jackkuo commited on
Commit
1a43aa3
·
verified ·
1 Parent(s): 1465f41

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +59 -0
  2. 3NAyT4oBgHgl3EQfo_gV/content/tmp_files/2301.00515v1.pdf.txt +1071 -0
  3. 3NAyT4oBgHgl3EQfo_gV/content/tmp_files/load_file.txt +0 -0
  4. 3NFQT4oBgHgl3EQf3DZF/content/tmp_files/2301.13426v1.pdf.txt +611 -0
  5. 3NFQT4oBgHgl3EQf3DZF/content/tmp_files/load_file.txt +228 -0
  6. 3NFST4oBgHgl3EQfYjhQ/content/tmp_files/2301.13788v1.pdf.txt +828 -0
  7. 3NFST4oBgHgl3EQfYjhQ/content/tmp_files/load_file.txt +0 -0
  8. 3dE1T4oBgHgl3EQflwTE/vector_store/index.pkl +3 -0
  9. 3tAzT4oBgHgl3EQf9f42/content/2301.01919v1.pdf +3 -0
  10. 3tAzT4oBgHgl3EQf9f42/vector_store/index.faiss +3 -0
  11. 3tAzT4oBgHgl3EQf9f42/vector_store/index.pkl +3 -0
  12. 6tAzT4oBgHgl3EQf-P5_/vector_store/index.faiss +3 -0
  13. 79E1T4oBgHgl3EQfnQTu/content/tmp_files/2301.03308v1.pdf.txt +1377 -0
  14. 79E1T4oBgHgl3EQfnQTu/content/tmp_files/load_file.txt +0 -0
  15. 7tAyT4oBgHgl3EQfpvj9/content/tmp_files/2301.00533v1.pdf.txt +2582 -0
  16. 7tAyT4oBgHgl3EQfpvj9/content/tmp_files/load_file.txt +0 -0
  17. 8NE2T4oBgHgl3EQflQeg/content/tmp_files/2301.03987v1.pdf.txt +1376 -0
  18. 8NE2T4oBgHgl3EQflQeg/content/tmp_files/load_file.txt +0 -0
  19. CNE1T4oBgHgl3EQfVwTa/content/tmp_files/2301.03107v1.pdf.txt +2976 -0
  20. CNE1T4oBgHgl3EQfVwTa/content/tmp_files/load_file.txt +0 -0
  21. CdAyT4oBgHgl3EQfR_ex/vector_store/index.faiss +3 -0
  22. CdAyT4oBgHgl3EQfR_ex/vector_store/index.pkl +3 -0
  23. CtE0T4oBgHgl3EQfQQAs/content/tmp_files/2301.02189v1.pdf.txt +0 -0
  24. CtE0T4oBgHgl3EQfQQAs/content/tmp_files/load_file.txt +0 -0
  25. D9E1T4oBgHgl3EQfWgQs/vector_store/index.pkl +3 -0
  26. GNE0T4oBgHgl3EQfhQF8/content/tmp_files/2301.02429v1.pdf.txt +2342 -0
  27. GNE0T4oBgHgl3EQfhQF8/content/tmp_files/load_file.txt +0 -0
  28. H9E1T4oBgHgl3EQfXwRb/content/2301.03130v1.pdf +3 -0
  29. H9E1T4oBgHgl3EQfXwRb/vector_store/index.faiss +3 -0
  30. H9E1T4oBgHgl3EQfXwRb/vector_store/index.pkl +3 -0
  31. HNE4T4oBgHgl3EQfgg1T/content/tmp_files/2301.05117v1.pdf.txt +0 -0
  32. HNE4T4oBgHgl3EQfgg1T/content/tmp_files/load_file.txt +0 -0
  33. INE0T4oBgHgl3EQfhwHS/vector_store/index.faiss +3 -0
  34. INE0T4oBgHgl3EQfhwHS/vector_store/index.pkl +3 -0
  35. JtFLT4oBgHgl3EQfKS8v/vector_store/index.pkl +3 -0
  36. K9E4T4oBgHgl3EQf8A5c/content/tmp_files/2301.05344v1.pdf.txt +653 -0
  37. K9E4T4oBgHgl3EQf8A5c/content/tmp_files/load_file.txt +380 -0
  38. KNAyT4oBgHgl3EQff_hn/content/tmp_files/2301.00350v1.pdf.txt +894 -0
  39. KNAyT4oBgHgl3EQff_hn/content/tmp_files/load_file.txt +375 -0
  40. LtAzT4oBgHgl3EQfyv51/content/2301.01758v1.pdf +3 -0
  41. LtAzT4oBgHgl3EQfyv51/vector_store/index.faiss +3 -0
  42. LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf +3 -0
  43. LtE1T4oBgHgl3EQfZAR1/vector_store/index.faiss +3 -0
  44. LtE1T4oBgHgl3EQfZAR1/vector_store/index.pkl +3 -0
  45. LtFQT4oBgHgl3EQfUjZg/content/2301.13297v1.pdf +3 -0
  46. LtFQT4oBgHgl3EQfUjZg/vector_store/index.faiss +3 -0
  47. LtFQT4oBgHgl3EQfUjZg/vector_store/index.pkl +3 -0
  48. MdE2T4oBgHgl3EQfBQZc/content/tmp_files/2301.03600v1.pdf.txt +0 -0
  49. MdE2T4oBgHgl3EQfBQZc/content/tmp_files/load_file.txt +0 -0
  50. MtE1T4oBgHgl3EQfZQTY/content/2301.03149v1.pdf +3 -0
.gitattributes CHANGED
@@ -603,3 +603,62 @@ J9E1T4oBgHgl3EQfGQOR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
603
  TtE3T4oBgHgl3EQfzwsF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
604
  YtE4T4oBgHgl3EQfOAxw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
605
  s9AyT4oBgHgl3EQfmfj8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603
  TtE3T4oBgHgl3EQfzwsF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
604
  YtE4T4oBgHgl3EQfOAxw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
