File size: 7,455 Bytes
ce2e13a
8433816
e17d8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2e13a
 
 
 
78c970b
ce2e13a
8433816
ce2e13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f73c4
ce2e13a
55f73c4
ce2e13a
55f73c4
 
 
 
 
 
ce2e13a
55f73c4
ce2e13a
55f73c4
 
 
ce2e13a
55f73c4
 
 
 
 
 
 
 
 
 
 
ce2e13a
 
 
55f73c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2e13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f0bee8
78c970b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
license: cc-by-nc-sa-4.0
pretty_name: INTERCHART
tags:
- charts
- visualization
- vqa
- multimodal
- question-answering
- reasoning
- benchmarking
- evaluation
task_categories:
- question-answering
- visual-question-answering
task_ids:
- visual-question-answering
language:
- en
dataset_info:
  features:
  - name: id
    dtype: string
  - name: subset
    dtype: string
  - name: context_format
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: images
    sequence: string
  - name: metadata
    dtype: json
pretty_description: >
  INTERCHART is a diagnostic benchmark for multi-chart visual reasoning across three tiers:
  DECAF (decomposed single-entity charts), SPECTRA (synthetic paired charts for correlated trends),
  and STORM (real-world chart pairs). The dataset includes chart images and question–answer pairs
  designed to stress-test cross-chart reasoning, trend correlation, and abstract numerical inference.
---

# INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information

[![Website](https://img.shields.io/badge/Website-InterChart.github.io-blue)](https://coral-lab-asu.github.io/interchart/)
[![Paper](https://img.shields.io/badge/arXiv-2508.07630v1-b31b1b)](https://arxiv.org/abs/2508.07630v1)
[![License](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-green)](https://creativecommons.org/licenses/by-nc-sa/4.0/)

---

## 🧩 Overview

**INTERCHART** is a multi-tier benchmark that evaluates how well **vision-language models (VLMs)** reason across **multiple related charts**, a crucial skill for real-world applications like scientific reports, financial analyses, and policy dashboards.  
Unlike single-chart benchmarks, INTERCHART challenges models to integrate information across **decomposed**, **synthetic**, and **real-world** chart contexts.

> **Paper:** [INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information](https://arxiv.org/abs/2508.07630v1)

---

## πŸ“‚ Dataset Structure

```

INTERCHART/
β”œβ”€β”€ DECAF
β”‚   β”œβ”€β”€ combined       # Multi-chart combined images (stitched)
β”‚   β”œβ”€β”€ original       # Original compound charts
β”‚   β”œβ”€β”€ questions      # QA pairs for decomposed single-variable charts
β”‚   └── simple         # Simplified decomposed charts
β”œβ”€β”€ SPECTRA
β”‚   β”œβ”€β”€ combined       # Synthetic chart pairs (shared axes)
β”‚   β”œβ”€β”€ questions      # QA pairs for correlated and independent reasoning
β”‚   └── simple         # Individual charts rendered from synthetic tables
β”œβ”€β”€ STORM
β”‚   β”œβ”€β”€ combined       # Real-world chart pairs (stitched)
β”‚   β”œβ”€β”€ images         # Original Our World in Data charts
β”‚   β”œβ”€β”€ meta-data      # Extracted metadata and semantic pairings
β”‚   β”œβ”€β”€ questions      # QA pairs for temporal, cross-domain reasoning
β”‚   └── tables         # Structured table representations (optional)

````

Each subset targets a different **level of reasoning complexity** and visual diversity.

---

## 🧠 Subset Descriptions

### **1️⃣ DECAF** β€” *Decomposed Elementary Charts with Answerable Facts*
- Focus: **Factual lookup** and **comparative reasoning** on simplified single-variable charts.  
- Sources: Derived from ChartQA, ChartLlama, ChartInfo, DVQA.  
- Content: 1,188 decomposed charts and 2,809 QA pairs.  
- Tasks: Identify, compare, or extract values across clean, minimal visuals.

