len(matrix[0])
__lowerCAmelCase = min(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_)
for row in range(SCREAMING_SNAKE_CASE_):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1, SCREAMING_SNAKE_CASE_):
__lowerCAmelCase = matrix[col][row] / matrix[row][row]
for i in range(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
__lowerCAmelCase = True
for i in range(row + 1, SCREAMING_SNAKE_CASE_):
if matrix[i][row] != 0:
__lowerCAmelCase , __lowerCAmelCase = matrix[i], matrix[row]
__lowerCAmelCase = False
break
if reduce:
rank -= 1
for i in range(SCREAMING_SNAKE_CASE_):
__lowerCAmelCase = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod() | 365 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_UpperCAmelCase : str = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
return [
int(1_0_0_0 * (box[0] / width)),
int(1_0_0_0 * (box[1] / height)),
int(1_0_0_0 * (box[2] / width)),
int(1_0_0_0 * (box[3] / height)),
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None):
__lowerCAmelCase = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
__lowerCAmelCase = to_pil_image(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = pil_image.size
__lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()]
__lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase)
# finally, normalize the bounding boxes
__lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase))
assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = apply_ocr
__lowerCAmelCase = ocr_lang
__lowerCAmelCase = tesseract_config
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__lowerCAmelCase = (size['''height'''], size['''width'''])
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowerCAmelCase = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
__lowerCAmelCase = []
__lowerCAmelCase = []
for image in images:
__lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase )
words_batch.append(__lowercase )
boxes_batch.append(__lowercase )
if do_resize:
__lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase )
if apply_ocr:
__lowerCAmelCase = words_batch
__lowerCAmelCase = boxes_batch
return data
| 9 | 0 |
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
_UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
def __magic_name__( ):
__lowerCAmelCase = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''')
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__lowerCAmelCase = json.loads(SCREAMING_SNAKE_CASE__)
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__lowerCAmelCase = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''')
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__lowerCAmelCase = json.loads(SCREAMING_SNAKE_CASE__)
if not mpi_options.get('''sagemaker_mpi_enabled''', SCREAMING_SNAKE_CASE__):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec('''smdistributed''') is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class a__ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCamelCase : str = field(
default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , )
def _snake_case (self ):
super().__post_init__()
warnings.warn(
'''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use '''
'''`TrainingArguments` instead.''' , _UpperCAmelCase , )
@cached_property
def _snake_case (self ):
logger.info('''PyTorch: setting up devices''' )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
'''torch.distributed process group is initialized, but local_rank == -1. '''
'''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' )
if self.no_cuda:
__lowerCAmelCase = torch.device('''cpu''' )
__lowerCAmelCase = 0
elif is_sagemaker_model_parallel_available():
__lowerCAmelCase = smp.local_rank()
__lowerCAmelCase = torch.device('''cuda''' , _UpperCAmelCase )
__lowerCAmelCase = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) )
__lowerCAmelCase = torch.device('''cuda''' , self.local_rank )
__lowerCAmelCase = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__lowerCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__lowerCAmelCase = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = torch.device('''cuda''' , self.local_rank )
__lowerCAmelCase = 1
if device.type == "cuda":
torch.cuda.set_device(_UpperCAmelCase )
return device
@property
def _snake_case (self ):
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def _snake_case (self ):
return not is_sagemaker_model_parallel_available()
@property
def _snake_case (self ):
return False
| 366 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['torch', 'scipy']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 9 | 0 |
'''simple docstring'''
import math
def __magic_name__( lowerCamelCase):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(lowerCamelCase) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __magic_name__( lowerCamelCase = 0.1):
__lowerCAmelCase = 3
__lowerCAmelCase = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1):
primes += is_prime(lowerCamelCase)
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase = 2_0_0):
__lowerCAmelCase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
__lowerCAmelCase = [0] * (pence + 1)
__lowerCAmelCase = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(a__, pence + 1, 1):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_0_0) == 7_3_6_8_2
| 368 |
'''simple docstring'''
# Imports
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
if red is not None:
__lowerCAmelCase = red
if green is not None:
__lowerCAmelCase = green
if blue is not None:
__lowerCAmelCase = blue
if red_edge is not None:
__lowerCAmelCase = red_edge
if nir is not None:
__lowerCAmelCase = nir
return True
def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
__lowerCAmelCase = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def _snake_case (self ):
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case (self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case (self ):
return self.nir * (self.red / (self.green**2))
def _snake_case (self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case (self ):
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case (self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case (self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case (self ):
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case (self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case (self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case (self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case (self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case (self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case (self ):
return (self.nir / self.green) - 1
def _snake_case (self ):
return (self.nir / self.redEdge) - 1
def _snake_case (self ):
return (self.red - self.blue) / self.red
def _snake_case (self ):
__lowerCAmelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case (self ):
return self.nir - self.green
def _snake_case (self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case (self ):
__lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case (self , __lowercase=0.1_6 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case (self , __lowercase=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case (self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case (self , __lowercase=None , __lowercase=None ):
return (self.nir - b) / (a * self.red)
def _snake_case (self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case (self ):
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case (self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case (self ):
return self.green / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.nir / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.red / (self.nir + self.red + self.green)
def _snake_case (self ):
return (self.green - self.red) / (self.green + self.red)
def _snake_case (self ):
return (self.red - self.green) / (self.red + self.green)
def _snake_case (self ):
__lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case (self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case (self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 9 | 0 |
'''simple docstring'''
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class a__ ( a__ ):
"""simple docstring"""
__UpperCamelCase : List[str] = ComputeEnvironment.AMAZON_SAGEMAKER
__UpperCamelCase : Optional[Any] = True
__UpperCamelCase : str = 'ml.p3.2xlarge'
__UpperCamelCase : Any = 'accelerate_sagemaker_execution_role'
__UpperCamelCase : Union[str, Any] = 'hf-sm'
__UpperCamelCase : Optional[int] = 'us-east-1'
__UpperCamelCase : Dict = 1
__UpperCamelCase : str = 'accelerate-sagemaker-1'
__UpperCamelCase : Tuple = '1.6'
__UpperCamelCase : Any = '4.4'
__UpperCamelCase : Dict = 'train.py'
__UpperCamelCase : List[Any] = [
'--model_name_or_path',
'bert',
'--do_train',
'False',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
__UpperCamelCase : Any = [
'--model_name_or_path',
'bert',
'--do_train',
'--do_test',
'False',
'--do_predict',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
__lowerCAmelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args['''model_name_or_path'''] , __lowercase )
assert isinstance(converted_args['''do_train'''] , __lowercase )
assert isinstance(converted_args['''epochs'''] , __lowercase )
assert isinstance(converted_args['''learning_rate'''] , __lowercase )
assert isinstance(converted_args['''max_steps'''] , __lowercase )
with pytest.raises(__lowercase ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 369 |
'''simple docstring'''
from math import sqrt
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' must been an int and positive"
__lowerCAmelCase = True
# 0 and 1 are none primes.
if number <= 1:
__lowerCAmelCase = False
for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowerCAmelCase = False
break
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool"
return status
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowerCAmelCase = list(range(2, n + 1))
__lowerCAmelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase)):
for j in range(i + 1, len(lowerCamelCase)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowerCAmelCase = 0
# filters actual prime numbers.
__lowerCAmelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
__lowerCAmelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(lowerCamelCase):
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0"
__lowerCAmelCase = [] # this list will be returns of the function.
# potential prime number factors.
__lowerCAmelCase = 2
__lowerCAmelCase = number
if number == 0 or number == 1:
ans.append(lowerCamelCase)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase):
while quotient != 1:
if is_prime(lowerCamelCase) and (quotient % factor == 0):
ans.append(lowerCamelCase)
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = max(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = min(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 == 0
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 != 0
def __magic_name__( lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase)
), "'number' must been an int, even and > 2"
__lowerCAmelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowerCAmelCase = get_prime_numbers(lowerCamelCase)
__lowerCAmelCase = len(lowerCamelCase)
# run variable for while-loops.
__lowerCAmelCase = 0
__lowerCAmelCase = None
# exit variable. for break up the loops
__lowerCAmelCase = True
while i < len_pn and loop:
__lowerCAmelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowerCAmelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (len(lowerCamelCase) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 0
while numbera != 0:
__lowerCAmelCase = numbera % numbera
__lowerCAmelCase = numbera
__lowerCAmelCase = rest
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = prime_factorization(lowerCamelCase)
elif numbera == 1 or numbera == 1:
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = max(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(max(lowerCamelCase, lowerCamelCase)):
ans *= n
else:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int"
__lowerCAmelCase = 0
__lowerCAmelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase):
ans += 1
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime(
lowerCamelCase), "'ans' must been a prime number and from type int"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowerCAmelCase = p_number_a + 1 # jump to the next number
__lowerCAmelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase)
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and ans[0] != p_number_a
and ans[len(lowerCamelCase) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1"
__lowerCAmelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(lowerCamelCase)
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number > 1
), "'number' must been an int and >= 1"
__lowerCAmelCase = get_divisors(lowerCamelCase)
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase))
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0"
__lowerCAmelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0"
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1 # this will be return
for _ in range(n - 1):
__lowerCAmelCase = ans
ans += fiba
__lowerCAmelCase = tmp
return ans
| 9 | 0 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = filter(lambda lowerCamelCase: p.requires_grad, model.parameters())
__lowerCAmelCase = sum([np.prod(p.size()) for p in model_parameters])
return params
_UpperCAmelCase : List[Any] = logging.getLogger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase):
if metric == "rouge2":
__lowerCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
__lowerCAmelCase = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
__lowerCAmelCase = '''{val_avg_em:.4f}-{step_count}'''
else:
raise NotImplementedError(
F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
''' function.''')
__lowerCAmelCase = ModelCheckpoint(
dirpath=lowerCamelCase, filename=lowerCamelCase, monitor=F"""val_{metric}""", mode='''max''', save_top_k=3, every_n_epochs=1, )
return checkpoint_callback
def __magic_name__( lowerCamelCase, lowerCamelCase):
return EarlyStopping(
monitor=F"""val_{metric}""", mode='''min''' if '''loss''' in metric else '''max''', patience=lowerCamelCase, verbose=lowerCamelCase, )
class a__ ( pl.Callback ):
"""simple docstring"""
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE )
@rank_zero_only
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=True ):
logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
__lowerCAmelCase = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
__lowerCAmelCase = Path(pl_module.hparams.output_dir )
if type_path == "test":
__lowerCAmelCase = od / '''test_results.txt'''
__lowerCAmelCase = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__lowerCAmelCase = od / F"""{type_path}_results/{trainer.global_step:05d}.txt"""
__lowerCAmelCase = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , '''a+''' ) as writer:
for key in sorted(_SCREAMING_SNAKE_CASE ):
if key in ["log", "progress_bar", "preds"]:
continue
__lowerCAmelCase = metrics[key]
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
__lowerCAmelCase = val.item()
__lowerCAmelCase = F"""{key}: {val:.6f}\n"""
writer.write(_SCREAMING_SNAKE_CASE )
if not save_generations:
return
if "preds" in metrics:
__lowerCAmelCase = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(_SCREAMING_SNAKE_CASE )
@rank_zero_only
def _snake_case (self , __lowercase , __lowercase ):
try:
__lowerCAmelCase = pl_module.model.model.num_parameters()
except AttributeError:
__lowerCAmelCase = pl_module.model.num_parameters()
__lowerCAmelCase = count_trainable_parameters(_SCREAMING_SNAKE_CASE )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} )
@rank_zero_only
def _snake_case (self , __lowercase , __lowercase ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''test''' )
@rank_zero_only
def _snake_case (self , __lowercase , __lowercase ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 370 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_UpperCAmelCase : Dict = """true"""
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6):
set_seed(4_2)
__lowerCAmelCase = RegressionModel()
__lowerCAmelCase = deepcopy(lowerCamelCase)
__lowerCAmelCase = RegressionDataset(length=lowerCamelCase)
__lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase)
model.to(accelerator.device)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return model, ddp_model, dataloader
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''')
def tokenize_function(lowerCamelCase):
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
with accelerator.main_process_first():
__lowerCAmelCase = dataset.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
if use_longest:
return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''')
return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''')
return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6)
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase)
__lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for batch in dataloader:
__lowerCAmelCase , __lowerCAmelCase = batch.values()
with torch.no_grad():
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
__lowerCAmelCase , __lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase)
targs.append(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase)
return logits, targs
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert (
len(lowerCamelCase) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}"""
def __magic_name__( lowerCamelCase = False, lowerCamelCase = False):
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
__lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase)
# First do baseline
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no''']
model.to(lowerCamelCase)
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase)
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=lowerCamelCase, references=batch['''labels'''])
__lowerCAmelCase = metric.compute()
# Then do distributed
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase = batch['''labels''']
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase)
__lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __magic_name__( ):
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""")
test_mrpc(lowerCamelCase, lowerCamelCase)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""")
test_torch_metrics(lowerCamelCase, 9_9)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''')
__lowerCAmelCase = Accelerator()
test_torch_metrics(lowerCamelCase, 5_1_2)
accelerator.state._reset_state()
def __magic_name__( lowerCamelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 | 0 |
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=50 , __lowercase=0.0_2 , __lowercase=True , __lowercase=None , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = initializer_range
__lowerCAmelCase = use_labels
__lowerCAmelCase = scope
def _snake_case (self ):
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, token_labels
def _snake_case (self ):
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__lowercase , initializer_range=self.initializer_range , )
def _snake_case (self ):
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
__lowerCAmelCase = True
__lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase , ):
__lowerCAmelCase = BertGenerationEncoder(config=__lowercase )
model.to(__lowercase )
model.eval()
__lowerCAmelCase = model(__lowercase , attention_mask=__lowercase )
__lowerCAmelCase = model(__lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase , ):
__lowerCAmelCase = True
__lowerCAmelCase = BertGenerationEncoder(config=__lowercase )
model.to(__lowercase )
model.eval()
__lowerCAmelCase = model(
__lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , )
__lowerCAmelCase = model(
__lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase , ):
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = BertGenerationDecoder(config=__lowercase ).to(__lowercase ).eval()
# first forward pass
__lowerCAmelCase = model(
__lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , )
__lowerCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
__lowerCAmelCase = model(
__lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )['''hidden_states'''][0]
__lowerCAmelCase = model(
__lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )['''hidden_states'''][0]
# select random slice
__lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
__lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-3 ) )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase , ):
__lowerCAmelCase = BertGenerationDecoder(__lowercase )
model.to(__lowercase )
model.eval()
__lowerCAmelCase = model(__lowercase , attention_mask=__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class a__ ( a_ , a_ , a_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__UpperCamelCase : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else ()
__UpperCamelCase : List[str] = (
{"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder}
if is_torch_available()
else {}
)
def _snake_case (self ):
__lowerCAmelCase = BertGenerationEncoderTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=__lowercase , hidden_size=37 )
def _snake_case (self ):
self.config_tester.run_common_tests()
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def _snake_case (self ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
__lowerCAmelCase = '''bert'''
self.model_tester.create_and_check_model(__lowercase , __lowercase , __lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowercase )
def _snake_case (self ):
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowerCAmelCase = None
self.model_tester.create_and_check_model_as_decoder(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(__lowercase )
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _snake_case (self ):
__lowerCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
__lowerCAmelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] )
with torch.no_grad():
__lowerCAmelCase = model(__lowercase )[0]
__lowerCAmelCase = torch.Size([1, 8, 10_24] )
self.assertEqual(output.shape , __lowercase )
__lowerCAmelCase = torch.tensor(
[[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1e-4 ) )
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _snake_case (self ):
__lowerCAmelCase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
__lowerCAmelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] )
with torch.no_grad():
__lowerCAmelCase = model(__lowercase )[0]
__lowerCAmelCase = torch.Size([1, 8, 5_03_58] )
self.assertEqual(output.shape , __lowercase )
__lowerCAmelCase = torch.tensor(
[[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1e-4 ) )
| 371 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 | 0 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Any = logging.get_logger()
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = True):
print(F"""Converting {name}...""")
with torch.no_grad():
if hidden_sizes == 1_2_8:
if name[-1] == "S":
__lowerCAmelCase = timm.create_model('''levit_128s''', pretrained=_SCREAMING_SNAKE_CASE)
else:
__lowerCAmelCase = timm.create_model('''levit_128''', pretrained=_SCREAMING_SNAKE_CASE)
if hidden_sizes == 1_9_2:
__lowerCAmelCase = timm.create_model('''levit_192''', pretrained=_SCREAMING_SNAKE_CASE)
if hidden_sizes == 2_5_6:
__lowerCAmelCase = timm.create_model('''levit_256''', pretrained=_SCREAMING_SNAKE_CASE)
if hidden_sizes == 3_8_4:
__lowerCAmelCase = timm.create_model('''levit_384''', pretrained=_SCREAMING_SNAKE_CASE)
from_model.eval()
__lowerCAmelCase = LevitForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE).eval()
__lowerCAmelCase = OrderedDict()
__lowerCAmelCase = from_model.state_dict()
__lowerCAmelCase = list(from_model.state_dict().keys())
__lowerCAmelCase = list(our_model.state_dict().keys())
print(len(_SCREAMING_SNAKE_CASE), len(_SCREAMING_SNAKE_CASE))
for i in range(len(_SCREAMING_SNAKE_CASE)):
__lowerCAmelCase = weights[og_keys[i]]
our_model.load_state_dict(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase = torch.randn((2, 3, 2_2_4, 2_2_4))
__lowerCAmelCase = from_model(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase = our_model(_SCREAMING_SNAKE_CASE).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE), "The model logits don't match the original one."