605
  s9AyT4oBgHgl3EQfmfj8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
606
+ s9AyT4oBgHgl3EQfmfj8/content/2301.00474v1.pdf filter=lfs diff=lfs merge=lfs -text
607
+ a9E1T4oBgHgl3EQfxAV3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
608
+ LtAzT4oBgHgl3EQfyv51/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
609
+ MtE1T4oBgHgl3EQfZQTY/content/2301.03149v1.pdf filter=lfs diff=lfs merge=lfs -text
610
+ o9AyT4oBgHgl3EQfY_f6/content/2301.00217v1.pdf filter=lfs diff=lfs merge=lfs -text
611
+ TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf filter=lfs diff=lfs merge=lfs -text
612
+ s9AyT4oBgHgl3EQfZ_c4/content/2301.00233v1.pdf filter=lfs diff=lfs merge=lfs -text
613
+ o9AyT4oBgHgl3EQfY_f6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
614
+ z9E2T4oBgHgl3EQfiAeb/content/2301.03954v1.pdf filter=lfs diff=lfs merge=lfs -text
615
+ e9E4T4oBgHgl3EQfRAxR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
616
+ MtE1T4oBgHgl3EQfZQTY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
617
+ RtE3T4oBgHgl3EQfywtH/content/2301.04722v1.pdf filter=lfs diff=lfs merge=lfs -text
618
+ 6tAzT4oBgHgl3EQf-P5_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
619
+ cdFST4oBgHgl3EQfDjjb/content/2301.13711v1.pdf filter=lfs diff=lfs merge=lfs -text
620
+ cdFST4oBgHgl3EQfDjjb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
621
+ ndFKT4oBgHgl3EQfFS0k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
622
+ XdAzT4oBgHgl3EQf1v7O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
623
+ ndFKT4oBgHgl3EQfFS0k/content/2301.11719v1.pdf filter=lfs diff=lfs merge=lfs -text
624
+ QNFQT4oBgHgl3EQfZDbf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
625
+ QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf filter=lfs diff=lfs merge=lfs -text
626
+ RtE3T4oBgHgl3EQfywtH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
627
+ XNE2T4oBgHgl3EQfDwZ0/content/2301.03628v1.pdf filter=lfs diff=lfs merge=lfs -text
628
+ zNFIT4oBgHgl3EQf1ysJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
629
+ zNFIT4oBgHgl3EQf1ysJ/content/2301.11374v1.pdf filter=lfs diff=lfs merge=lfs -text
630
+ bdAzT4oBgHgl3EQf2_4K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
631
+ LtAzT4oBgHgl3EQfyv51/content/2301.01758v1.pdf filter=lfs diff=lfs merge=lfs -text
632
+ XNE2T4oBgHgl3EQfDwZ0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
633
+ LtFQT4oBgHgl3EQfUjZg/content/2301.13297v1.pdf filter=lfs diff=lfs merge=lfs -text
634
+ s9AyT4oBgHgl3EQfZ_c4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
635
+ ttE0T4oBgHgl3EQfsAEn/content/2301.02572v1.pdf filter=lfs diff=lfs merge=lfs -text
636
+ QNAyT4oBgHgl3EQf7voS/content/2301.00842v1.pdf filter=lfs diff=lfs merge=lfs -text
637
+ H9E1T4oBgHgl3EQfXwRb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
638
+ qdAzT4oBgHgl3EQfrP0p/content/2301.01640v1.pdf filter=lfs diff=lfs merge=lfs -text
639
+ ONE2T4oBgHgl3EQfrAiX/content/2301.04045v1.pdf filter=lfs diff=lfs merge=lfs -text
640
+ CdAyT4oBgHgl3EQfR_ex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
641
+ LtFQT4oBgHgl3EQfUjZg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
642
+ Z9E0T4oBgHgl3EQf4QJC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
643
+ LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf filter=lfs diff=lfs merge=lfs -text
644
+ Z9E0T4oBgHgl3EQf4QJC/content/2301.02735v1.pdf filter=lfs diff=lfs merge=lfs -text
645
+ ONE2T4oBgHgl3EQfrAiX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
646
+ 3tAzT4oBgHgl3EQf9f42/content/2301.01919v1.pdf filter=lfs diff=lfs merge=lfs -text
647
+ LtE1T4oBgHgl3EQfZAR1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
648
+ H9E1T4oBgHgl3EQfXwRb/content/2301.03130v1.pdf filter=lfs diff=lfs merge=lfs -text
649