---

### **2️⃣ SPECTRA** β€” *Synthetic Plots for Event-based Correlated Trend Reasoning and Analysis*
- Focus: **Trend correlation** and **scenario-based inference** between synthetic chart pairs.  
- Construction: Generated via Gemini 1.5 Pro + human validation to preserve shared axes and realism.  
- Content: 870 unique charts, 1,717 QA pairs across 333 contexts.  
- Tasks: Analyze multi-variable relationships, infer trends, and reason about co-evolving variables.

---

### **3️⃣ STORM** β€” *Sequential Temporal Reasoning Over Real-world Multi-domain Charts*
- Focus: **Multi-step reasoning**, **temporal analysis**, and **semantic alignment** across real-world charts.  
- Source: Curated from *Our World in Data* with metadata-driven semantic pairing.  
- Content: 648 charts across 324 validated contexts, 768 QA pairs.  
- Tasks: Align mismatched domains, estimate ranges, and reason about evolving trends.

---

## βš™οΈ Evaluation & Methodology

INTERCHART supports both **visual** and **table-based** evaluation modes.

- **Visual Inputs:**  
  - *Combined:* Charts stitched into a unified image.  
  - *Interleaved:* Charts provided sequentially.  

- **Structured Table Inputs:**  
  Models can extract tables using tools like **DePlot** or **Gemini Title Extraction**, followed by **table-based QA**.

- **Prompting Strategies:**  
  - Zero-Shot  
  - Zero-Shot Chain-of-Thought (CoT)  
  - Few-Shot CoT with Directives (CoTD)

- **Evaluation Pipeline:**  
  Multi-LLM *semantic judging* (Gemini 1.5 Flash, Phi-4, Qwen2.5) with **majority voting** to evaluate semantic correctness.

---

## πŸ“Š Dataset Statistics

| Subset  | Charts | Contexts | QA Pairs | Reasoning Type Examples |
|----------|---------|-----------|-----------|--------------------------|
| **DECAF** | 1,188 | 355 | 2,809 | Factual lookup, comparison |
| **SPECTRA** | 870 | 333 | 1,717 | Trend correlation, event reasoning |
| **STORM** | 648 | 324 | 768 | Temporal reasoning, abstract numerical inference |
| **Total** | 2,706 | 1,012 | **5,214** | β€” |

---

## πŸš€ Usage

### πŸ” Access & Download Instructions

Use an **access token** as your Git credential when cloning or pushing to the repository.

1. **Install Git LFS**  
   Download and install from [https://git-lfs.com](https://git-lfs.com).  
   Then run:
```

git lfs install

```

2. **Clone the dataset repository**  
When prompted for a password, use your **Hugging Face access token** with *write permissions*.  
You can generate one here: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)

```

git clone [https://huggingface.co/datasets/interchart/Interchart](https://huggingface.co/datasets/interchart/Interchart)

```

3. **Clone without large files (LFS pointers only)**  
If you only want lightweight clones without downloading all image data:
```

GIT_LFS_SKIP_SMUDGE=1 git clone [https://huggingface.co/datasets/interchart/Interchart](https://huggingface.co/datasets/interchart/Interchart)

```

4. **Alternative: use the Hugging Face CLI**
Make sure the CLI is installed:
```

pip install -U "huggingface_hub[cli]"

```

Then download directly:
```

hf download interchart/Interchart --repo-type=dataset

```



---

## πŸ” Citation

If you use this dataset, please cite:

```
@article{iyengar2025interchart,
  title={INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information},
  author={Anirudh Iyengar Kaniyar Narayana Iyengar and Srija Mukhopadhyay and Adnan Qidwai and Shubhankar Singh and Dan Roth and Vivek Gupta},
  journal={arXiv preprint arXiv:2508.07630},
  year={2025}
}
```

---

## πŸ”— Links

* πŸ“˜ **Paper:** [arXiv:2508.07630v1](https://arxiv.org/abs/2508.07630v1)
* 🌐 **Website:** [https://coral-lab-asu.github.io/interchart/](https://coral-lab-asu.github.io/interchart/)
* 🧠 **Explore Dataset:** [Interactive Evaluation Portal](https://coral-lab-asu.github.io/interchart/explore.html)