__lowerCAmelCase = name
print(_SCREAMING_SNAKE_CASE)
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name)
__lowerCAmelCase = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name)
print(F"""Pushed {checkpoint_name}""")
def __magic_name__( lowerCamelCase, lowerCamelCase = None, lowerCamelCase = True):
__lowerCAmelCase = "imagenet-1k-id2label.json"
__lowerCAmelCase = 1_0_0_0
__lowerCAmelCase = (1, num_labels)
__lowerCAmelCase = "huggingface/label-files"
__lowerCAmelCase = num_labels
__lowerCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, repo_type='''dataset'''), '''r'''))
__lowerCAmelCase = {int(_SCREAMING_SNAKE_CASE): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
__lowerCAmelCase = partial(_SCREAMING_SNAKE_CASE, num_labels=_SCREAMING_SNAKE_CASE, idalabel=_SCREAMING_SNAKE_CASE, labelaid=_SCREAMING_SNAKE_CASE)
__lowerCAmelCase = {
"levit-128S": 1_2_8,
"levit-128": 1_2_8,
"levit-192": 1_9_2,
"levit-256": 2_5_6,
"levit-384": 3_8_4,
}
__lowerCAmelCase = {
"levit-128S": ImageNetPreTrainedConfig(
hidden_sizes=[1_2_8, 2_5_6, 3_8_4], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[1_6, 1_6, 1_6], drop_path_rate=0, ),
"levit-128": ImageNetPreTrainedConfig(
hidden_sizes=[1_2_8, 2_5_6, 3_8_4], num_attention_heads=[4, 8, 1_2], depths=[4, 4, 4], key_dim=[1_6, 1_6, 1_6], drop_path_rate=0, ),
"levit-192": ImageNetPreTrainedConfig(
hidden_sizes=[1_9_2, 2_8_8, 3_8_4], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[3_2, 3_2, 3_2], drop_path_rate=0, ),
"levit-256": ImageNetPreTrainedConfig(
hidden_sizes=[2_5_6, 3_8_4, 5_1_2], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[3_2, 3_2, 3_2], drop_path_rate=0, ),
"levit-384": ImageNetPreTrainedConfig(
hidden_sizes=[3_8_4, 5_1_2, 7_6_8], num_attention_heads=[6, 9, 1_2], depths=[4, 4, 4], key_dim=[3_2, 3_2, 3_2], drop_path_rate=0.1, ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name], _SCREAMING_SNAKE_CASE, names_to_config[model_name], _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE)
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name], _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE)
return config, expected_shape
if __name__ == "__main__":
_UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""levit-dump-folder/""",
type=Path,
required=False,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
_UpperCAmelCase : Dict = parser.parse_args()
_UpperCAmelCase : Tuple = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 350 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 351 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 0 |
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
_UpperCAmelCase : Any = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
_UpperCAmelCase : Union[str, Any] = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
_UpperCAmelCase : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __magic_name__( lowerCamelCase):
return x[0]
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = get_letter_count(UpperCAmelCase_)
__lowerCAmelCase = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(UpperCAmelCase_)
__lowerCAmelCase = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find, reverse=UpperCAmelCase_)
__lowerCAmelCase = ''''''.join(freq_to_letter[freq])
__lowerCAmelCase = list(freq_to_letter_str.items())
freq_pairs.sort(key=UpperCAmelCase_, reverse=UpperCAmelCase_)
__lowerCAmelCase = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(UpperCAmelCase_)
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = get_frequency_order(UpperCAmelCase_)
__lowerCAmelCase = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase = 1_0, lowerCamelCase = 2_2):
__lowerCAmelCase = range(1, _lowerCAmelCase)
__lowerCAmelCase = range(1, _lowerCAmelCase)
return sum(
1 for power in powers for base in bases if len(str(base**power)) == power)
if __name__ == "__main__":
print(f"""{solution(1_0, 2_2) = }""")
| 353 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 0 |
'''simple docstring'''
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def __magic_name__( lowerCamelCase):
return 1 / (1 + np.exp(-z))
def __magic_name__( lowerCamelCase, lowerCamelCase):
return (-y * np.log(lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(lowerCamelCase)))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=7_0_0_0_0):
__lowerCAmelCase = np.zeros(x.shape[1])
for iterations in range(lowerCamelCase):
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = sigmoid_function(lowerCamelCase)
__lowerCAmelCase = np.dot(x.T, h - y) / y.size
__lowerCAmelCase = theta - alpha * gradient # updating the weights
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = sigmoid_function(lowerCamelCase)
__lowerCAmelCase = cost_function(lowerCamelCase, lowerCamelCase)
if iterations % 1_0_0 == 0:
print(F"""loss: {j} \t""") # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
_UpperCAmelCase : Union[str, Any] = datasets.load_iris()
_UpperCAmelCase : List[str] = iris.data[:, :2]
_UpperCAmelCase : Dict = (iris.target != 0) * 1
_UpperCAmelCase : Tuple = 0.1
_UpperCAmelCase : str = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0)
print("""theta: """, theta) # printing the theta i.e our weights vector
def __magic_name__( lowerCamelCase):
return sigmoid_function(
np.dot(lowerCamelCase, lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(1_0, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""")
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""")
(_UpperCAmelCase) : Optional[Any] = (x[:, 0].min(), x[:, 0].max())
(_UpperCAmelCase) : str = (x[:, 1].min(), x[:, 1].max())
(_UpperCAmelCase) : List[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
_UpperCAmelCase : Tuple = np.c_[xxa.ravel(), xxa.ravel()]
_UpperCAmelCase : Optional[int] = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""")
plt.legend()
plt.show()
| 354 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
if len(__UpperCAmelCase) <= 1:
return [tuple(__UpperCAmelCase)]
__lowerCAmelCase = []
def generate(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [0] * n
res.append(tuple(__UpperCAmelCase))
__lowerCAmelCase = 0
while i < n:
if c[i] < i:
if i % 2 == 0:
__lowerCAmelCase , __lowerCAmelCase = arr[i], arr[0]
else:
__lowerCAmelCase , __lowerCAmelCase = arr[i], arr[c[i]]
res.append(tuple(__UpperCAmelCase))
c[i] += 1
__lowerCAmelCase = 0
else:
__lowerCAmelCase = 0
i += 1
generate(len(__UpperCAmelCase), __UpperCAmelCase)
return res
if __name__ == "__main__":
_UpperCAmelCase : int = input("""Enter numbers separated by a comma:\n""").strip()
_UpperCAmelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(heaps(arr))
| 355 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 0 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_UpperCAmelCase : List[Any] = {
'''facebook/mask2former-swin-small-coco-instance''': (
'''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'''
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
class a__ ( A__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] = 'mask2former'
__UpperCamelCase : List[str] = ['swin']
__UpperCamelCase : Optional[int] = {'hidden_size': 'hidden_dim'}
def __init__(self , __lowercase = None , __lowercase = 2_56 , __lowercase = 2_56 , __lowercase = 2_56 , __lowercase = 10_24 , __lowercase = "relu" , __lowercase = 6 , __lowercase = 10 , __lowercase = 8 , __lowercase = 0.0 , __lowercase = 20_48 , __lowercase = False , __lowercase = False , __lowercase = 4 , __lowercase = 2_55 , __lowercase = 1_00 , __lowercase = 0.1 , __lowercase = 2.0 , __lowercase = 5.0 , __lowercase = 5.0 , __lowercase = 1_25_44 , __lowercase = 3.0 , __lowercase = 0.7_5 , __lowercase = 0.0_2 , __lowercase = 1.0 , __lowercase = True , __lowercase = [4, 8, 16, 32] , __lowercase = None , **__lowercase , ):
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' )
__lowerCAmelCase = CONFIG_MAPPING['''swin'''](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCAmelCase = backbone_config.pop('''model_type''' )
__lowerCAmelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCAmelCase = config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
F"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowerCAmelCase = backbone_config
__lowerCAmelCase = feature_size
__lowerCAmelCase = mask_feature_size
__lowerCAmelCase = hidden_dim
__lowerCAmelCase = encoder_feedforward_dim
__lowerCAmelCase = activation_function
__lowerCAmelCase = encoder_layers
__lowerCAmelCase = decoder_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = dropout
__lowerCAmelCase = dim_feedforward
__lowerCAmelCase = pre_norm
__lowerCAmelCase = enforce_input_projection
__lowerCAmelCase = common_stride
__lowerCAmelCase = ignore_value
__lowerCAmelCase = num_queries
__lowerCAmelCase = no_object_weight
__lowerCAmelCase = class_weight
__lowerCAmelCase = mask_weight
__lowerCAmelCase = dice_weight
__lowerCAmelCase = train_num_points
__lowerCAmelCase = oversample_ratio
__lowerCAmelCase = importance_sample_ratio
__lowerCAmelCase = init_std
__lowerCAmelCase = init_xavier_std
__lowerCAmelCase = use_auxiliary_loss
__lowerCAmelCase = feature_strides
__lowerCAmelCase = output_auxiliary_logits
__lowerCAmelCase = decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def _snake_case (cls , __lowercase , **__lowercase ):
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def _snake_case (self ):
__lowerCAmelCase = copy.deepcopy(self.__dict__ )
__lowerCAmelCase = self.backbone_config.to_dict()
__lowerCAmelCase = self.__class__.model_type
return output
| 356 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 0 |
'''simple docstring'''
import os
from pathlib import Path
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, oder?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
__lowerCAmelCase = {
'''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''],
'''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''],
'''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''],
'''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''],
}
__lowerCAmelCase = F"""{src_lang}-{tgt_lang}"""
__lowerCAmelCase = F"""\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n"""
os.makedirs(A_, exist_ok=A_)
__lowerCAmelCase = os.path.join(A_, '''README.md''')
print(F"""Generating {path}""")
with open(A_, '''w''', encoding='''utf-8''') as f:
f.write(A_)
# make sure we are under the root of the project
_UpperCAmelCase : Any = Path(__file__).resolve().parent.parent.parent
_UpperCAmelCase : Union[str, Any] = repo_dir / '''model_cards'''
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
_UpperCAmelCase : Optional[int] = model_name.split("""-""")
_UpperCAmelCase : Any = model_cards_dir / '''facebook''' / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 357 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : int = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BICUBIC , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , **__lowercase , ):
super().__init__(**__A )
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_24}
__lowerCAmelCase = get_size_dict(__A , default_to_square=__A )
__lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = crop_size
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowerCAmelCase = do_convert_rgb
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__A , default_to_square=__A )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__lowerCAmelCase = get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A )
return resize(__A , size=__A , resample=__A , data_format=__A , **__A )
def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A )
def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ):
return rescale(__A , scale=__A , data_format=__A , **__A )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ):
return normalize(__A , mean=__A , std=__A , data_format=__A , **__A )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__A , param_name='''size''' , default_to_square=__A )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
__lowerCAmelCase = get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A )
__lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
__lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
__lowerCAmelCase = image_std if image_std is not None else self.image_std
__lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowerCAmelCase = make_list_of_images(__A )
if not valid_images(__A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowerCAmelCase = [convert_to_rgb(__A ) for image in images]
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__A ) for image in images]
if do_resize:
__lowerCAmelCase = [self.resize(image=__A , size=__A , resample=__A ) for image in images]
if do_center_crop:
__lowerCAmelCase = [self.center_crop(image=__A , size=__A ) for image in images]
if do_rescale:
__lowerCAmelCase = [self.rescale(image=__A , scale=__A ) for image in images]
if do_normalize:
__lowerCAmelCase = [self.normalize(image=__A , mean=__A , std=__A ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__A , __A ) for image in images]
__lowerCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=__A , tensor_type=__A )
| 358 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __magic_name__( lowerCamelCase): # picklable for multiprocessing
return x.sum()
def __magic_name__( lowerCamelCase): # picklable for multiprocessing
return i + 1
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : int
__UpperCamelCase : str
class a__ ( UpperCAmelCase__ ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = 1
__lowerCAmelCase = [1, 2]
__lowerCAmelCase = {"""a""": 1, """b""": 2}
__lowerCAmelCase = {"""a""": [1, 2], """b""": [3, 4]}
__lowerCAmelCase = {"""a""": {"""1""": 1}, """b""": 2}
__lowerCAmelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = 2
__lowerCAmelCase = [2, 3]
__lowerCAmelCase = {"""a""": 2, """b""": 3}
__lowerCAmelCase = {"""a""": [2, 3], """b""": [4, 5]}
__lowerCAmelCase = {"""a""": {"""1""": 2}, """b""": 3}
__lowerCAmelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase = 2
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )}
__lowerCAmelCase = {"""a""": 2, """b""": 0, """c""": 2}
__lowerCAmelCase = {
"""a""": np.eye(2 ).astype(_SCREAMING_SNAKE_CASE ),
"""b""": np.zeros(3 ).astype(_SCREAMING_SNAKE_CASE ),
"""c""": np.ones(2 ).astype(_SCREAMING_SNAKE_CASE ),
}
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(_SCREAMING_SNAKE_CASE ): # can't pickle a local lambda
map_nested(lambda __lowercase : x + 1 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE )
def _snake_case (self ):
__lowerCAmelCase = {"""a""": 1, """b""": 2}
__lowerCAmelCase = {"""a""": 3, """b""": 4}
__lowerCAmelCase = {"""a""": 5, """b""": 6}
__lowerCAmelCase = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE )
def _snake_case (self ):
class a__ :
"""simple docstring"""
__UpperCamelCase : List[str] = 'bar'
__lowerCAmelCase = Foo()
self.assertEqual(foo.my_attr , '''bar''' )
with temporary_assignment(_SCREAMING_SNAKE_CASE , '''my_attr''' , '''BAR''' ):
self.assertEqual(foo.my_attr , '''BAR''' )
self.assertEqual(foo.my_attr , '''bar''' )
@pytest.mark.parametrize(
'''iterable_length, num_proc, expected_num_proc''', [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(1_6, 1_6, 1_6),
(1_6, 1_7, 1_6),
(1_7, 1_6, 1_6),
], )
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
with patch('''datasets.utils.py_utils._single_map_nested''') as mock_single_map_nested, patch(
'''datasets.parallel.parallel.Pool''') as mock_multiprocessing_pool:
__lowerCAmelCase = {F"""{i}""": i for i in range(lowerCamelCase)}
__lowerCAmelCase = map_nested(lambda lowerCamelCase: x + 1_0, lowerCamelCase, num_proc=lowerCamelCase, parallel_min_length=1_6)
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class a__ ( UpperCAmelCase__ ):
"""simple docstring"""
@require_tf
def _snake_case (self ):
import tensorflow as tf
from tensorflow.keras import layers
__lowerCAmelCase = layers.Dense(2 )
def gen_random_output():
__lowerCAmelCase = tf.random.uniform((1, 3) )
return model(_SCREAMING_SNAKE_CASE ).numpy()
with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = gen_random_output()
with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = gen_random_output()
__lowerCAmelCase = gen_random_output()
np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def _snake_case (self ):
import torch
def gen_random_output():
__lowerCAmelCase = torch.nn.Linear(3 , 2 )
__lowerCAmelCase = torch.rand(1 , 3 )
return model(_SCREAMING_SNAKE_CASE ).detach().numpy()
with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = gen_random_output()
with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = gen_random_output()
__lowerCAmelCase = gen_random_output()
np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def _snake_case (self ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
__lowerCAmelCase = gen_random_output()
with temp_seed(42 ):
__lowerCAmelCase = gen_random_output()
__lowerCAmelCase = gen_random_output()
np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize('''input_data''', [{}])
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = NestedDataStructure(lowerCamelCase).data
assert output_data == input_data
@pytest.mark.parametrize(
'''data, expected_output''', [
({}, []),
([], []),
('''foo''', ['''foo''']),
(['''foo''', '''bar'''], ['''foo''', '''bar''']),
([['''foo''', '''bar''']], ['''foo''', '''bar''']),
([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']),
([[['''foo'''], '''bar''']], ['''foo''', '''bar''']),
({'''a''': 1, '''b''': 2}, [1, 2]),
({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]),
({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]),
({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]),
({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]),
({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]),
], )
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = NestedDataStructure(lowerCamelCase).flatten()
assert output == expected_output
def __magic_name__( ):
__lowerCAmelCase = A(x=1, y='''foobar''')
__lowerCAmelCase = {"""x""": 1, """y""": """foobar"""}
assert asdict(lowerCamelCase) == expected_output
__lowerCAmelCase = {"""a""": {"""b""": A(x=1_0, y='''foo''')}, """c""": [A(x=2_0, y='''bar''')]}
__lowerCAmelCase = {"""a""": {"""b""": {"""x""": 1_0, """y""": """foo"""}}, """c""": [{"""x""": 2_0, """y""": """bar"""}]}
assert asdict(lowerCamelCase) == expected_output
with pytest.raises(lowerCamelCase):
asdict([1, A(x=1_0, y='''foo''')])
def __magic_name__( lowerCamelCase):
return text.split()
def __magic_name__( lowerCamelCase):
yield (time.time(), content)
time.sleep(2)
yield (time.time(), content)
def __magic_name__( ):
with Pool(2) as pool:
__lowerCAmelCase = list(iflatmap_unordered(lowerCamelCase, _split_text, kwargs_iterable=[{'''text''': '''hello there'''}] * 1_0))
assert out.count('''hello''') == 1_0
assert out.count('''there''') == 1_0
assert len(lowerCamelCase) == 2_0
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2) as pool:
__lowerCAmelCase = list(iflatmap_unordered(lowerCamelCase, _split_text, kwargs_iterable=[{'''text''': '''hello there'''}] * 1_0))
assert out.count('''hello''') == 1_0
assert out.count('''there''') == 1_0
assert len(lowerCamelCase) == 2_0
# check that we get items as fast as possible
with Pool(2) as pool:
__lowerCAmelCase = []
for yield_time, content in iflatmap_unordered(
lowerCamelCase, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}]):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(lowerCamelCase)
assert out.count('''a''') == 2
assert out.count('''b''') == 2
assert len(lowerCamelCase) == 4
| 359 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 0 |
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def __magic_name__( lowerCamelCase):
if num <= 0:
raise ValueError('''math domain error''')
return quad(_a, 0, _a, args=(_a))[0]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return math.pow(_a, z - 1) * math.exp(-x)
if __name__ == "__main__":
from doctest import testmod
testmod()
| 360 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = ConsistencyModelPipeline
__UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCamelCase : List[Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def _snake_case (self , __lowercase=False ):
if class_cond:
__lowerCAmelCase = self.dummy_cond_unet
else:
__lowerCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _snake_case (self , __lowercase , __lowercase=0 ):
if str(__lowercase ).startswith('''mps''' ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
else:
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
__lowerCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
__lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
__lowerCAmelCase = latents
return inputs
def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
if type(__lowercase ) == str:
__lowerCAmelCase = torch.device(__lowercase )
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
if number > 0:
raise ValueError('''input must be a negative integer''')
__lowerCAmelCase = len(bin(__lowerCAmelCase)[3:])
__lowerCAmelCase = bin(abs(__lowerCAmelCase) - (1 << binary_number_length))[3:]
__lowerCAmelCase = (
(
'''1'''
+ '''0''' * (binary_number_length - len(__lowerCAmelCase))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCAmelCase : List[Any] = datasets.load_iris()
_UpperCAmelCase : Dict = np.array(data["""data"""])
_UpperCAmelCase : int = np.array(data["""target"""])
_UpperCAmelCase : str = data["""target_names"""]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y)
def __magic_name__( lowerCamelCase, lowerCamelCase):
return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5):
__lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase)
# List of distances of all points from the point to be classified
__lowerCAmelCase = []
for data_point in data:
__lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase)
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances.
__lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 9 | 0 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __magic_name__( lowerCamelCase):
return (data["data"], data["target"])
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = XGBClassifier()
classifier.fit(_lowercase, _lowercase)
return classifier
def __magic_name__( ):
__lowerCAmelCase = load_iris()
__lowerCAmelCase = data_handling(_lowercase)
__lowerCAmelCase = train_test_split(
_lowercase, _lowercase, test_size=0.25)
__lowerCAmelCase = iris["target_names"]
# Create an XGBoost Classifier from the training data
__lowerCAmelCase = xgboost(_lowercase, _lowercase)
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
_lowercase, _lowercase, _lowercase, display_labels=_lowercase, cmap='''Blues''', normalize='''true''', )
plt.title('''Normalized Confusion Matrix - IRIS Dataset''')
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 362 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' )
__lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = inputs['''input_ids''']
__lowerCAmelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False):
if isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = len(set_a.intersection(lowerCamelCase))
if alternative_union:
__lowerCAmelCase = len(lowerCamelCase) + len(lowerCamelCase)
else:
__lowerCAmelCase = len(set_a.union(lowerCamelCase))
return intersection / union
if isinstance(lowerCamelCase, (list, tuple)) and isinstance(lowerCamelCase, (list, tuple)):
__lowerCAmelCase = [element for element in set_a if element in set_b]
if alternative_union:
__lowerCAmelCase = len(lowerCamelCase) + len(lowerCamelCase)
return len(lowerCamelCase) / union
else:
__lowerCAmelCase = set_a + [element for element in set_b if element not in set_a]
return len(lowerCamelCase) / len(lowerCamelCase)
return len(lowerCamelCase) / len(lowerCamelCase)
return None
if __name__ == "__main__":
_UpperCAmelCase : Dict = {"""a""", """b""", """c""", """d""", """e"""}
_UpperCAmelCase : List[str] = {"""c""", """d""", """e""", """f""", """h""", """i"""}
print(jaccard_similarity(set_a, set_b))
| 363 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9 | 0 |
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCAmelCase : List[str] = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {"""vocab_file""": """spiece.model"""}
_UpperCAmelCase : Union[str, Any] = {
"""vocab_file""": {
"""AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""",
}
}
_UpperCAmelCase : Any = {
"""AI-Sweden/gpt-sw3-126m""": 2_0_4_8,
"""AI-Sweden/gpt-sw3-350m""": 2_0_4_8,
"""AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8,
"""AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8,
"""AI-Sweden/gpt-sw3-20b""": 2_0_4_8,
}
class a__ ( __lowerCAmelCase ):
"""simple docstring"""
__UpperCamelCase : str = VOCAB_FILES_NAMES
__UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Tuple = ['''input_ids''', '''attention_mask''']
def __init__(self , __lowercase , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
__lowerCAmelCase = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
__lowerCAmelCase = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__lowerCAmelCase = '''<|endoftext|>''' if eos_token is None else eos_token
__lowerCAmelCase = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__lowerCAmelCase = unk_token if pad_token is None else pad_token
__lowerCAmelCase = eos_token if bos_token is None else bos_token
else:
__lowerCAmelCase = '''<pad>''' if pad_token is None else pad_token
__lowerCAmelCase = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
__lowerCAmelCase = do_lower_case
__lowerCAmelCase = remove_space
__lowerCAmelCase = keep_accents
__lowerCAmelCase = vocab_file
__lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase_ )
# Used for whitespace normalization in input texts
# fmt : off
__lowerCAmelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__lowerCAmelCase = re.compile(
F"""[{"".join(map(lowerCAmelCase_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" )
def __getstate__(self ):
__lowerCAmelCase = self.__dict__.copy()
__lowerCAmelCase = None
return state
def __setstate__(self , __lowercase ):
__lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__lowerCAmelCase = {}
__lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def _snake_case (self ):
return len(self.sp_model )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.non_printing_characters_re.sub('''''' , lowerCAmelCase_ )
# Normalize whitespaces
__lowerCAmelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
__lowerCAmelCase = unicodedata.normalize('''NFC''' , lowerCAmelCase_ )
return text
def _snake_case (self , __lowercase , **__lowercase ):
__lowerCAmelCase = self.preprocess_text(lowerCAmelCase_ )
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def _snake_case (self , __lowercase ):
return self.sp_model.PieceToId(lowerCAmelCase_ )
def _snake_case (self , __lowercase ):
return self.sp_model.IdToPiece(lowerCAmelCase_ )
@staticmethod
def _snake_case (__lowercase ):
return out_string
def _snake_case (self , __lowercase ):
__lowerCAmelCase = []
__lowerCAmelCase = ''''''
__lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase_ ) + token
__lowerCAmelCase = True
__lowerCAmelCase = []
else:
current_sub_tokens.append(lowerCAmelCase_ )
__lowerCAmelCase = False
out_string += self.sp_model.decode(lowerCAmelCase_ )
return out_string
def _snake_case (self ):
__lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case (self , __lowercase , __lowercase = None ):
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase = os.path.join(
lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , '''wb''' ) as fi:
__lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
def _snake_case (self , __lowercase , __lowercase = False ):
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
__lowerCAmelCase = self.preprocess_text(lowerCAmelCase_ )
__lowerCAmelCase = self.sp_model.encode(lowerCAmelCase_ )
else:
__lowerCAmelCase = [self.preprocess_text(lowerCAmelCase_ ) for t in text]
__lowerCAmelCase = self.sp_model.encode(lowerCAmelCase_ )
if return_tensors is True or return_tensors == "pt":
__lowerCAmelCase = torch.tensor(lowerCAmelCase_ )
return token_ids
def _snake_case (self , __lowercase ):
return self.sp_model.decode(lowerCAmelCase_ )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__lowerCAmelCase = (
F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(lowerCAmelCase_ ) + F"""{self.bos_token}Bot:"""
)
return self.encode(text=lowerCAmelCase_ )
| 364 |
'''simple docstring'''
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ):
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1]
# Ensure proper dimensionality.
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase)
__lowerCAmelCase = np.iscomplexobj(lowerCamelCase)
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCamelCase, input_matrix.conj().T)
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__lowerCAmelCase = False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
# Normalize the resulting output vector.
__lowerCAmelCase = w / np.linalg.norm(lowerCamelCase)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__lowerCAmelCase = vector.conj().T if is_complex else vector.T
__lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase))
# Check convergence.
__lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__lowerCAmelCase = True
__lowerCAmelCase = lambda_
if is_complex:
__lowerCAmelCase = np.real(lambda_)
return lambda_, vector
def __magic_name__( ):
__lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]])
__lowerCAmelCase = np.array([4_1, 4, 2_0])
__lowerCAmelCase = real_input_matrix.astype(np.complexaaa)
__lowerCAmelCase = np.triu(1J * complex_input_matrix, 1)
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa)
for problem_type in ["real", "complex"]:
if problem_type == "real":
__lowerCAmelCase = real_input_matrix
__lowerCAmelCase = real_vector
elif problem_type == "complex":
__lowerCAmelCase = complex_input_matrix
__lowerCAmelCase = complex_vector
# Our implementation.
__lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase)
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase)
# Last eigenvalue is the maximum one.
__lowerCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__lowerCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 | 0 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
_UpperCAmelCase : List[Any] = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_UpperCAmelCase : Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS)
_UpperCAmelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
_UpperCAmelCase : Union[str, Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""")
_UpperCAmelCase : Tuple = {
'DecisionTransformerConfig',
'EncoderDecoderConfig',
'MusicgenConfig',
'RagConfig',
'SpeechEncoderDecoderConfig',
'TimmBackboneConfig',
'VisionEncoderDecoderConfig',
'VisionTextDualEncoderConfig',
'LlamaConfig',
}
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = None
# source code of `config_class`
__lowerCAmelCase = inspect.getsource(lowerCAmelCase__)
__lowerCAmelCase = _re_checkpoint.findall(lowerCAmelCase__)
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('''/'''):
__lowerCAmelCase = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
__lowerCAmelCase = F"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
__lowerCAmelCase = ckpt_name
break
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = []
for config_class in list(CONFIG_MAPPING.values()):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
__lowerCAmelCase = get_checkpoint_from_config_class(lowerCAmelCase__)
__lowerCAmelCase = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(lowerCAmelCase__)
if len(lowerCAmelCase__) > 0:
__lowerCAmelCase = """\n""".join(sorted(lowerCAmelCase__))
raise ValueError(F"""The following configurations don\'t contain any valid checkpoint:\n{message}""")
if __name__ == "__main__":
check_config_docstrings_have_checkpoints() | 365 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_UpperCAmelCase : str = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
return [
int(1_0_0_0 * (box[0] / width)),
int(1_0_0_0 * (box[1] / height)),
int(1_0_0_0 * (box[2] / width)),
int(1_0_0_0 * (box[3] / height)),
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None):
__lowerCAmelCase = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
__lowerCAmelCase = to_pil_image(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = pil_image.size
__lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()]
__lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase)
# finally, normalize the bounding boxes
__lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase))
assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = apply_ocr
__lowerCAmelCase = ocr_lang
__lowerCAmelCase = tesseract_config
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__lowerCAmelCase = (size['''height'''], size['''width'''])
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowerCAmelCase = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
__lowerCAmelCase = []
__lowerCAmelCase = []
for image in images:
__lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase )
words_batch.append(__lowercase )
boxes_batch.append(__lowercase )
if do_resize:
__lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase )
if apply_ocr:
__lowerCAmelCase = words_batch
__lowerCAmelCase = boxes_batch
return data
| 9 | 0 |
def __magic_name__( lowerCamelCase, lowerCamelCase):
if not len(SCREAMING_SNAKE_CASE__) == len(SCREAMING_SNAKE_CASE__) == 3:
raise ValueError('''Please enter a valid equation.''')
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('''Both a & b of two equations can\'t be zero.''')