+ eNFST4oBgHgl3EQfFjgg/content/2301.13718v1.pdf filter=lfs diff=lfs merge=lfs -text
650
+ e9E4T4oBgHgl3EQfRAxR/content/2301.04986v1.pdf filter=lfs diff=lfs merge=lfs -text
651
+ U9AyT4oBgHgl3EQf8vpk/content/2301.00861v1.pdf filter=lfs diff=lfs merge=lfs -text
652
+ eNFST4oBgHgl3EQfFjgg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
653
+ YtE4T4oBgHgl3EQfOAxw/content/2301.04961v1.pdf filter=lfs diff=lfs merge=lfs -text
654
+ gNE0T4oBgHgl3EQf6QIN/content/2301.02760v1.pdf filter=lfs diff=lfs merge=lfs -text
655
+ z9E2T4oBgHgl3EQfiAeb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
656
+ 3tAzT4oBgHgl3EQf9f42/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
657
+ XdE2T4oBgHgl3EQfYgeB/content/2301.03855v1.pdf filter=lfs diff=lfs merge=lfs -text
658
+ m9FAT4oBgHgl3EQfch31/content/2301.08565v1.pdf filter=lfs diff=lfs merge=lfs -text
659
+ INE0T4oBgHgl3EQfhwHS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
660
+ ldFJT4oBgHgl3EQfZSxF/content/2301.11530v1.pdf filter=lfs diff=lfs merge=lfs -text
661
+ gNE0T4oBgHgl3EQf6QIN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
662
+ XdE2T4oBgHgl3EQfYgeB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
663
+ WNAzT4oBgHgl3EQfKPsc/content/2301.01092v1.pdf filter=lfs diff=lfs merge=lfs -text
664
+ odAzT4oBgHgl3EQfAPrQ/content/2301.00924v1.pdf filter=lfs diff=lfs merge=lfs -text
3NAyT4oBgHgl3EQfo_gV/content/tmp_files/2301.00515v1.pdf.txt ADDED
@@ -0,0 +1,1071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Ferroelectrically tunable magnetic and topological multistates in thin films of
2
+ MnBi2Te4 family
3
+ Guoliang Yu,1 Chuhan Tang,1 Zhiqiang Tian,1 Ziming Zhu,1 Anlian Pan,2 Mingxing Chen,1, ∗ and Xing-Qiu Chen3, 4
4
+ 1Key Laboratory for Matter Microstructure and Function of Hunan Province,
5
+ Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,
6
+ School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
7
+ 2Key Laboratory for Micro-Nano Physics and Technology of Hunan Province,
8
+ College of Materials Science and Engineering, Hunan University, Changsha 410082, China
9
+ 3Shenyang National Laboratory for Materials Science, Institute of Metal Research,
10
+ Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China.
11
+ 4School of Materials Science and Engineering, University of Science and
12
+ Technology of China, 110016 Shenyang, People’s Republic of China.
13
+ (Dated: January 3, 2023)
14
+ Ferroelectric control of two-dimensional magnetism is promising in fabricating electronic devices
15
+ with high speed and low energy consumption. The newly discovered layered MnBi2Te4(Bi2Te3)n
16
+ and their Sb counterparts exhibit A-type antiferromagnetism with intriguing topological proper-
17
+ ties. Here, we propose to obtain tunable magnetic multistates in their thin films by ferroelectrically
18
+ manipulating the interlayer magnetic couplings (IMCs) based on the Heisenberg model and first-
19
+ principles calculations. Our strategy relies on that interfacing the thin films with appropriate ferro-
20
+ electric materials can switch on/off an interlayer hopping channel between Mn-eg orbitals as the po-
21
+ larizations reversed, thus resulting in a switchable interlayer antiferromagnetism-to-ferromagnetism
22
+ transition. On the other hand, the interface effect leads to asymmetric energy barrier heights for
23
+ the two polarization states. These properties allow us to build ferroelectrically switchable triple
24
+ and quadruple magnetic states with multiple Chern numbers in thin films. Our study reveals that
25
+ ferroelectrically switchable magnetic and topological multistates in MnBi2Te4 family can be ob-
26
+ tained by rational design for multifunctional electronic devices, which can also be applied to other
27
+ two-dimensional magnetic materials.