# Extract the coefficients
__lowerCAmelCase = equationa
__lowerCAmelCase = equationa
# Calculate the determinants of the matrices
__lowerCAmelCase = aa * ba - aa * ba
__lowerCAmelCase = ca * ba - ca * ba
__lowerCAmelCase = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('''Infinite solutions. (Consistent system)''')
else:
raise ValueError('''No solution. (Inconsistent system)''')
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__lowerCAmelCase = determinant_x / determinant
__lowerCAmelCase = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 366 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['torch', 'scipy']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 9 | 0 |
'''simple docstring'''
import numpy
# List of input, output pairs
_UpperCAmelCase : int = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
_UpperCAmelCase : List[str] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
_UpperCAmelCase : Any = [2, 4, 1, 5]
_UpperCAmelCase : Any = len(train_data)
_UpperCAmelCase : Optional[int] = 0.0_09
def __magic_name__( lowerCamelCase, lowerCamelCase="train"):
return calculate_hypothesis_value(lowerCamelCase_, lowerCamelCase_) - output(
lowerCamelCase_, lowerCamelCase_)
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 0
for i in range(len(lowerCamelCase_) - 1):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def __magic_name__( lowerCamelCase, lowerCamelCase):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def __magic_name__( lowerCamelCase, lowerCamelCase):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0])
return None
def __magic_name__( lowerCamelCase, lowerCamelCase=m):
__lowerCAmelCase = 0
for i in range(lowerCamelCase_):
if index == -1:
summation_value += _error(lowerCamelCase_)
else:
summation_value += _error(lowerCamelCase_) * train_data[i][0][index]
return summation_value
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = summation_of_cost_derivative(lowerCamelCase_, lowerCamelCase_) / m
return cost_derivative_value
def __magic_name__( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__lowerCAmelCase = 0.00_00_02
__lowerCAmelCase = 0
__lowerCAmelCase = 0
while True:
j += 1
__lowerCAmelCase = [0, 0, 0, 0]
for i in range(0, len(lowerCamelCase_)):
__lowerCAmelCase = get_cost_derivative(i - 1)
__lowerCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
lowerCamelCase_, lowerCamelCase_, atol=lowerCamelCase_, rtol=lowerCamelCase_, ):
break
__lowerCAmelCase = temp_parameter_vector
print(('''Number of iterations:''', j))
def __magic_name__( ):
for i in range(len(lowerCamelCase_)):
print(('''Actual output value:''', output(lowerCamelCase_, '''test''')))
print(('''Hypothesis output:''', calculate_hypothesis_value(lowerCamelCase_, '''test''')))
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 367 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 | 0 |
'''simple docstring'''
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
_UpperCAmelCase : str = """base_with_context"""
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding''']))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['''Embed_0''']['''embedding''']), requires_grad=__UpperCamelCase)
for lyr_num, lyr in enumerate(model.encoders):
__lowerCAmelCase = weights[F"""layers_{lyr_num}"""]
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale''']))
__lowerCAmelCase = ly_weight['''attention''']
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale''']))
return model
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['''Embed_0''']['''embedding''']), requires_grad=__UpperCamelCase)
for lyr_num, lyr in enumerate(model.encoders):
__lowerCAmelCase = weights[F"""layers_{lyr_num}"""]
__lowerCAmelCase = ly_weight['''attention''']
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale''']))
return model
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['''Embed_0''']['''embedding''']), requires_grad=__UpperCamelCase)
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T))
for lyr_num, lyr in enumerate(model.decoders):
__lowerCAmelCase = weights[F"""layers_{lyr_num}"""]
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T))
__lowerCAmelCase = ly_weight['''self_attention''']
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T))
__lowerCAmelCase = ly_weight['''MultiHeadDotProductAttention_0''']
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale''']))
__lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T))
return model
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path)
__lowerCAmelCase = jnp.tree_util.tree_map(onp.array, __UpperCamelCase)
__lowerCAmelCase = [
'''from __gin__ import dynamic_registration''',
'''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''',
'''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''',
'''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''',
]
__lowerCAmelCase = os.path.join(args.checkpoint_path, '''..''', '''config.gin''')
__lowerCAmelCase = inference.parse_training_gin_file(__UpperCamelCase, __UpperCamelCase)
__lowerCAmelCase = inference.InferenceModel(args.checkpoint_path, __UpperCamelCase)
__lowerCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''', variance_type='''fixed_large''')
__lowerCAmelCase = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length['''inputs'''], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', )
__lowerCAmelCase = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['''targets_context'''], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', )
__lowerCAmelCase = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['''targets_context'''], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, )
__lowerCAmelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''], __UpperCamelCase)
__lowerCAmelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''], __UpperCamelCase)
__lowerCAmelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''], __UpperCamelCase)
__lowerCAmelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''')
__lowerCAmelCase = SpectrogramDiffusionPipeline(
notes_encoder=__UpperCamelCase, continuous_encoder=__UpperCamelCase, decoder=__UpperCamelCase, scheduler=__UpperCamelCase, melgan=__UpperCamelCase, )
if args.save:
pipe.save_pretrained(args.output_path)
if __name__ == "__main__":
_UpperCAmelCase : str = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=f"""{MODEL}/checkpoint_500000""",
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
_UpperCAmelCase : str = parser.parse_args()
main(args)
| 368 |
'''simple docstring'''
# Imports
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
if red is not None:
__lowerCAmelCase = red
if green is not None:
__lowerCAmelCase = green
if blue is not None:
__lowerCAmelCase = blue
if red_edge is not None:
__lowerCAmelCase = red_edge
if nir is not None:
__lowerCAmelCase = nir
return True
def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
__lowerCAmelCase = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def _snake_case (self ):
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case (self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case (self ):
return self.nir * (self.red / (self.green**2))
def _snake_case (self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case (self ):
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case (self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case (self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case (self ):
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case (self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case (self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case (self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case (self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case (self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case (self ):
return (self.nir / self.green) - 1
def _snake_case (self ):
return (self.nir / self.redEdge) - 1
def _snake_case (self ):
return (self.red - self.blue) / self.red
def _snake_case (self ):
__lowerCAmelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case (self ):
return self.nir - self.green
def _snake_case (self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case (self ):
__lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case (self , __lowercase=0.1_6 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case (self , __lowercase=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case (self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case (self , __lowercase=None , __lowercase=None ):
return (self.nir - b) / (a * self.red)
def _snake_case (self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case (self ):
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case (self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case (self ):
return self.green / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.nir / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.red / (self.nir + self.red + self.green)
def _snake_case (self ):
return (self.green - self.red) / (self.green + self.red)
def _snake_case (self ):
return (self.red - self.green) / (self.red + self.green)
def _snake_case (self ):
__lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case (self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case (self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 9 | 0 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _lowerCAmelCase ):
"""simple docstring"""
__UpperCamelCase : Optional[int] = (DDPMParallelScheduler,)
def _snake_case (self , **__lowercase ):
__lowerCAmelCase = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**_lowercase )
return config
def _snake_case (self ):
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _snake_case (self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _snake_case (self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def _snake_case (self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowercase )
def _snake_case (self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def _snake_case (self ):
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def _snake_case (self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _snake_case (self ):
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=_lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = len(_lowercase )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter
__lowerCAmelCase = self.dummy_sample_deter + 0.1
__lowerCAmelCase = self.dummy_sample_deter - 0.1
__lowerCAmelCase = samplea.shape[0]
__lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
__lowerCAmelCase = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase )
__lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__lowerCAmelCase = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
__lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
__lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 11_53.18_33 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = len(_lowercase )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter
__lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
__lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
__lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
__lowerCAmelCase = pred_prev_sample
__lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
__lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = len(_lowercase )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter
__lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
__lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
__lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
__lowerCAmelCase = pred_prev_sample
__lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
__lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowercase )
__lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowercase ):
if i == len(_lowercase ) - 1:
__lowerCAmelCase = -1
else:
__lowerCAmelCase = timesteps[i + 1]
__lowerCAmelCase = scheduler.previous_timestep(_lowercase )
__lowerCAmelCase = prev_t.item()
self.assertEqual(_lowercase , _lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = [1_00, 87, 50, 51, 0]
with self.assertRaises(_lowercase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = [1_00, 87, 50, 1, 0]
__lowerCAmelCase = len(_lowercase )
with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**_lowercase )
__lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_lowercase )
| 369 |
'''simple docstring'''
from math import sqrt
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' must been an int and positive"
__lowerCAmelCase = True
# 0 and 1 are none primes.
if number <= 1:
__lowerCAmelCase = False
for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowerCAmelCase = False
break
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool"
return status
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowerCAmelCase = list(range(2, n + 1))
__lowerCAmelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase)):
for j in range(i + 1, len(lowerCamelCase)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowerCAmelCase = 0
# filters actual prime numbers.
__lowerCAmelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
__lowerCAmelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(lowerCamelCase):
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0"
__lowerCAmelCase = [] # this list will be returns of the function.
# potential prime number factors.
__lowerCAmelCase = 2
__lowerCAmelCase = number
if number == 0 or number == 1:
ans.append(lowerCamelCase)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase):
while quotient != 1:
if is_prime(lowerCamelCase) and (quotient % factor == 0):
ans.append(lowerCamelCase)
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = max(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = min(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 == 0
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 != 0
def __magic_name__( lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase)
), "'number' must been an int, even and > 2"
__lowerCAmelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowerCAmelCase = get_prime_numbers(lowerCamelCase)
__lowerCAmelCase = len(lowerCamelCase)
# run variable for while-loops.
__lowerCAmelCase = 0
__lowerCAmelCase = None
# exit variable. for break up the loops
__lowerCAmelCase = True
while i < len_pn and loop:
__lowerCAmelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowerCAmelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (len(lowerCamelCase) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 0
while numbera != 0:
__lowerCAmelCase = numbera % numbera
__lowerCAmelCase = numbera
__lowerCAmelCase = rest
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = prime_factorization(lowerCamelCase)
elif numbera == 1 or numbera == 1:
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = max(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(max(lowerCamelCase, lowerCamelCase)):
ans *= n
else:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int"
__lowerCAmelCase = 0
__lowerCAmelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase):
ans += 1
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime(
lowerCamelCase), "'ans' must been a prime number and from type int"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowerCAmelCase = p_number_a + 1 # jump to the next number
__lowerCAmelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase)
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and ans[0] != p_number_a
and ans[len(lowerCamelCase) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1"
__lowerCAmelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(lowerCamelCase)
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number > 1
), "'number' must been an int and >= 1"
__lowerCAmelCase = get_divisors(lowerCamelCase)
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase))
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0"
__lowerCAmelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0"
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1 # this will be return
for _ in range(n - 1):
__lowerCAmelCase = ans
ans += fiba
__lowerCAmelCase = tmp
return ans
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
_UpperCAmelCase : str = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
_UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 370 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_UpperCAmelCase : Dict = """true"""
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6):
set_seed(4_2)
__lowerCAmelCase = RegressionModel()
__lowerCAmelCase = deepcopy(lowerCamelCase)
__lowerCAmelCase = RegressionDataset(length=lowerCamelCase)
__lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase)
model.to(accelerator.device)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return model, ddp_model, dataloader
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''')
def tokenize_function(lowerCamelCase):
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
with accelerator.main_process_first():
__lowerCAmelCase = dataset.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
if use_longest:
return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''')
return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''')
return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6)
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase)
__lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for batch in dataloader:
__lowerCAmelCase , __lowerCAmelCase = batch.values()
with torch.no_grad():
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
__lowerCAmelCase , __lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase)
targs.append(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase)
return logits, targs
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert (
len(lowerCamelCase) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}"""
def __magic_name__( lowerCamelCase = False, lowerCamelCase = False):
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
__lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase)
# First do baseline
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no''']
model.to(lowerCamelCase)
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase)
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=lowerCamelCase, references=batch['''labels'''])
__lowerCAmelCase = metric.compute()
# Then do distributed
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase = batch['''labels''']
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase)
__lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __magic_name__( ):
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""")
test_mrpc(lowerCamelCase, lowerCamelCase)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""")
test_torch_metrics(lowerCamelCase, 9_9)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''')
__lowerCAmelCase = Accelerator()
test_torch_metrics(lowerCamelCase, 5_1_2)
accelerator.state._reset_state()
def __magic_name__( lowerCamelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 | 0 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None ):
__lowerCAmelCase = list(poly_a or [0] )[:]
__lowerCAmelCase = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__lowerCAmelCase = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
__lowerCAmelCase = len(self.polyB )
# Add 0 to make lengths equal a power of 2
__lowerCAmelCase = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
__lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
__lowerCAmelCase = self.__multiply()
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(_A ) <= 1:
return dft[0]
#
__lowerCAmelCase = self.c_max_length // 2
while next_ncol > 0:
__lowerCAmelCase = [[] for i in range(_A )]
__lowerCAmelCase = self.root**next_ncol
# First half of next step
__lowerCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(_A ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
__lowerCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(_A ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
__lowerCAmelCase = new_dft
__lowerCAmelCase = next_ncol // 2
return dft[0]
def _snake_case (self ):
__lowerCAmelCase = self.__dft('''A''' )
__lowerCAmelCase = self.__dft('''B''' )
__lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
__lowerCAmelCase = 2
while next_ncol <= self.c_max_length:
__lowerCAmelCase = [[] for i in range(_A )]
__lowerCAmelCase = self.root ** (next_ncol // 2)
__lowerCAmelCase = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
__lowerCAmelCase = new_inverse_c
next_ncol *= 2
# Unpack
__lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__(self ):
__lowerCAmelCase = 'A = ' + ' + '.join(
F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) )
__lowerCAmelCase = 'B = ' + ' + '.join(
F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) )
__lowerCAmelCase = 'A*B = ' + ' + '.join(
F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) )
return F"""{a}\n{b}\n{c}"""
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 | 0 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class a__ :
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=13 , __lowercase=10 , __lowercase=3 , __lowercase=2 , __lowercase=2 , __lowercase=2 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.0_2 , __lowercase=0.9 , __lowercase=None , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = image_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = patch_size
__lowerCAmelCase = tubelet_size
__lowerCAmelCase = num_frames
__lowerCAmelCase = is_training
__lowerCAmelCase = use_labels
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = mask_ratio
__lowerCAmelCase = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
__lowerCAmelCase = (image_size // patch_size) ** 2
__lowerCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
__lowerCAmelCase = int(mask_ratio * self.seq_length )
def _snake_case (self ):
__lowerCAmelCase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__lowerCAmelCase = None
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case (self ):
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = VideoMAEModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__lowerCAmelCase = model(__lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = VideoMAEForPreTraining(__lowercase )
model.to(__lowercase )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__lowerCAmelCase = torch.ones((self.num_masks,) )
__lowerCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
__lowerCAmelCase = mask.expand(self.batch_size , -1 ).bool()
__lowerCAmelCase = model(__lowercase , __lowercase )
# model only returns predictions for masked patches
__lowerCAmelCase = mask.sum().item()
__lowerCAmelCase = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) )
def _snake_case (self ):
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
__UpperCamelCase : List[str] = (
{'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
__UpperCamelCase : str = False
__UpperCamelCase : Any = False
__UpperCamelCase : Union[str, Any] = False
__UpperCamelCase : int = False
def _snake_case (self ):
__lowerCAmelCase = VideoMAEModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 )
def _snake_case (self , __lowercase , __lowercase , __lowercase=False ):
__lowerCAmelCase = copy.deepcopy(__lowercase )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__lowerCAmelCase = torch.ones((self.model_tester.num_masks,) )
__lowerCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
__lowerCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool()
__lowerCAmelCase = bool_masked_pos.to(__lowercase )
if return_labels:
if model_class in [
*get_values(__lowercase ),
]:
__lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowercase )
return inputs_dict
def _snake_case (self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''VideoMAE does not use inputs_embeds''' )
def _snake_case (self ):
pass
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(__lowercase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(__lowercase )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowercase )
@slow
def _snake_case (self ):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = VideoMAEModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def _snake_case (self ):
if not self.has_attentions:
pass
else:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
for model_class in self.all_model_classes:
__lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks
__lowerCAmelCase = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__lowerCAmelCase = outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__lowerCAmelCase = outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__lowerCAmelCase = len(__lowercase )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) )
self.assertEqual(out_len + 1 , len(__lowercase ) )
__lowerCAmelCase = outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def _snake_case (self ):
def check_hidden_states_output(__lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__lowerCAmelCase = outputs.hidden_states
__lowerCAmelCase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__lowercase ) , __lowercase )
__lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks
__lowerCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCAmelCase = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def _snake_case (self ):
pass
def __magic_name__( ):
__lowerCAmelCase = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''')
__lowerCAmelCase = np.load(A__)
return list(A__)
@require_torch
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _snake_case (self ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def _snake_case (self ):
__lowerCAmelCase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to(
__lowercase )
__lowerCAmelCase = self.default_image_processor
__lowerCAmelCase = prepare_video()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''pt''' ).to(__lowercase )
# forward pass
with torch.no_grad():
__lowerCAmelCase = model(**__lowercase )
# verify the logits
__lowerCAmelCase = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __lowercase )
__lowerCAmelCase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
@slow
def _snake_case (self ):
__lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__lowercase )
__lowerCAmelCase = self.default_image_processor
__lowerCAmelCase = prepare_video()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''pt''' ).to(__lowercase )
# add boolean mask, indicating which patches to mask
__lowerCAmelCase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' )
__lowerCAmelCase = torch.load(__lowercase )
# forward pass
with torch.no_grad():
__lowerCAmelCase = model(**__lowercase )
# verify the logits
__lowerCAmelCase = torch.Size([1, 14_08, 15_36] )
__lowerCAmelCase = torch.tensor(
[[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=__lowercase )
self.assertEqual(outputs.logits.shape , __lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowercase , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
__lowerCAmelCase = torch.tensor([0.5_1_4_2] , device=__lowercase )
self.assertTrue(torch.allclose(outputs.loss , __lowercase , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
__lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__lowercase ).to(
__lowercase )
with torch.no_grad():
__lowerCAmelCase = model(**__lowercase )
__lowerCAmelCase = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=__lowercase )
self.assertTrue(torch.allclose(outputs.loss , __lowercase , atol=1e-4 ) )
| 350 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 0 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
_UpperCAmelCase : Optional[int] = """examples/"""
_UpperCAmelCase : Dict = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
_UpperCAmelCase : str = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
_UpperCAmelCase : Optional[Any] = """README.md"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
with open(lowerCAmelCase__, '''r''', encoding='''utf-8''', newline='''\n''') as f:
__lowerCAmelCase = f.read()
__lowerCAmelCase = REPLACE_PATTERNS[pattern]
__lowerCAmelCase = replace.replace('''VERSION''', lowerCAmelCase__)
__lowerCAmelCase = re_pattern.sub(lowerCAmelCase__, lowerCAmelCase__)
with open(lowerCAmelCase__, '''w''', encoding='''utf-8''', newline='''\n''') as f:
f.write(lowerCAmelCase__)
def __magic_name__( lowerCamelCase):
for folder, directories, fnames in os.walk(lowerCAmelCase__):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''')
if "legacy" in directories:
directories.remove('''legacy''')
for fname in fnames:
if fname.endswith('''.py'''):
update_version_in_file(os.path.join(lowerCAmelCase__, lowerCAmelCase__), lowerCAmelCase__, pattern='''examples''')
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__)
if not patch:
update_version_in_examples(lowerCAmelCase__)
def __magic_name__( ):
__lowerCAmelCase = '''🤗 Transformers currently provides the following architectures'''
__lowerCAmelCase = '''1. Want to contribute a new model?'''
with open(lowerCAmelCase__, '''r''', encoding='''utf-8''', newline='''\n''') as f:
__lowerCAmelCase = f.readlines()
# Find the start of the list.
__lowerCAmelCase = 0
while not lines[start_index].startswith(_start_prompt):
start_index += 1
start_index += 1
__lowerCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt):
if lines[index].startswith('''1.'''):
__lowerCAmelCase = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''', '''https://huggingface.co/docs/transformers/model_doc''', )
index += 1
with open(lowerCAmelCase__, '''w''', encoding='''utf-8''', newline='''\n''') as f:
f.writelines(lowerCAmelCase__)
def __magic_name__( ):
with open(REPLACE_FILES['''init'''], '''r''') as f:
__lowerCAmelCase = f.read()
__lowerCAmelCase = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__).groups()[0]
return packaging.version.parse(lowerCAmelCase__)
def __magic_name__( lowerCamelCase=False):
__lowerCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''')
if default_version.is_devrelease:
__lowerCAmelCase = default_version.base_version
elif patch:
__lowerCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__lowerCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__lowerCAmelCase = input(F"""Which version are you releasing? [{default_version}]""")
if len(lowerCAmelCase__) == 0:
__lowerCAmelCase = default_version
print(F"""Updating version to {version}.""")
global_version_update(lowerCAmelCase__, patch=lowerCAmelCase__)
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''')
clean_main_ref_in_model_list()
def __magic_name__( ):
__lowerCAmelCase = get_version()
__lowerCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__lowerCAmelCase = current_version.base_version
# Check with the user we got that right.
__lowerCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""")
if len(lowerCAmelCase__) == 0:
__lowerCAmelCase = dev_version
print(F"""Updating version to {version}.""")
global_version_update(lowerCAmelCase__)
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''')
clean_main_ref_in_model_list()
if __name__ == "__main__":
_UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
_UpperCAmelCase : str = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 351 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 0 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = SwinConfig.from_pretrained(
'''microsoft/swin-tiny-patch4-window7-224''', out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''])
__lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCamelCase)
__lowerCAmelCase = '''huggingface/label-files'''
if "ade20k-full" in model_name:
# this should be ok
__lowerCAmelCase = 8_4_7
__lowerCAmelCase = '''maskformer-ade20k-full-id2label.json'''
elif "ade" in model_name:
# this should be ok
__lowerCAmelCase = 1_5_0
__lowerCAmelCase = '''ade20k-id2label.json'''
elif "coco-stuff" in model_name:
# this should be ok
__lowerCAmelCase = 1_7_1
__lowerCAmelCase = '''maskformer-coco-stuff-id2label.json'''
elif "coco" in model_name:
# TODO
__lowerCAmelCase = 1_3_3
__lowerCAmelCase = '''coco-panoptic-id2label.json'''
elif "cityscapes" in model_name:
# this should be ok
__lowerCAmelCase = 1_9
__lowerCAmelCase = '''cityscapes-id2label.json'''
elif "vistas" in model_name:
# this should be ok
__lowerCAmelCase = 6_5
__lowerCAmelCase = '''mapillary-vistas-id2label.json'''
__lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r'''))
__lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()}
return config
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = []
# stem
# fmt: off
rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight'''))
rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias'''))
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight'''))
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias'''))
# stages
for i in range(len(config.backbone_config.depths)):
for j in range(config.backbone_config.depths[i]):
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight"""))
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias"""))
if i < 3:
rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight"""))
rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight"""))
rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias"""))
rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight"""))
rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias"""))
# FPN
rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight'''))
rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight'''))
rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias'''))
for source_index, target_index in zip(range(3, 0, -1), range(0, 3)):
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight"""))
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight"""))
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias"""))
rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight"""))
rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight"""))
rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias"""))
rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight'''))
rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias'''))
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers):
# self-attention out projection
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias"""))
# cross-attention out projection
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias"""))
# MLP 1
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias"""))
# MLP 2
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias"""))
# layernorm 1 (self-attention layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias"""))
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias"""))
# layernorm 3 (final layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias"""))
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight'''))
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias'''))
# heads on top
rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight'''))
rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight'''))
rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias'''))
rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight'''))
rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias'''))
for i in range(3):
rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight"""))
rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias"""))
# fmt: on
return rename_keys
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = dct.pop(lowerCamelCase)
__lowerCAmelCase = val
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))]
for i in range(len(backbone_config.depths)):
__lowerCAmelCase = num_features[i]
for j in range(backbone_config.depths[i]):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""")
__lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""")
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase = in_proj_weight[:dim, :]
__lowerCAmelCase = in_proj_bias[: dim]
__lowerCAmelCase = in_proj_weight[
dim : dim * 2, :
]
__lowerCAmelCase = in_proj_bias[
dim : dim * 2
]
__lowerCAmelCase = in_proj_weight[
-dim :, :
]
__lowerCAmelCase = in_proj_bias[-dim :]
# fmt: on
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
__lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""")
__lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""")
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase = in_proj_weight[: hidden_size, :]
__lowerCAmelCase = in_proj_bias[:config.hidden_size]
__lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
__lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__lowerCAmelCase = in_proj_weight[-hidden_size :, :]
__lowerCAmelCase = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
__lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""")
__lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""")
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase = in_proj_weight[: hidden_size, :]
__lowerCAmelCase = in_proj_bias[:config.hidden_size]
__lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
__lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__lowerCAmelCase = in_proj_weight[-hidden_size :, :]
__lowerCAmelCase = in_proj_bias[-hidden_size :]
# fmt: on
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return im
@torch.no_grad()
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = False):
__lowerCAmelCase = get_maskformer_config(lowerCamelCase)
# load original state_dict
with open(lowerCamelCase, '''rb''') as f:
__lowerCAmelCase = pickle.load(lowerCamelCase)
__lowerCAmelCase = data['''model''']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
__lowerCAmelCase = create_rename_keys(lowerCamelCase)
for src, dest in rename_keys:
rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase)
read_in_swin_q_k_v(lowerCamelCase, config.backbone_config)
read_in_decoder_q_k_v(lowerCamelCase, lowerCamelCase)
# update to torch tensors
for key, value in state_dict.items():
__lowerCAmelCase = torch.from_numpy(lowerCamelCase)
# load 🤗 model
__lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCamelCase)
model.eval()
for name, param in model.named_parameters():
print(lowerCamelCase, param.shape)
__lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase)
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCamelCase) == 0, F"""Unexpected keys: {unexpected_keys}"""
# verify results
__lowerCAmelCase = prepare_img()
if "vistas" in model_name:
__lowerCAmelCase = 6_5
elif "cityscapes" in model_name:
__lowerCAmelCase = 6_5_5_3_5
else:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = True if '''ade''' in model_name else False
__lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCamelCase, reduce_labels=lowerCamelCase)
__lowerCAmelCase = image_processor(lowerCamelCase, return_tensors='''pt''')
__lowerCAmelCase = model(**lowerCamelCase)
print('''Logits:''', outputs.class_queries_logits[0, :3, :3])
if model_name == "maskformer-swin-tiny-ade":
__lowerCAmelCase = torch.tensor(
[[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]])
assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCamelCase, atol=1E-4)
print('''Looks ok!''')
if pytorch_dump_folder_path is not None:
print(F"""Saving model and image processor to {pytorch_dump_folder_path}""")
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
image_processor.save_pretrained(lowerCamelCase)
if push_to_hub:
print('''Pushing model and image processor to the hub...''')
model.push_to_hub(F"""nielsr/{model_name}""")
image_processor.push_to_hub(F"""nielsr/{model_name}""")
if __name__ == "__main__":
_UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_UpperCAmelCase : List[Any] = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 352 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 0 |
'''simple docstring'''
import baseaa
def __magic_name__( lowerCamelCase):
return baseaa.baaencode(string.encode('''utf-8'''))
def __magic_name__( lowerCamelCase):
return baseaa.baadecode(lowerCamelCase).decode('''utf-8''')
if __name__ == "__main__":
_UpperCAmelCase : Tuple = "Hello World!"
_UpperCAmelCase : Union[str, Any] = baseaa_encode(test)
print(encoded)
_UpperCAmelCase : Tuple = baseaa_decode(encoded)
print(decoded)
| 353 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_UpperCAmelCase : Any = {
"""configuration_pix2struct""": [
"""PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Pix2StructConfig""",
"""Pix2StructTextConfig""",
"""Pix2StructVisionConfig""",
],
"""processing_pix2struct""": ["""Pix2StructProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[Any] = ["""Pix2StructImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : str = [
"""PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Pix2StructPreTrainedModel""",
"""Pix2StructForConditionalGeneration""",
"""Pix2StructVisionModel""",
"""Pix2StructTextModel""",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
_UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 354 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
_UpperCAmelCase : Any = {
'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json',
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class a__ ( lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'biogpt'
def __init__(self , __lowercase=4_23_84 , __lowercase=10_24 , __lowercase=24 , __lowercase=16 , __lowercase=40_96 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10_24 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=True , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=1 , __lowercase=0 , __lowercase=2 , **__lowercase , ):
__lowerCAmelCase = vocab_size
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = scale_embedding
__lowerCAmelCase = use_cache
__lowerCAmelCase = layerdrop
__lowerCAmelCase = activation_dropout
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
| 355 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
class a__ :
"""simple docstring"""
def __init__(self , __lowercase ):
__lowerCAmelCase = TypeError(
'''Matrices must be formed from a list of zero or more lists containing at '''
'''least one and the same number of values, each of which must be of type '''
'''int or float.''' )
if len(_A ) != 0:
__lowerCAmelCase = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(_A ) != cols:
raise error
for value in row:
if not isinstance(_A , (int, float) ):
raise error
__lowerCAmelCase = rows
else:
__lowerCAmelCase = []
def _snake_case (self ):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def _snake_case (self ):
return len(self.rows )
@property
def _snake_case (self ):
return len(self.rows[0] )
@property
def _snake_case (self ):
return (self.num_rows, self.num_columns)
@property
def _snake_case (self ):
return self.order[0] == self.order[1]
def _snake_case (self ):
__lowerCAmelCase = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(_A )
def _snake_case (self ):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def _snake_case (self ):
return bool(self.determinant() )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(_A ).determinant()
def _snake_case (self , __lowercase , __lowercase ):
if (row + column) % 2 == 0:
return self.get_minor(_A , _A )
return -1 * self.get_minor(_A , _A )
def _snake_case (self ):
return Matrix(
[
[self.get_minor(_A , _A ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def _snake_case (self ):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def _snake_case (self ):
__lowerCAmelCase = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(_A )
def _snake_case (self ):
__lowerCAmelCase = self.determinant()
if not determinant:
raise TypeError('''Only matrices with a non-zero determinant have an inverse''' )
return self.adjugate() * (1 / determinant)
def __repr__(self ):
return str(self.rows )
def __str__(self ):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
'''[''' + '''. '''.join([str(_A ) for value in row] ) + '''.]'''
for row in self.rows
] )
+ "]"
)
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = TypeError('''Row must be a list containing all ints and/or floats''' )
if not isinstance(_A , _A ):
raise type_error
for value in row:
if not isinstance(_A , (int, float) ):
raise type_error
if len(_A ) != self.num_columns:
raise ValueError(
'''Row must be equal in length to the other rows in the matrix''' )
if position is None:
self.rows.append(_A )
else:
__lowerCAmelCase = self.rows[0:position] + [row] + self.rows[position:]
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = TypeError(
'''Column must be a list containing all ints and/or floats''' )
if not isinstance(_A , _A ):
raise type_error
for value in column:
if not isinstance(_A , (int, float) ):
raise type_error
if len(_A ) != self.num_rows:
raise ValueError(
'''Column must be equal in length to the other columns in the matrix''' )
if position is None:
__lowerCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
__lowerCAmelCase = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__(self , __lowercase ):
if not isinstance(_A , _A ):
return NotImplemented
return self.rows == other.rows
def __ne__(self , __lowercase ):
return not self == other
def __neg__(self ):
return self * -1
def __add__(self , __lowercase ):
if self.order != other.order:
raise ValueError('''Addition requires matrices of the same order''' )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__(self , __lowercase ):
if self.order != other.order:
raise ValueError('''Subtraction requires matrices of the same order''' )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__(self , __lowercase ):
if isinstance(_A , (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(_A , _A ):
if self.num_columns != other.num_rows:
raise ValueError(
'''The number of columns in the first matrix must '''
'''be equal to the number of rows in the second''' )
return Matrix(
[
[Matrix.dot_product(_A , _A ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
'''A Matrix can only be multiplied by an int, float, or another matrix''' )
def __pow__(self , __lowercase ):
if not isinstance(_A , _A ):
raise TypeError('''A Matrix can only be raised to the power of an int''' )
if not self.is_square:
raise ValueError('''Only square matrices can be raised to a power''' )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'''Only invertable matrices can be raised to a negative power''' )
__lowerCAmelCase = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
return sum(row[i] * column[i] for i in range(len(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : Optional[int] = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 357 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 0 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
_UpperCAmelCase : List[Any] = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class a__ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__UpperCamelCase : List[Any] = '''xlnet'''
__UpperCamelCase : int = ['''mems''']
__UpperCamelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__(self , __lowercase=3_20_00 , __lowercase=10_24 , __lowercase=24 , __lowercase=16 , __lowercase=40_96 , __lowercase="gelu" , __lowercase=True , __lowercase="bi" , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=None , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=-1 , __lowercase=False , __lowercase="last" , __lowercase=True , __lowercase="tanh" , __lowercase=0.1 , __lowercase=5 , __lowercase=5 , __lowercase=5 , __lowercase=1 , __lowercase=2 , **__lowercase , ):
__lowerCAmelCase = vocab_size
__lowerCAmelCase = d_model
__lowerCAmelCase = n_layer
__lowerCAmelCase = n_head
if d_model % n_head != 0:
raise ValueError(F"""\'d_model % n_head\' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
__lowerCAmelCase = d_model // n_head
__lowerCAmelCase = ff_activation
__lowerCAmelCase = d_inner
__lowerCAmelCase = untie_r
__lowerCAmelCase = attn_type
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = dropout
__lowerCAmelCase = mem_len
__lowerCAmelCase = reuse_len
__lowerCAmelCase = bi_data
__lowerCAmelCase = clamp_len
__lowerCAmelCase = same_length
__lowerCAmelCase = summary_type
__lowerCAmelCase = summary_use_proj
__lowerCAmelCase = summary_activation
__lowerCAmelCase = summary_last_dropout
__lowerCAmelCase = start_n_top
__lowerCAmelCase = end_n_top
__lowerCAmelCase = bos_token_id
__lowerCAmelCase = pad_token_id
__lowerCAmelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , A__ , )
__lowerCAmelCase = kwargs['''use_cache''']
__lowerCAmelCase = use_mems_eval
__lowerCAmelCase = use_mems_train
super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ )
@property
def _snake_case (self ):
logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case (self , __lowercase ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 358 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : int
__UpperCamelCase : Node | None = None
__UpperCamelCase : Node | None = None
def __magic_name__( ):
__lowerCAmelCase = Node(1)
__lowerCAmelCase = Node(2)
__lowerCAmelCase = Node(3)
__lowerCAmelCase = Node(4)
__lowerCAmelCase = Node(5)
return tree
def __magic_name__( lowerCamelCase):
return [root.data, *preorder(root.left), *preorder(root.right)] if root else []
def __magic_name__( lowerCamelCase):
return postorder(root.left) + postorder(root.right) + [root.data] if root else []
def __magic_name__( lowerCamelCase):
return [*inorder(root.left), root.data, *inorder(root.right)] if root else []
def __magic_name__( lowerCamelCase):
return (max(height(root.left), height(root.right)) + 1) if root else 0
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = []
if root is None:
return output
__lowerCAmelCase = deque([root])
while process_queue:
__lowerCAmelCase = process_queue.popleft()
output.append(node.data)
if node.left:
process_queue.append(node.left)
if node.right:
process_queue.append(node.right)
return output
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
def populate_output(lowerCamelCase, lowerCamelCase) -> None:
if not root:
return
if level == 1:
output.append(root.data)
elif level > 1:
populate_output(root.left, level - 1)
populate_output(root.right, level - 1)
populate_output(lowerCamelCase, lowerCamelCase)
return output
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
def populate_output(lowerCamelCase, lowerCamelCase) -> None:
if root is None:
return
if level == 1:
output.append(root.data)
elif level > 1:
populate_output(root.right, level - 1)
populate_output(root.left, level - 1)
populate_output(lowerCamelCase, lowerCamelCase)
return output
def __magic_name__( lowerCamelCase):
if root is None:
return []
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = height(lowerCamelCase)
for h in range(1, height_tree + 1):
if not flag:
output.append(get_nodes_from_left_to_right(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = 0
return output
def __magic_name__( ): # Main function for testing.