28
+ I.
29
+ INTRODUCTION
30
+ Two-dimensional (2D) magnetic materials provide an
31
+ ideal platform to explore novel magnetic and electronic
32
+ properties1–7. The delicate interlayer exchange couplings
33
+ in these systems enable a variety of methods of manipu-
34
+ lating their magnetism. For instance, recent studies re-
35
+ vealed that the A-type antiferromagnetic (AFM) CrI3
36
+ bilayer could be tuned into ferromagnetic (FM) by ex-
37
+ ternal electric field8,9, electrostatic doping10,11, and in-
38
+ terface engineering12–17. Twisting the bilayer may yield
39
+ non-collinear magnetism18–20.
40
+ Recently,
41
+ the
42
+ MnBi2Te4
43
+ family,
44
+ i.e.,
45
+ MnBi2Te4(Bi2Te3)n and MnSb2Te4(Bi2Te3)n, which are
46
+ hereafter referred to as MAT, have much great attention
47
+ due to the coexistence and interesting interplay of
48
+ intrinsic magnetism and band topology in them21–37.
49
+ This series of materials also have a layered van der
50
+ Waals (vdW) structure with an A-type AFM structure
51
+ as revealed by experiments38–41, which preserves the
52
+ combination of the time-reversal and a half lattice
53
+ translation symmetry. As a result, many of them show
54
+ nontrivial topological properties such as topological
55
+ insulators21 and axion insulators22.
56
+ Moreover, the
57
+ systems can be turned into Weyl semimetals as the
58
+ interlayer couplings become ferromagnetic22,23,36.
59
+ The A-type AFM coupling in MAT yields unusual
60
+ even-odd layer-number dependent magnetism for their
61
+ thin films35,42,43. The even-number (even-N) systems are
62
+ expected to have no net magnetization. Whereas those
63
+ with odd-number (odd-N) layers have uncompensated
64
+ magnetization. This difference can lead to distinct topo-
65
+ logical properties for them. For instance, the thin films
66
+ of MnBi2Te4 with odd-N septuple layers are quantum
67
+ anomalous Hall insulators. However, those with even-N
68
+ layers have a zero Chern number42. Instead, their topo-
69
+ logical properties can be characterized by the so-called
70
+ pseudospin Chern number44. Due to the weak interlayer
71
+ interaction, small magnetic fields could induce spin-flip
72
+ transitions, giving rise to an AFM-to-FM transition in
73
+ the IMCs35,40.
74
+ Chemical dopings45,46 and antisite de-
75
+ fects47–51 can also be used to manipulate the IMCs in
76
+ these systems, although they may complicate the nature
77
+ of the surface states.
78
+ First-principles calculations sug-
79
+ gest that the AFM double-septuple MnBi2Te4 could be
80
+ driven into a Chern insulator with a high Chern number
81
+ under electric fields52.
82
+ In this work, we propose to ferroelectrically tune the
83
+ IMCs in MnBi2Te4 thin films for magnetic multistates by
84
+ interface, which is desired for memory devices with high
85
+ density storage, high speed, and low power consump-
86
+ tion. We reveal that hole doping can lead to an interlayer
87
+ AFM-to-FM transition in MAT bilayers based on the un-
88
+ derstanding of the IMCs using the Heisenberg model. We
89
+ provide a guideline for designing ferroelectric substrates
90
+ that may induce transitions in the interlayer exchange
91
+ couplings, i.e., polarization dependent IMCs, as demon-
92
+ strated by our first-principles calculations. Moreover, we
93
+ arXiv:2301.00515v1 [cond-mat.mtrl-sci] 2 Jan 2023
94
+
95
+ 2
96
+ find that the interface effect results in symmetry breaking
97
+ in the two polarization states of the FE substrate. This
98
+ asymmetry allows us to design switchable magnetic mul-
99
+ tistates in sandwich structures made of MnBi2Te4 mul-
100
+ tilayers and 2D ferroelectric (FE) materials, which also
101
+ exhibit distinct electronic and topological properties.
102
+ We begin by presenting the concept of FE tuning of
103
+ IMCs in MAT bilayers, which is shown in Fig. 1. In these
104
+ systems, each Mn atom is coordinated with six chalcogen
105
+ atoms, which form a distorted octahedron. The Mn-3d
106
+ orbitals are split into triply degenerate t2g states and the
107
+ doubly degenerate eg states due to the octahedral ligand
108
+ field. The states are further split due to the magnetic
109
+ exchange interaction between the Mn atoms. As a re-
110
+ sult, the majority states of the t2g and eg orbitals are
111
+ fully occupied by the five d electrons of the Mn2+ ions
112
+ (see Fig. 1), resulting in a high spin state for the Mn2+
113
+ ions.
114
+ Like the 2D magnetic bilayers reported by Refs
115
+ 31 and 53, this type of occupation favors AFM IMCs
116
+ between the Mn+2 ions, which are mediated by the p-
117
+ orbitals of the nonmetallic atoms (denoted by {p . . . p}).
118
+ Whereas FM IMCs are energetically unfavorable because
119
+ the e↑
120
+ g − {p . . . p} − e↑
121
+ g hopping between the Mn-d or-
122
+ bitals of adjacent layers is prohibited31,53,54.
123
+ For our
124
+ systems, reducing the occupation of the d orbitals makes
125
+ the e↑
126
+ g − {p . . . p} − e↑
127
+ g hopping channel energetically fa-
128
+ vorable, thus enhancing the stability of the FM IMCs.
129
+ Indeed, our DFT calculations indicate that all the MAT
130
+ bilayers undergo the AFM-to-FM transition by small hole
131
+ dopings (see Fig. 1c and Fig. S1), which is also expected
132
+ for their multilayers.
133
+ The IMCs in MAT-2L can be understood using the
134
+ following spin Hamiltonian.
135
+ H =
136
+
137
+ i,j
138
+ Jt
139
+ ∥Si · Sj +
140
+
141
+ m,n
142
+ Jb
143
+ ∥Sm · Sn +
144
+
145
+ i,m
146
+ J⊥Si · Sm, (1)
147
+ where J∥ and J⊥ denote the intra- and interlayer ex-
148
+ change interactions between the Mn ions, respectively.
149
+ The intralayer ones are denoted by Jt
150
+ ∥ for the top layer
151
+ and Jb
152
+ ∥ for the bottom layer, for which only the first
153
+ nearest-neighbor interactions are taken into account. Jt
154
+
155
+ are equal to Jb
156
+ ∥ for the freestanding MAT-2L. Whereas
157
+ for the interlayer ones, the second nearest neighbors are
158
+ included.
159
+ For the bilayers without doping, we obtain
160
+ positive J1st
161
+
162
+ and negative J2nd
163
+
164
+ (see Fig. 1d, Fig. S2 and
165
+ Table S1).
166
+ Note that the magnitude of J1st
167
+
168
+ is larger
169
+ than that of J2nd
170
+
171
+ . So, the sum of J1st
172
+
173
+ and J2nd
174
+
175
+ , i.e.,
176
+ ¯
177
+ J⊥ = J1st
178
+
179
+ + J2nd
180
+
181
+ , is positive, which gives rise to AFM
182
+ IMCs. Introducing hole doping suppresses J1st
183
+
184
+ while en-
185
+ hances J2nd
186
+
187
+ . As a result, ¯
188
+ J⊥ decreases with increasing
189
+ of the hole doping and eventually changes its sign across
190
+ the AFM-to-FM transition (see Fig. 1d).
191
+ The hole doping over the MAT bilayers can be achieved
192
+ via interfacial charge transfer which requires suitable
193
+ band alignments between them and the substrates.
194
+ When their bands are in the type-I or type-II align-
195
+ ment, interfacial charge transfer can be negligible.
196
+ In
197
+ (b)
198
+ MAT-2L(FM)/P↓
199
+ Mn1
200
+ t2g
201
+ eg
202
+ EF
203
+ t2g
204
+ eg
205
+ P↓
206
+ e
207
+ CBM
208
+ VBM
209
+ Mn2
210
+ t2g
211
+ eg
212
+ t2g
213
+ eg
214
+ MAT-2L(AFM)/P↑
215
+ (a)
216
+ Mn1
217
+ t2g
218
+ eg
219
+ EF
220
+ t2g
221
+ eg
222
+ Mn2
223
+ t2g
224
+ eg
225
+ t2g
226
+ eg
227
+ e
228
+ P↑
229
+ CBM
230
+ VBM
231
+ (c)
232
+ 0.4
233
+ 0
234
+ -0.4
235
+ 0.2
236
+ -0.2
237
+ -0.6
238
+ ∆EFM-AFM (meV)
239
+ n (hole/Mn pair)
240
+ 0
241
+ 0.02
242
+ 0.04
243
+ 0.06
244
+ AFM
245
+ FM
246
+ MnBi2Te4-2L
247
+ MnSb2Te4-2L
248
+ (d)
249
+ n (hole/Mn pair)
250
+ 0
251
+ 0.02
252
+ 0.04
253
+ 0.06
254
+ AFM
255
+ FM
256
+ MnSb2Te4-2L
257
+ 0.08
258
+ 0
259
+ -0.08
260
+ 0.04
261
+ -0.04
262
+ -0.12
263
+ n (hole/Mn pair)
264
+ 0
265
+ 0.02
266
+ 0.04
267
+ 0.06
268
+ AFM
269
+ FM
270
+ J⊥ (meV)
271
+ MnBi2Te4-2L
272
+ 1st
273
+ J⊥
274
+ 2nd
275
+ J⊥
276
+ J⊥
277
+ FIG. 1. Interface engineering of the IMCs in MAT bilayers.