__lowerCAmelCase = make_tree()
print(F"""In-order Traversal: {inorder(lowerCamelCase)}""")
print(F"""Pre-order Traversal: {preorder(lowerCamelCase)}""")
print(F"""Post-order Traversal: {postorder(lowerCamelCase)}""", '''\n''')
print(F"""Height of Tree: {height(lowerCamelCase)}""", '''\n''')
print('''Complete Level Order Traversal: ''')
print(level_order(lowerCamelCase), '''\n''')
print('''Level-wise order Traversal: ''')
for level in range(1, height(lowerCamelCase) + 1):
print(F"""Level {level}:""", get_nodes_from_left_to_right(lowerCamelCase, level=lowerCamelCase))
print('''\nZigZag order Traversal: ''')
print(zigzag(lowerCamelCase))
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 359 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 0 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class a__ ( lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Tuple = (EulerDiscreteScheduler,)
__UpperCamelCase : str = 10
def _snake_case (self , **__lowercase ):
__lowerCAmelCase = {
'''num_train_timesteps''': 11_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
}
config.update(**__A )
return config
def _snake_case (self ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__A )
def _snake_case (self ):
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=__A , beta_end=__A )
def _snake_case (self ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__A )
def _snake_case (self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__A )
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**__A )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCAmelCase = sample.to(__A )
for i, t in enumerate(scheduler.timesteps ):
__lowerCAmelCase = scheduler.scale_model_input(__A , __A )
__lowerCAmelCase = model(__A , __A )
__lowerCAmelCase = scheduler.step(__A , __A , __A , generator=__A )
__lowerCAmelCase = output.prev_sample
__lowerCAmelCase = torch.sum(torch.abs(__A ) )
__lowerCAmelCase = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 10.08_07 ) < 1e-2
assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
__lowerCAmelCase = scheduler_class(**__A )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCAmelCase = sample.to(__A )
for i, t in enumerate(scheduler.timesteps ):
__lowerCAmelCase = scheduler.scale_model_input(__A , __A )
__lowerCAmelCase = model(__A , __A )
__lowerCAmelCase = scheduler.step(__A , __A , __A , generator=__A )
__lowerCAmelCase = output.prev_sample
__lowerCAmelCase = torch.sum(torch.abs(__A ) )
__lowerCAmelCase = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2
assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**__A )
scheduler.set_timesteps(self.num_inference_steps , device=__A )
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowerCAmelCase = sample.to(__A )
for t in scheduler.timesteps:
__lowerCAmelCase = scheduler.scale_model_input(__A , __A )
__lowerCAmelCase = model(__A , __A )
__lowerCAmelCase = scheduler.step(__A , __A , __A , generator=__A )
__lowerCAmelCase = output.prev_sample
__lowerCAmelCase = torch.sum(torch.abs(__A ) )
__lowerCAmelCase = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 10.08_07 ) < 1e-2
assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3
def _snake_case (self ):
__lowerCAmelCase = self.scheduler_classes[0]
__lowerCAmelCase = self.get_scheduler_config()
__lowerCAmelCase = scheduler_class(**__A , use_karras_sigmas=__A )
scheduler.set_timesteps(self.num_inference_steps , device=__A )
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = self.dummy_model()
__lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowerCAmelCase = sample.to(__A )
for t in scheduler.timesteps:
__lowerCAmelCase = scheduler.scale_model_input(__A , __A )
__lowerCAmelCase = model(__A , __A )
__lowerCAmelCase = scheduler.step(__A , __A , __A , generator=__A )
__lowerCAmelCase = output.prev_sample
__lowerCAmelCase = torch.sum(torch.abs(__A ) )
__lowerCAmelCase = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1e-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
| 360 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = ConsistencyModelPipeline
__UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCamelCase : List[Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def _snake_case (self , __lowercase=False ):
if class_cond:
__lowerCAmelCase = self.dummy_cond_unet
else:
__lowerCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _snake_case (self , __lowercase , __lowercase=0 ):
if str(__lowercase ).startswith('''mps''' ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
else:
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
__lowerCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
__lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
__lowerCAmelCase = latents
return inputs
def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
if type(__lowercase ) == str:
__lowerCAmelCase = torch.device(__lowercase )
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 9 | 0 |
'''simple docstring'''
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase="" , __lowercase="train" ):
assert os.path.isdir(__a )
__lowerCAmelCase = []
__lowerCAmelCase = os.listdir(__a )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
__lowerCAmelCase = os.path.join(__a , __a )
if not os.path.isfile(__a ):
continue
self.documents.append(__a )
def __len__(self ):
return len(self.documents )
def __getitem__(self , __lowercase ):
__lowerCAmelCase = self.documents[idx]
__lowerCAmelCase = document_path.split('''/''' )[-1]
with open(__a , encoding='''utf-8''' ) as source:
__lowerCAmelCase = source.read()
__lowerCAmelCase , __lowerCAmelCase = process_story(__a )
return document_name, story_lines, summary_lines
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = list(filter(lambda lowerCamelCase: len(__snake_case) != 0, [line.strip() for line in raw_story.split('''\n''')]))
# for some unknown reason some lines miss a period, add it
__lowerCAmelCase = [_add_missing_period(__snake_case) for line in nonempty_lines]
# gather article lines
__lowerCAmelCase = []
__lowerCAmelCase = deque(__snake_case)
while True:
try:
__lowerCAmelCase = lines.popleft()
if element.startswith('''@highlight'''):
break
story_lines.append(__snake_case)
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
__lowerCAmelCase = list(filter(lambda lowerCamelCase: not t.startswith('''@highlight'''), __snake_case))
return story_lines, summary_lines
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')''']
if line.startswith('''@highlight'''):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
if len(__snake_case) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(__snake_case)))
return sequence
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.ones_like(__snake_case)
__lowerCAmelCase = sequence == pad_token_id
__lowerCAmelCase = 0
return mask
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [tokenizer.encode(__snake_case) for line in story_lines]
__lowerCAmelCase = [token for sentence in story_lines_token_ids for token in sentence]
__lowerCAmelCase = [tokenizer.encode(__snake_case) for line in summary_lines]
__lowerCAmelCase = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for sequence in batch:
__lowerCAmelCase = -1
__lowerCAmelCase = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2)
batch_embeddings.append(__snake_case)
return torch.tensor(__snake_case)
| 361 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCAmelCase : List[Any] = datasets.load_iris()
_UpperCAmelCase : Dict = np.array(data["""data"""])
_UpperCAmelCase : int = np.array(data["""target"""])
_UpperCAmelCase : str = data["""target_names"""]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y)
def __magic_name__( lowerCamelCase, lowerCamelCase):
return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5):
__lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase)
# List of distances of all points from the point to be classified
__lowerCAmelCase = []
for data_point in data:
__lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase)
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances.
__lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 9 | 0 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--txt2img_unclip""",
default="""kakaobrain/karlo-v1-alpha""",
type=str,
required=False,
help="""The pretrained txt2img unclip.""",
)
_UpperCAmelCase : Dict = parser.parse_args()
_UpperCAmelCase : Any = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
_UpperCAmelCase : Tuple = CLIPImageProcessor()
_UpperCAmelCase : Optional[int] = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""")
_UpperCAmelCase : Optional[int] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 362 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' )
__lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = inputs['''input_ids''']
__lowerCAmelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
_UpperCAmelCase : Optional[int] = True
except (ImportError, AttributeError):
_UpperCAmelCase : List[str] = object
def __magic_name__( *lowerCamelCase, **lowerCamelCase):
pass
_UpperCAmelCase : Dict = False
_UpperCAmelCase : Optional[int] = logging.get_logger("""transformers-cli/serving""")
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = pipeline(
task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, )
return ServeCommand(SCREAMING_SNAKE_CASE_, args.host, args.port, args.workers)
class a__ ( snake_case__ ):
"""simple docstring"""
__UpperCamelCase : dict
class a__ ( snake_case__ ):
"""simple docstring"""
__UpperCamelCase : List[str]
__UpperCamelCase : Optional[List[int]]
class a__ ( snake_case__ ):
"""simple docstring"""
__UpperCamelCase : str
class a__ ( snake_case__ ):
"""simple docstring"""
__UpperCamelCase : Any
class a__ ( snake_case__ ):
"""simple docstring"""
@staticmethod
def _snake_case (__lowercase ):
__lowerCAmelCase = parser.add_parser(
'''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' )
serve_parser.add_argument(
'''--task''' , type=_A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , )
serve_parser.add_argument('''--host''' , type=_A , default='''localhost''' , help='''Interface the server will listen on.''' )
serve_parser.add_argument('''--port''' , type=_A , default=88_88 , help='''Port the serving will listen to.''' )
serve_parser.add_argument('''--workers''' , type=_A , default=1 , help='''Number of http workers''' )
serve_parser.add_argument('''--model''' , type=_A , help='''Model\'s name or path to stored model.''' )
serve_parser.add_argument('''--config''' , type=_A , help='''Model\'s config name or path to stored model.''' )
serve_parser.add_argument('''--tokenizer''' , type=_A , help='''Tokenizer name to use.''' )
serve_parser.add_argument(
'''--device''' , type=_A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , )
serve_parser.set_defaults(func=_A )
def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = pipeline
__lowerCAmelCase = host
__lowerCAmelCase = port
__lowerCAmelCase = workers
if not _serve_dependencies_installed:
raise RuntimeError(
'''Using serve command requires FastAPI and uvicorn. '''
'''Please install transformers with [serving]: pip install \"transformers[serving]\".'''
'''Or install FastAPI and uvicorn separately.''' )
else:
logger.info(F"""Serving model over {host}:{port}""" )
__lowerCAmelCase = FastAPI(
routes=[
APIRoute(
'''/''' , self.model_info , response_model=_A , response_class=_A , methods=['''GET'''] , ),
APIRoute(
'''/tokenize''' , self.tokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ),
APIRoute(
'''/detokenize''' , self.detokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ),
APIRoute(
'''/forward''' , self.forward , response_model=_A , response_class=_A , methods=['''POST'''] , ),
] , timeout=6_00 , )
def _snake_case (self ):
run(self._app , host=self.host , port=self.port , workers=self.workers )
def _snake_case (self ):
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def _snake_case (self , __lowercase = Body(_A , embed=_A ) , __lowercase = Body(_A , embed=_A ) ):
try:
__lowerCAmelCase = self._pipeline.tokenizer.tokenize(_A )
if return_ids:
__lowerCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(_A )
return ServeTokenizeResult(tokens=_A , tokens_ids=_A )
else:
return ServeTokenizeResult(tokens=_A )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(_A )} )
def _snake_case (self , __lowercase = Body(_A , embed=_A ) , __lowercase = Body(_A , embed=_A ) , __lowercase = Body(_A , embed=_A ) , ):
try:
__lowerCAmelCase = self._pipeline.tokenizer.decode(_A , _A , _A )
return ServeDeTokenizeResult(model='''''' , text=_A )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(_A )} )
async def _snake_case (self , __lowercase=Body(_A , embed=_A ) ):
if len(_A ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
__lowerCAmelCase = self._pipeline(_A )
return ServeForwardResult(output=_A )
except Exception as e:
raise HTTPException(5_00 , {'''error''': str(_A )} )
| 363 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9 | 0 |
'''simple docstring'''
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class a__ ( a__ , a__ ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = 1
@register_to_config
def __init__(self , __lowercase = 10_00 , __lowercase = None ):
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(SCREAMING_SNAKE_CASE_ )
# standard deviation of the initial noise distribution
__lowerCAmelCase = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
__lowerCAmelCase = 4
# running values
__lowerCAmelCase = []
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = num_inference_steps
__lowerCAmelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
__lowerCAmelCase = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
__lowerCAmelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
__lowerCAmelCase = torch.sin(steps * math.pi / 2 ) ** 2
__lowerCAmelCase = (1.0 - self.betas**2) ** 0.5
__lowerCAmelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
__lowerCAmelCase = timesteps.to(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = []
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = True , ):
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
__lowerCAmelCase = (self.timesteps == timestep).nonzero().item()
__lowerCAmelCase = timestep_index + 1
__lowerCAmelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(SCREAMING_SNAKE_CASE_ )
if len(self.ets ) == 1:
__lowerCAmelCase = self.ets[-1]
elif len(self.ets ) == 2:
__lowerCAmelCase = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
__lowerCAmelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
__lowerCAmelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
__lowerCAmelCase = self._get_prev_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case (self , __lowercase , *__lowercase , **__lowercase ):
return sample
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = self.alphas[timestep_index]
__lowerCAmelCase = self.betas[timestep_index]
__lowerCAmelCase = self.alphas[prev_timestep_index]
__lowerCAmelCase = self.betas[prev_timestep_index]
__lowerCAmelCase = (sample - sigma * ets) / max(SCREAMING_SNAKE_CASE_ , 1e-8 )
__lowerCAmelCase = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__(self ):
return self.config.num_train_timesteps
| 364 |
'''simple docstring'''
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ):
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1]
# Ensure proper dimensionality.
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase)
__lowerCAmelCase = np.iscomplexobj(lowerCamelCase)
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCamelCase, input_matrix.conj().T)
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__lowerCAmelCase = False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
# Normalize the resulting output vector.
__lowerCAmelCase = w / np.linalg.norm(lowerCamelCase)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__lowerCAmelCase = vector.conj().T if is_complex else vector.T
__lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase))
# Check convergence.
__lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__lowerCAmelCase = True
__lowerCAmelCase = lambda_
if is_complex:
__lowerCAmelCase = np.real(lambda_)
return lambda_, vector
def __magic_name__( ):
__lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]])
__lowerCAmelCase = np.array([4_1, 4, 2_0])
__lowerCAmelCase = real_input_matrix.astype(np.complexaaa)
__lowerCAmelCase = np.triu(1J * complex_input_matrix, 1)
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa)
for problem_type in ["real", "complex"]:
if problem_type == "real":
__lowerCAmelCase = real_input_matrix
__lowerCAmelCase = real_vector
elif problem_type == "complex":
__lowerCAmelCase = complex_input_matrix
__lowerCAmelCase = complex_vector
# Our implementation.
__lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase)
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase)