278
+ (a) Spin states of Mn ions for the AFM interlayer coupling. In
279
+ the presence of a substrate that has a type-I or type-II band
280
+ alignment with the bilayer, the IMCs remain AFM. (b) The
281
+ IMCs becomes FM when there is a type-III band alignment
282
+ between them so that the CBM of the substrate lower than
283
+ the VBM of the MAT bilayer. In (b), the white circles denote
284
+ hole dopings to the Mn-eg orbital. In (a, b), arrows denote
285
+ spins. The dark and light red curves with an arrow denote
286
+ hopping channels.
287
+ The one marked by a cross means that
288
+ electron hoppings are prohibited. We use a FE material as
289
+ the substrate, whose polarizations are labeled by P. P ↑ and
290
+ P ↓ represent the up and down polarizations, respectively. (c)
291
+ Energy difference between the FM and AFM states as a func-
292
+ tion of hole doping for freestanding MnBi2Te4 and MnSb2Te4
293
+ bilayers. ∆E = EF M − EAF M. (d) Doping dependence of J⊥
294
+ for the two systems.
295
+ ¯
296
+ J⊥ = J1st
297
+
298
+ + J2nd
299
+
300
+ .
301
+ these cases, the IMCs are most likely to be AFM. In
302
+ contrast, electrons will be transferred from the MAT bi-
303
+ layer to the substrate when they are in the type-III band
304
+ alignment that the valence band maximum (VBM) of
305
+ the MAT bilayer are higher than the conduction band
306
+ minimum (CBM) of the substrate.Namely, hole doping
307
+ is introduced to the MAT bilayer, which is desired for
308
+ the AFM-to-FM transition. Ferroelectrically switchable
309
+ IMCs may be achieved if a 2D FE materials serves as the
310
+ substrate so that reversing its polarizations gives rise to
311
+ a switching of the band alignment from type-III to type-I
312
+ (II) or vice versa (see Fig. 1). However, one can expect
313
+ that the transferred electrons mainly come from the in-
314
+ terfacial MAT layer because of the vdW-type interlayer
315
+ bonding.Therefore, the spin-flipping most likely happen
316
+ to the interfacial MAT layer rather than those further
317
+ away from the substrate.
318
+ We now come to first-principles calculations of the het-
319
+ erostructures of MAT thin films and 2D FE materials,
320
+ which were performed using the Vienna Ab initio Sim-
321
+ ulation Package55. We choose In2Se3 monolayer as the
322
+ substrate, which has been experimentally proved since
323
+ its prediction in 201756–58.
324
+ Their heterostructures are
325
+ built by slightly adjusting the lattice of In2Se3 (The lat-
326
+ tice mismatch between them is small). The pseudopoten-
327
+ tials were constructed by the projector augmented wave
328
+ method59,60.
329
+ An 11 × 11 × 1 and 21 × 21 × 1 Γ-
330
+
331
+ 3
332
+ centered k-mesh were used to sample the 2D Brillouin
333
+ zone for structural relaxation and electronic structure
334
+ calculations, respectively. The plane-wave energy cutoff
335
+ is set to 400 eV for all calculations.
336
+ A 20 ˚A vacuum
337
+ region was used between adjacent plates to avoid the
338
+ interaction between neighboring periodic images.
339
+ Van
340
+ der Waals (vdW) dispersion forces between the adsorbate
341
+ and the substrate were accounted for through the DFT-
342
+ D361. Different vdW methods/functionals such as DFT-
343
+ D2 and optPBE-vdW were also used for comparison62–64.
344
+ The systems were fully relaxed until the residual force on
345
+ each atom is less than 0.01 eV/˚A. The DFT+U method65
346
+ is used to treat electron correlations due to the partially
347
+ filled d-orbital of Mn for which a value of 5.34 eV is
348
+ used21. Our results on the structural properties, mag-
349
+ netism, and band structures of the free-standing MAT
350
+ films are consistent with previous studies21,32,36.
351
+ The
352
+ kinetic pathways of transitions between different polar-
353
+ ization states are calculated using the climbing image
354
+ nudge elastic band (CI-NEB) method66,67. The topolog-
355
+ ical properties calculations were done using the WAN-
356
+ NIER9068 and WannierTools package69.
357
+ We have performed careful calculations over a number
358
+ of stacking configurations (see Fig. S3, and Table S2).
359
+ The lowest energy configuration is shown in Fig. 2a, in
360
+ which the interfacial Se and Te are in the hollow sites.
361
+ The stacking order is the same as the one for MnBi2Te4
362
+ monolayer on In2Se370, which shows up for all MAT bi-
363
+ layers on In2Se3. Table I summarizes the stability of the
364
+ two magnetic states for MAT bilayers on In2Se3 mono-
365
+ layer in different polarization states. One can see that for
366
+ all the MAT bilayers the IMCs remain AFM when the
367
+ polarization is pointing toward the interface, but become
368
+ FM as the polarization is reversed. The trend is indepen-
369
+ dent of the vdW functionals/methods (Table S3). Below
370
+ we focus on the electronic structure of MnBi2Te4 bilayer
371
+ on In2Se3 monolayer, i.e., MnBi2Te4-2L/In2Se3, which
372
+ are shown in Figs. 2b-d. Those for all other MAT systems
373
+ are shown in Figs.S4-S6 since they show pretty much the
374
+ same trend as MnBi2Te4-2L/In2Se3. The Fermi level is
375
+ located in the band gap for the AFM state. Whereas for
376
+ the FM state, the conduction band of In2Se3 is shifted
377
+ down into the valence band of MnBi2Te4-2L such that
378
+ the Fermi level is crossing the valence band of the latter.
379
+ This feature favors interfacial charge transfer. Fig. 2d de-
380
+ picts the differential charge density for the two magnetic
381
+ states, which indicates that there is almost negligible in-
382
+ terfacial charge transfer between the MnBi2Te4-2L and
383
+ In2Se3 for the AFM state. In contrast, the charge trans-
384
+ fer is much more significant for the FM state than that
385
+ for the AFM state.
386
+ A close inspection finds that the
387
+ charge density on the Mn atoms in the interfacial layer
388
+ becomes positive. This confirms the picture of hole dop-
389
+ ing over this layer and opens up the e↑
390
+ g − {p . . . p} − e↑
391
+ g
392
+ hopping chanel.
393
+ Consequently, the FM state becomes
394
+ energetically favorable for this type of band structure.
395
+ Thus, the FE In2Se3 monolayer fits the criterion for a
396
+ substrate that gives switchable band alignments between
397
+ MBT-2L(FM)/IS(↓)
398
+ 0.00
399
+ 0.04
400
+ -0.04
401
+ ∆ρ (eÅ)
402
+ MBT-2L(AFM)/IS(↑)
403
+ 0.00
404
+ 0.04
405
+ -0.04
406
+ ∆ρ (eÅ)
407
+ 0
408
+ 10
409
+ 20
410
+ 30
411
+ 40
412
+ 50
413
+ Z(Å)
414
+ P
415
+ d
416
+ P
417
+ d
418
+ (a)
419
+ a
420
+ c
421
+ (d)
422
+ Energy (eV)
423
+ 1
424
+ 0
425
+ -1
426
+ Μ
427
+ Γ
428
+ Κ
429
+ Μ
430
+ Γ
431
+ ���
432
+ ���
433
+ ���
434
+
435
+ (c)
436
+ (b)
437
+ MnBi2Te4-2L(AFM)/In2Se3(↑)
438
+ Μ
439
+ Γ
440
+ Κ
441
+ Μ
442
+ In2Se3
443
+ MnBi2Te4-2L
444
+
445
+ M
446
+ K
447
+ K'
448
+ Energy (eV)
449
+ 1
450
+ 0
451
+ -1
452
+ MnBi2Te4-2L(FM)/In2Se3(↓)
453
+ Mn
454
+ Bi
455
+ Te
456
+ In
457
+ Se
458
+ a
459
+ b
460
+ FIG. 2.
461
+ Ferroelectric control of AFM-to-FM transition in
462
+ MnBi2Te4 bilayers. (a) Geometric structures of MnBi2Te4-
463
+ 2L/In2Se3 heterostructures. Left panel shows the top view
464
+ of the lowest energy configuration.
465
+ Middle and right pan-
466
+ els show the side view of the structures with different po-
467
+ larizations.
468
+ The thin purple arrows denote spins of the
469
+ Mn ions. While the thick blue arrows denote polarizations
470
+ of the FE substrate.
471
+ (b, c) Band structures for the two
472
+ states in (a), respectively, i.e., MnBi2Te4-2L(AFM)/In2Se3(↑)
473
+ and MnBi2Te4-2L(FM)/In2Se3(↓).(d) Planar-averaged differ-
474
+ ential charge density ∆ρ(z) for the two states shown in (b)
475
+ and (c).