# Last eigenvalue is the maximum one.
__lowerCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__lowerCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Tuple = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : str = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 365 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_UpperCAmelCase : str = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
return [
int(1_0_0_0 * (box[0] / width)),
int(1_0_0_0 * (box[1] / height)),
int(1_0_0_0 * (box[2] / width)),
int(1_0_0_0 * (box[3] / height)),
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None):
__lowerCAmelCase = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
__lowerCAmelCase = to_pil_image(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = pil_image.size
__lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()]
__lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase)
# finally, normalize the bounding boxes
__lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase))
assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = apply_ocr
__lowerCAmelCase = ocr_lang
__lowerCAmelCase = tesseract_config
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__lowerCAmelCase = (size['''height'''], size['''width'''])
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowerCAmelCase = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
__lowerCAmelCase = []
__lowerCAmelCase = []
for image in images:
__lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase )
words_batch.append(__lowercase )
boxes_batch.append(__lowercase )
if do_resize:
__lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase )
if apply_ocr:
__lowerCAmelCase = words_batch
__lowerCAmelCase = boxes_batch
return data
| 9 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
_UpperCAmelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
_UpperCAmelCase : List[Any] = {
"""vocab_file""": {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""",
"""allenai/longformer-large-4096""": (
"""https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"""
),
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""",
"""allenai/longformer-large-4096""": (
"""https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"""
),
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"""
),
},
}
_UpperCAmelCase : List[Any] = {
"""allenai/longformer-base-4096""": 4_0_9_6,
"""allenai/longformer-large-4096""": 4_0_9_6,
"""allenai/longformer-large-4096-finetuned-triviaqa""": 4_0_9_6,
"""allenai/longformer-base-4096-extra.pos.embd.only""": 4_0_9_6,
"""allenai/longformer-large-4096-extra.pos.embd.only""": 4_0_9_6,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __magic_name__( ):
__lowerCAmelCase = (
list(range(ord('''!'''), ord('''~''') + 1)) + list(range(ord('''¡'''), ord('''¬''') + 1)) + list(range(ord('''®'''), ord('''ÿ''') + 1))
)
__lowerCAmelCase = bs[:]
__lowerCAmelCase = 0
for b in range(2**8):
if b not in bs:
bs.append(lowerCamelCase)
cs.append(2**8 + n)
n += 1
__lowerCAmelCase = [chr(lowerCamelCase) for n in cs]
return dict(zip(lowerCamelCase, lowerCamelCase))
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = set()
__lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
__lowerCAmelCase = char
return pairs
class a__ ( UpperCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Dict = ["""input_ids""", """attention_mask"""]
def __init__(self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ):
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token
super().__init__(
errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , )
with open(__lowercase , encoding='''utf-8''' ) as vocab_handle:
__lowerCAmelCase = json.load(__lowercase )
__lowerCAmelCase = {v: k for k, v in self.encoder.items()}
__lowerCAmelCase = errors # how to handle errors in decoding
__lowerCAmelCase = bytes_to_unicode()
__lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(__lowercase , encoding='''utf-8''' ) as merges_handle:
__lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = {}
__lowerCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case (self ):
return len(self.encoder )
def _snake_case (self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case (self , __lowercase ):
if token in self.cache:
return self.cache[token]
__lowerCAmelCase = tuple(__lowercase )
__lowerCAmelCase = get_pairs(__lowercase )
if not pairs:
return token
while True:
__lowerCAmelCase = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCAmelCase = bigram
__lowerCAmelCase = []
__lowerCAmelCase = 0
while i < len(__lowercase ):
try:
__lowerCAmelCase = word.index(__lowercase , __lowercase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowerCAmelCase = j
if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCAmelCase = tuple(__lowercase )
__lowerCAmelCase = new_word
if len(__lowercase ) == 1:
break
else:
__lowerCAmelCase = get_pairs(__lowercase )
__lowerCAmelCase = ''' '''.join(__lowercase )
__lowerCAmelCase = word
return word
def _snake_case (self , __lowercase ):
__lowerCAmelCase = []
for token in re.findall(self.pat , __lowercase ):
__lowerCAmelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) )
return bpe_tokens
def _snake_case (self , __lowercase ):
return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) )
def _snake_case (self , __lowercase ):
return self.decoder.get(__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = ''''''.join(__lowercase )
__lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case (self , __lowercase , __lowercase = None ):
if not os.path.isdir(__lowercase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase = os.path.join(
__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(
__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' )
__lowerCAmelCase = 0
with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
__lowerCAmelCase = token_index
writer.write(''' '''.join(__lowercase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case (self , __lowercase , __lowercase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
__lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase )
if token_ids_a is None:
return [1] + ([0] * len(__lowercase )) + [1]
return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1]
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case (self , __lowercase , __lowercase=False , **__lowercase ):
__lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()):
__lowerCAmelCase = ''' ''' + text
return (text, kwargs)
| 366 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['torch', 'scipy']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 9 | 0 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class a__ :
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
return None
class a__ :
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ):
return None
class a__ ( unittest.TestCase ):
__UpperCamelCase : Any = [
# (model_name, model_kwargs)
("""bert-base-cased""", {}),
("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case (self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__a , '''tf''' , 12 , **__a )
@require_torch
@slow
def _snake_case (self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__a , '''pt''' , 12 , **__a )
@require_torch
@slow
def _snake_case (self ):
from transformers import BertModel
__lowerCAmelCase = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words''']
with NamedTemporaryFile(mode='''w+t''' ) as vocab_file:
vocab_file.write('''\n'''.join(__a ) )
vocab_file.flush()
__lowerCAmelCase = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
__lowerCAmelCase = BertModel(BertConfig(vocab_size=len(__a ) ) )
model.save_pretrained(__a )
self._test_export(__a , '''pt''' , 12 , __a )
@require_tf
@slow
def _snake_case (self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
__lowerCAmelCase = self._test_export(__a , '''tf''' , 12 , **__a )
__lowerCAmelCase = quantize(Path(__a ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__a ).stat().st_size:
self.fail('''Quantized model is bigger than initial ONNX model''' )
@require_torch
@slow
def _snake_case (self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
__lowerCAmelCase = self._test_export(__a , '''pt''' , 12 , **__a )
__lowerCAmelCase = quantize(__a )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__a ).stat().st_size:
self.fail('''Quantized model is bigger than initial ONNX model''' )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
__lowerCAmelCase = Path(__a ).joinpath('''model.onnx''' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__a , __a , __a , __a , __a , **__a )
return path
except Exception as e:
self.fail(__a )
@require_torch
@require_tokenizers
@slow
def _snake_case (self ):
from transformers import BertModel
__lowerCAmelCase = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) )
__lowerCAmelCase = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' )
self._test_infer_dynamic_axis(__a , __a , '''pt''' )
@require_tf
@require_tokenizers
@slow
def _snake_case (self ):
from transformers import TFBertModel
__lowerCAmelCase = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) )
__lowerCAmelCase = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' )
self._test_infer_dynamic_axis(__a , __a , '''tf''' )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = FeatureExtractionPipeline(__a , __a )
__lowerCAmelCase = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1''']
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = infer_shapes(__a , __a )
# Assert all variables are present
self.assertEqual(len(__a ) , len(__a ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __a )
self.assertSequenceEqual(variable_names[3:] , __a )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} )
self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} )
def _snake_case (self ):
__lowerCAmelCase = ['''input_ids''', '''attention_mask''', '''token_type_ids''']
__lowerCAmelCase = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]}
__lowerCAmelCase , __lowerCAmelCase = ensure_valid_input(FuncContiguousArgs() , __a , __a )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__a ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__a ) , set(__a ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__a , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
__lowerCAmelCase , __lowerCAmelCase = ensure_valid_input(FuncNonContiguousArgs() , __a , __a )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__a ) , 1 )
self.assertEqual(len(__a ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['''input_ids'''] )
self.assertEqual(ordered_input_names[0] , '''input_ids''' )
def _snake_case (self ):
__lowerCAmelCase = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' )
self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
| 367 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
_UpperCAmelCase : Any = {
"""google/tapas-base-finetuned-sqa""": (
"""https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wtq""": (
"""https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wikisql-supervised""": (
"""https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-tabfact""": (
"""https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"""
),
}
class a__ ( _UpperCamelCase ):
"""simple docstring"""
__UpperCamelCase : int = 'tapas'
def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10_24 , __lowercase=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase=1_0.0 , __lowercase=0 , __lowercase=1.0 , __lowercase=None , __lowercase=1.0 , __lowercase=False , __lowercase=None , __lowercase=1.0 , __lowercase=1.0 , __lowercase=False , __lowercase=False , __lowercase="ratio" , __lowercase=None , __lowercase=None , __lowercase=64 , __lowercase=32 , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase=None , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_sizes
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
# Fine-tuning task hyperparameters
__lowerCAmelCase = positive_label_weight
__lowerCAmelCase = num_aggregation_labels
__lowerCAmelCase = aggregation_loss_weight
__lowerCAmelCase = use_answer_as_supervision
__lowerCAmelCase = answer_loss_importance
__lowerCAmelCase = use_normalized_answer_loss
__lowerCAmelCase = huber_loss_delta
__lowerCAmelCase = temperature
__lowerCAmelCase = aggregation_temperature
__lowerCAmelCase = use_gumbel_for_cells
__lowerCAmelCase = use_gumbel_for_aggregation
__lowerCAmelCase = average_approximation_function
__lowerCAmelCase = cell_selection_preference
__lowerCAmelCase = answer_loss_cutoff
__lowerCAmelCase = max_num_rows
__lowerCAmelCase = max_num_columns
__lowerCAmelCase = average_logits_per_cell
__lowerCAmelCase = select_one_column
__lowerCAmelCase = allow_empty_column_selection
__lowerCAmelCase = init_cell_selection_weights_to_zero
__lowerCAmelCase = reset_position_index_per_cell
__lowerCAmelCase = disable_per_token_loss
# Aggregation hyperparameters
__lowerCAmelCase = aggregation_labels
__lowerCAmelCase = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase ):
__lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in aggregation_labels.items()}
| 368 |
'''simple docstring'''
# Imports
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
if red is not None:
__lowerCAmelCase = red
if green is not None:
__lowerCAmelCase = green
if blue is not None:
__lowerCAmelCase = blue
if red_edge is not None:
__lowerCAmelCase = red_edge
if nir is not None:
__lowerCAmelCase = nir
return True
def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
__lowerCAmelCase = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def _snake_case (self ):
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case (self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case (self ):
return self.nir * (self.red / (self.green**2))
def _snake_case (self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case (self ):
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case (self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case (self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case (self ):
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case (self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case (self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case (self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case (self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case (self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case (self ):
return (self.nir / self.green) - 1
def _snake_case (self ):
return (self.nir / self.redEdge) - 1
def _snake_case (self ):
return (self.red - self.blue) / self.red
def _snake_case (self ):
__lowerCAmelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case (self ):
return self.nir - self.green
def _snake_case (self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case (self ):
__lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case (self , __lowercase=0.1_6 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case (self , __lowercase=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case (self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case (self , __lowercase=None , __lowercase=None ):
return (self.nir - b) / (a * self.red)
def _snake_case (self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case (self ):
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case (self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case (self ):
return self.green / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.nir / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.red / (self.nir + self.red + self.green)
def _snake_case (self ):
return (self.green - self.red) / (self.green + self.red)
def _snake_case (self ):
return (self.red - self.green) / (self.red + self.green)
def _snake_case (self ):
__lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case (self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case (self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 9 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : List[Any] = {}
class a__ ( __snake_case ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = """llama"""
__UpperCamelCase : Optional[Any] = ["""past_key_values"""]
def __init__(self , __lowercase=3_20_00 , __lowercase=40_96 , __lowercase=1_10_08 , __lowercase=32 , __lowercase=32 , __lowercase=None , __lowercase="silu" , __lowercase=20_48 , __lowercase=0.0_2 , __lowercase=1e-6 , __lowercase=True , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=1 , __lowercase=False , __lowercase=None , **__lowercase , ):
__lowerCAmelCase = vocab_size
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = hidden_size
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = num_key_value_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = initializer_range
__lowerCAmelCase = rms_norm_eps
__lowerCAmelCase = pretraining_tp
__lowerCAmelCase = use_cache
__lowerCAmelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , )
def _snake_case (self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
__lowerCAmelCase = self.rope_scaling.get('''type''' , UpperCamelCase__ )
__lowerCAmelCase = self.rope_scaling.get('''factor''' , UpperCamelCase__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 369 |
'''simple docstring'''
from math import sqrt
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' must been an int and positive"
__lowerCAmelCase = True
# 0 and 1 are none primes.
if number <= 1:
__lowerCAmelCase = False
for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowerCAmelCase = False
break
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool"
return status
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowerCAmelCase = list(range(2, n + 1))
__lowerCAmelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase)):
for j in range(i + 1, len(lowerCamelCase)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowerCAmelCase = 0
# filters actual prime numbers.
__lowerCAmelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
__lowerCAmelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(lowerCamelCase):
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0"
__lowerCAmelCase = [] # this list will be returns of the function.
# potential prime number factors.
__lowerCAmelCase = 2
__lowerCAmelCase = number
if number == 0 or number == 1:
ans.append(lowerCamelCase)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase):
while quotient != 1:
if is_prime(lowerCamelCase) and (quotient % factor == 0):
ans.append(lowerCamelCase)
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = max(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = min(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 == 0
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 != 0
def __magic_name__( lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase)
), "'number' must been an int, even and > 2"
__lowerCAmelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowerCAmelCase = get_prime_numbers(lowerCamelCase)
__lowerCAmelCase = len(lowerCamelCase)
# run variable for while-loops.
__lowerCAmelCase = 0
__lowerCAmelCase = None
# exit variable. for break up the loops
__lowerCAmelCase = True
while i < len_pn and loop:
__lowerCAmelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowerCAmelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (len(lowerCamelCase) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 0
while numbera != 0:
__lowerCAmelCase = numbera % numbera
__lowerCAmelCase = numbera
__lowerCAmelCase = rest
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = prime_factorization(lowerCamelCase)
elif numbera == 1 or numbera == 1:
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = max(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(max(lowerCamelCase, lowerCamelCase)):
ans *= n
else:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int"
__lowerCAmelCase = 0
__lowerCAmelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase):
ans += 1
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime(
lowerCamelCase), "'ans' must been a prime number and from type int"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowerCAmelCase = p_number_a + 1 # jump to the next number
__lowerCAmelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase)
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and ans[0] != p_number_a
and ans[len(lowerCamelCase) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1"
__lowerCAmelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(lowerCamelCase)
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number > 1
), "'number' must been an int and >= 1"
__lowerCAmelCase = get_divisors(lowerCamelCase)
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase))
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0"
__lowerCAmelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0"
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1 # this will be return
for _ in range(n - 1):
__lowerCAmelCase = ans
ans += fiba
__lowerCAmelCase = tmp
return ans
| 9 | 0 |
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
__lowerCAmelCase = ksize + 1
__lowerCAmelCase = np.zeros((ksize, ksize), dtype=np.floataa)
# each value
for y in range(__lowerCAmelCase):
for x in range(__lowerCAmelCase):
# distance from center
__lowerCAmelCase = x - ksize // 2
__lowerCAmelCase = y - ksize // 2
# degree to radiant
__lowerCAmelCase = theta / 1_8_0 * np.pi
__lowerCAmelCase = np.cos(_theta)
__lowerCAmelCase = np.sin(_theta)
# get kernel x
__lowerCAmelCase = cos_theta * px + sin_theta * py
# get kernel y
__lowerCAmelCase = -sin_theta * px + cos_theta * py
# fill kernel
__lowerCAmelCase = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2)) * np.cos(2 * np.pi * _x / lambd + psi)
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
_UpperCAmelCase : Tuple = imread("""../image_data/lena.jpg""")
# turn image in gray scale value
_UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
_UpperCAmelCase : Optional[Any] = np.zeros(gray.shape[:2])
for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]:
_UpperCAmelCase : Optional[int] = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
_UpperCAmelCase : Optional[int] = out / out.max() * 2_5_5
_UpperCAmelCase : Tuple = out.astype(np.uinta)
imshow("""Original""", gray)
imshow("""Gabor filter with 20x20 mask and 6 directions""", out)
waitKey(0)
| 370 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_UpperCAmelCase : Dict = """true"""
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6):
set_seed(4_2)
__lowerCAmelCase = RegressionModel()
__lowerCAmelCase = deepcopy(lowerCamelCase)
__lowerCAmelCase = RegressionDataset(length=lowerCamelCase)
__lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase)
model.to(accelerator.device)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return model, ddp_model, dataloader
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''')
def tokenize_function(lowerCamelCase):
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
with accelerator.main_process_first():
__lowerCAmelCase = dataset.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
if use_longest:
return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''')
return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''')
return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6)
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase)
__lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for batch in dataloader:
__lowerCAmelCase , __lowerCAmelCase = batch.values()
with torch.no_grad():
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
__lowerCAmelCase , __lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase)
targs.append(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase)
return logits, targs
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert (
len(lowerCamelCase) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}"""
def __magic_name__( lowerCamelCase = False, lowerCamelCase = False):
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
__lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase)
# First do baseline
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no''']
model.to(lowerCamelCase)
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase)
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=lowerCamelCase, references=batch['''labels'''])
__lowerCAmelCase = metric.compute()
# Then do distributed
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase = batch['''labels''']
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase)
__lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __magic_name__( ):
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""")
test_mrpc(lowerCamelCase, lowerCamelCase)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""")
test_torch_metrics(lowerCamelCase, 9_9)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''')
__lowerCAmelCase = Accelerator()
test_torch_metrics(lowerCamelCase, 5_1_2)
accelerator.state._reset_state()
def __magic_name__( lowerCamelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 | 0 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
_UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : Optional[str] = field(
default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} )
__UpperCamelCase : Optional[str] = field(
default=_SCREAMING_SNAKE_CASE , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
__UpperCamelCase : Optional[str] = field(
default=_SCREAMING_SNAKE_CASE , metadata={'help': 'The column name of the images in the files.'} )
__UpperCamelCase : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={'help': 'A folder containing the training data.'} )
__UpperCamelCase : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={'help': 'A folder containing the validation data.'} )
__UpperCamelCase : Optional[float] = field(
default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} )
__UpperCamelCase : Optional[int] = field(
default=_SCREAMING_SNAKE_CASE , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
__UpperCamelCase : Optional[int] = field(
default=_SCREAMING_SNAKE_CASE , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
def _snake_case (self ):
__lowerCAmelCase = {}
if self.train_dir is not None:
__lowerCAmelCase = self.train_dir
if self.validation_dir is not None:
__lowerCAmelCase = self.validation_dir
__lowerCAmelCase = data_files if data_files else None
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={
'help': (
'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'
)
} , )
__UpperCamelCase : Optional[str] = field(
default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} )
__UpperCamelCase : Optional[str] = field(
default=_SCREAMING_SNAKE_CASE , metadata={
'help': (
'Override some existing default config settings when a model is trained from scratch. Example: '
'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'
)
} , )
__UpperCamelCase : Optional[str] = field(
default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} )
__UpperCamelCase : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
__UpperCamelCase : str = field(default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Name or path of preprocessor config.'} )
__UpperCamelCase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
__UpperCamelCase : float = field(
default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} )
__UpperCamelCase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} )
@dataclass
class a__ ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__UpperCamelCase : float = field(
default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} )
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = torch.stack([example['''pixel_values'''] for example in examples])
return {"pixel_values": pixel_values}
def __magic_name__( ):
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith('''.json'''):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_mae''', lowerCamelCase, lowerCamelCase)
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout)], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(lowerCamelCase)
transformers.utils.logging.set_verbosity(lowerCamelCase)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""")
logger.info(F"""Training/evaluation parameters {training_args}""")
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''')
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''')
# Initialize our dataset.
__lowerCAmelCase = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# If we don't have a validation split, split off a percentage of train as validation.
__lowerCAmelCase = None if '''validation''' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split, lowerCamelCase) and data_args.train_val_split > 0.0:
__lowerCAmelCase = ds['''train'''].train_test_split(data_args.train_val_split)
__lowerCAmelCase = split['''train''']
__lowerCAmelCase = split['''test''']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
__lowerCAmelCase = ViTMAEConfig.from_pretrained(model_args.config_name, **lowerCamelCase)
elif model_args.model_name_or_path:
__lowerCAmelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **lowerCamelCase)
else:
__lowerCAmelCase = ViTMAEConfig()
logger.warning('''You are instantiating a new config instance from scratch.''')
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""")
config.update_from_string(model_args.config_overrides)
logger.info(F"""New config: {config}""")
# adapt config
config.update(
{
'''mask_ratio''': model_args.mask_ratio,
'''norm_pix_loss''': model_args.norm_pix_loss,
})
# create image processor
if model_args.image_processor_name:
__lowerCAmelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **lowerCamelCase)
elif model_args.model_name_or_path:
__lowerCAmelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **lowerCamelCase)
else:
__lowerCAmelCase = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
__lowerCAmelCase = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path), config=lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
else:
logger.info('''Training new model from scratch''')
__lowerCAmelCase = ViTMAEForPreTraining(lowerCamelCase)
if training_args.do_train:
__lowerCAmelCase = ds['''train'''].column_names
else:
__lowerCAmelCase = ds['''validation'''].column_names
if data_args.image_column_name is not None:
__lowerCAmelCase = data_args.image_column_name
elif "image" in column_names:
__lowerCAmelCase = '''image'''
elif "img" in column_names:
__lowerCAmelCase = '''img'''
else:
__lowerCAmelCase = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
__lowerCAmelCase = image_processor.size['''shortest_edge''']
else:
__lowerCAmelCase = (image_processor.size['''height'''], image_processor.size['''width'''])
__lowerCAmelCase = Compose(
[
Lambda(lambda lowerCamelCase: img.convert('''RGB''') if img.mode != "RGB" else img),
RandomResizedCrop(lowerCamelCase, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
])
def preprocess_images(lowerCamelCase):
__lowerCAmelCase = [transforms(lowerCamelCase) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('''--do_train requires a train dataset''')
if data_args.max_train_samples is not None:
__lowerCAmelCase = ds['''train'''].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
# Set the training transforms
ds["train"].set_transform(lowerCamelCase)
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('''--do_eval requires a validation dataset''')
if data_args.max_eval_samples is not None:
__lowerCAmelCase = (
ds['''validation'''].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# Set the validation transforms
ds["validation"].set_transform(lowerCamelCase)
# Compute absolute learning rate
__lowerCAmelCase = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
__lowerCAmelCase = training_args.base_learning_rate * total_train_batch_size / 2_5_6
# Initialize our trainer
__lowerCAmelCase = Trainer(
model=lowerCamelCase, args=lowerCamelCase, train_dataset=ds['''train'''] if training_args.do_train else None, eval_dataset=ds['''validation'''] if training_args.do_eval else None, tokenizer=lowerCamelCase, data_collator=lowerCamelCase, )
# Training
if training_args.do_train:
__lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCamelCase)
trainer.save_model()
trainer.log_metrics('''train''', train_result.metrics)
trainer.save_metrics('''train''', train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
__lowerCAmelCase = trainer.evaluate()
trainer.log_metrics('''eval''', lowerCamelCase)
trainer.save_metrics('''eval''', lowerCamelCase)
# Write model card and (optionally) push to hub
__lowerCAmelCase = {
'''tasks''': '''masked-auto-encoding''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''masked-auto-encoding'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCamelCase)
else:
trainer.create_model_card(**lowerCamelCase)
def __magic_name__( lowerCamelCase):
main()
if __name__ == "__main__":
main()
| 371 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"""facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""",
"""facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""",
"""facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""",
"""facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""",
"""facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""",
"""facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""",
"""facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""",
"""facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""",
"""facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'xmod'
def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , __lowercase=False , __lowercase=2 , __lowercase=False , __lowercase=True , __lowercase=True , __lowercase=("en_XX",) , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
__lowerCAmelCase = pre_norm
__lowerCAmelCase = adapter_reduction_factor
__lowerCAmelCase = adapter_layer_norm
__lowerCAmelCase = adapter_reuse_layer_norm
__lowerCAmelCase = ln_before_adapter
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = default_language
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 350 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 0 |
'''simple docstring'''
from math import factorial
def __magic_name__( lowerCamelCase = 1_0_0):
return sum(int(lowerCamelCase) for x in str(factorial(lowerCamelCase)))
if __name__ == "__main__":
print(solution(int(input("""Enter the Number: """).strip())))
| 351 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : Dict = {
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = 'imagegpt'
__UpperCamelCase : Dict = ['past_key_values']
__UpperCamelCase : Optional[int] = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__(self , __lowercase=5_12 + 1 , __lowercase=32 * 32 , __lowercase=5_12 , __lowercase=24 , __lowercase=8 , __lowercase=None , __lowercase="quick_gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1e-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , **__lowercase , ):
__lowerCAmelCase = vocab_size
__lowerCAmelCase = n_positions
__lowerCAmelCase = n_embd
__lowerCAmelCase = n_layer
__lowerCAmelCase = n_head
__lowerCAmelCase = n_inner
__lowerCAmelCase = activation_function
__lowerCAmelCase = resid_pdrop
__lowerCAmelCase = embd_pdrop
__lowerCAmelCase = attn_pdrop
__lowerCAmelCase = layer_norm_epsilon
__lowerCAmelCase = initializer_range
__lowerCAmelCase = scale_attn_weights
__lowerCAmelCase = use_cache
__lowerCAmelCase = scale_attn_by_inverse_layer_idx
__lowerCAmelCase = reorder_and_upcast_attn
__lowerCAmelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowercase , **__lowercase )
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
] )
def _snake_case (self , __lowercase , __lowercase = 1 , __lowercase = -1 , __lowercase = False , __lowercase = None , __lowercase = 3 , __lowercase = 32 , __lowercase = 32 , ):
__lowerCAmelCase = self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase )
__lowerCAmelCase = dict(preprocessor(images=__lowercase , return_tensors=__lowercase ) )
return inputs
| 352 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 0 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __magic_name__( *lowerCamelCase, lowerCamelCase = None, lowerCamelCase=True, lowerCamelCase=2):
from .. import __version__
__lowerCAmelCase = take_from
__lowerCAmelCase = ()
if not isinstance(args[0], lowerCamelCase):
__lowerCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowerCamelCase).base_version) >= version.parse(lowerCamelCase):
raise ValueError(
F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
F""" version {__version__} is >= {version_name}""")
__lowerCAmelCase = None
if isinstance(lowerCamelCase, lowerCamelCase) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowerCamelCase),)
__lowerCAmelCase = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(lowerCamelCase, lowerCamelCase):
values += (getattr(lowerCamelCase, lowerCamelCase),)
__lowerCAmelCase = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
__lowerCAmelCase = F"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
__lowerCAmelCase = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message, lowerCamelCase, stacklevel=lowerCamelCase)
if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) > 0:
__lowerCAmelCase = inspect.getouterframes(inspect.currentframe())[1]
__lowerCAmelCase = call_frame.filename
__lowerCAmelCase = call_frame.lineno
__lowerCAmelCase = call_frame.function
__lowerCAmelCase , __lowerCAmelCase = next(iter(deprecated_kwargs.items()))
raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""")
if len(lowerCamelCase) == 0:
return
elif len(lowerCamelCase) == 1:
return values[0]
return values
| 353 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : List[Any] = 'Salesforce/blip-image-captioning-base'
__UpperCamelCase : Union[str, Any] = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
__UpperCamelCase : Union[str, Any] = 'image_captioner'
__UpperCamelCase : Optional[int] = AutoModelForVisionaSeq
__UpperCamelCase : Any = ['image']
__UpperCamelCase : str = ['text']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''vision'''] )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase ):
return self.pre_processor(images=__lowercase , return_tensors='''pt''' )
def _snake_case (self , __lowercase ):
return self.model.generate(**__lowercase )
def _snake_case (self , __lowercase ):
return self.pre_processor.batch_decode(__lowercase , skip_special_tokens=__lowercase )[0].strip()
| 354 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 0 |
'''simple docstring'''
class a__ :
"""simple docstring"""
def __init__(self , __lowercase ):
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = [0] * len_array
if len_array > 0:
__lowerCAmelCase = array[0]
for i in range(1 , __lowercase ):
__lowerCAmelCase = self.prefix_sum[i - 1] + array[i]
def _snake_case (self , __lowercase , __lowercase ):
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def _snake_case (self , __lowercase ):
__lowerCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__lowercase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 0 |
'''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
_UpperCAmelCase : List[str] = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
_UpperCAmelCase : Optional[int] = {
"""vocab_file""": {
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""",
},
"""merges_file""": {
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""Salesforce/codegen-350M-mono""": (
"""https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"""
),
},
}
_UpperCAmelCase : List[str] = {
"""Salesforce/codegen-350M-mono""": 2_0_4_8,
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
__UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ['input_ids', 'attention_mask']
__UpperCamelCase : Optional[int] = CodeGenTokenizer
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase=False , **__lowercase , ):
super().__init__(
__lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , )
if kwargs.pop('''add_bos_token''' , __lowercase ):
__lowerCAmelCase = kwargs.pop('''name_or_path''' , '''''' )
raise ValueError(
'''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.'''
'''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n'''
F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"""
F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"""
'''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.'''
''' so that the fast tokenizer works correctly.''' )
__lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space:
__lowerCAmelCase = getattr(__lowercase , pre_tok_state.pop('''type''' ) )
__lowerCAmelCase = add_prefix_space
__lowerCAmelCase = pre_tok_class(**__lowercase )
__lowerCAmelCase = add_prefix_space
def _snake_case (self , *__lowercase , **__lowercase ):
__lowerCAmelCase = kwargs.get('''is_split_into_words''' , __lowercase )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__lowercase , **__lowercase )
def _snake_case (self , *__lowercase , **__lowercase ):
__lowerCAmelCase = kwargs.get('''is_split_into_words''' , __lowercase )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase )
return tuple(__lowercase )
def _snake_case (self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = super().decode(
token_ids=__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , )
if truncate_before_pattern is not None and len(__lowercase ) > 0:
__lowerCAmelCase = self.truncate(__lowercase , __lowercase )
return decoded_text
def _snake_case (self , __lowercase , __lowercase ):
def find_re(__lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = pattern.search(__lowercase , __lowercase )
return m.start() if m else -1
__lowerCAmelCase = [re.compile(__lowercase , re.MULTILINE ) for pattern in truncate_before_pattern]
__lowerCAmelCase = list(re.finditer('''^print''' , __lowercase , re.MULTILINE ) )
if len(__lowercase ) > 1:
__lowerCAmelCase = completion[: prints[1].start()]
__lowerCAmelCase = list(re.finditer('''^def''' , __lowercase , re.MULTILINE ) )
if len(__lowercase ) > 1:
__lowerCAmelCase = completion[: defs[1].start()]
__lowerCAmelCase = 0
__lowerCAmelCase = [
pos for pos in [find_re(__lowercase , __lowercase , __lowercase ) for terminal in terminals] if pos != -1
]
if len(__lowercase ) > 0:
return completion[: min(__lowercase )]
else:
return completion
| 356 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def __magic_name__( lowerCamelCase):
if not postfix_notation:
return 0
__lowerCAmelCase = {'''+''', '''-''', '''*''', '''/'''}
__lowerCAmelCase = []
for token in postfix_notation:
if token in operations:
__lowerCAmelCase , __lowerCAmelCase = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b)
elif token == "-":
stack.append(a - b)
elif token == "*":
stack.append(a * b)
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1)
else:
stack.append(a // b)
else:
stack.append(int(lowerCamelCase))
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 0 |
'''simple docstring'''
def __magic_name__( lowerCamelCase, lowerCamelCase):
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''')
__lowerCAmelCase = str(bin(lowerCamelCase))[2:] # remove the leading "0b"
__lowerCAmelCase = str(bin(lowerCamelCase))[2:] # remove the leading "0b"
__lowerCAmelCase = max(len(lowerCamelCase), len(lowerCamelCase))
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1'''))
for char_a, char_b in zip(a_binary.zfill(lowerCamelCase), b_binary.zfill(lowerCamelCase)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Dict = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Any = [
"""MRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MraForMaskedLM""",
"""MraForMultipleChoice""",
"""MraForQuestionAnswering""",
"""MraForSequenceClassification""",
"""MraForTokenClassification""",
"""MraLayer""",
"""MraModel""",
"""MraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 359 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.