476
+ The insets show the density contour at 0.00015
477
+ e/˚A3. Here, abbreviations (MBT-2L(AFM)/IS(↑) and MBT-
478
+ 2L(FM)/IS(↓)) are used by incorporating the IMCs of the
479
+ MnBi2Te4-2L and the polarization states of In2Se3 for sim-
480
+ plicity.
481
+ type-II and type-III with MnBi2Te4-2L. Moreover, the
482
+ trend that the charge transfer mainly happened to the
483
+ interfacial layer also suggests that the spin-flipping ac-
484
+ companied by the AFM-FM transition takes place to the
485
+ interfacial MnBi2Te4 layer. For the trilayers and quad-
486
+ layers, our calculations find the same trend in the spin-
487
+ flipping as the bilayers (Figs. S7 and S8).
488
+ On the other hand, the interface has a significant im-
489
+ pact on the polarization states of the FE In2Se3 mono-
490
+ layer by introducing a coupling between its polarizations
491
+ and the local dipoles of MAT. This coupling breaks the
492
+ symmetry of the two polarization states, that is, it gives
493
+ rise to asymmetric barrier heights for the two polariza-
494
+ tion states. Fig. 3a shows that the state with the po-
495
+ larizations pointing toward the MnBi2Te4 bilayer has a
496
+ barrier height of about 152 meV (∆GT ), which is about
497
+ 68 meV lower than the one with polarizations pointing
498
+ away from the interface (∆GA). Therefore, the critical
499
+ electric fields needed to flip the polarizations for the for-
500
+ mer (ET ) is smaller than that for the latter (EA), i.e.,
501
+ ET < EA.
502
+ The asymmetric barrier heights along with the unique
503
+ polarization-dependent IMCs allow designing ferroelec-
504
+
505
+ 4
506
+ FE1
507
+ FE1
508
+ FE2
509
+ FE2
510
+ MBT/P↑
511
+ MBT/P↓
512
+ (c)
513
+ 0
514
+ 200
515
+ 100
516
+ 300
517
+ Energy (meV)
518
+ 400
519
+ Q2
520
+ Q3
521
+ Q4
522
+ Q1
523
+ Q1
524
+ (e)
525
+ 153
526
+ 220
527
+ 307
528
+ 220
529
+ 153
530
+ 243
531
+ E↓
532
+ E↑
533
+ E↓
534
+ E↑
535
+ E↑
536
+ E↓
537
+ P
538
+ P
539
+ (a)
540
+ 0
541
+ 200
542
+ 100
543
+ 250
544
+ Energy (meV)
545
+ 50
546
+ 150
547
+ MBT-2L/IS(↓)
548
+ MBT-2L/IS(↑)
549
+ E↓ > E2
550
+ A
551
+ Q1
552
+ P
553
+ P
554
+ Q2
555
+ P
556
+ P
557
+ E1
558
+ T < E↓ < E2
559
+ A
560
+ E↑ > E1
561
+ A
562
+ Q4
563
+ P
564
+ P
565
+ Q3
566
+ P
567
+ P
568
+ E↑ > E2
569
+ T
570
+ E1
571
+ A < E↑ < E2
572
+ T
573
+ E↓ > E1
574
+ T
575
+ (d)
576
+ ET < E↓ < EA
577
+ (b)
578
+ T1
579
+ T2
580
+ T3
581
+ E↑ > E A
582
+ E↓ > E A
583
+ ET < E↑ < EA
584
+ P
585
+ P
586
+ P
587
+ P
588
+ P
589
+ P
590
+ ΔGT
591
+ (ET)
592
+ ΔGA
593
+ (EA)
594
+ ΔG1
595
+ T
596
+ (E1
597
+ T)
598
+ ΔG1
599
+ A
600
+ (E1
601
+ A)
602
+ ΔG2
603
+ T
604
+ (E2
605
+ T)
606
+ ΔG2
607
+ A
608
+ (E2
609
+ A)
610
+ FIG. 3. Magnetic multistates in MnBi2Te4 thin films. (a) Kinetic pathway of the FE phase transforming in MnBi2Te4-2L/In2Se3
611
+ (abbreviated as MBT-2L/IS). Interface effects lead to asymmetric barrier heights for the two polarization states, which are
612
+ labelled as ∆GT and ∆GA as the polarization point toward and away from the interface, respectively. Correspondingly, the
613
+ critical electric fields are labelled as ET and EA, respectively. (b) Triple magnetic states in In2Se3/MnBi2Te4-3L/In2Se3 and
614
+ schematic FE transforming by controlling the external electric field. E↑ (E↓) represents the external electric fields along the z
615
+ (-z) axis. (c) Requirement of energy barriers of the two different FE layers for quadruple magnetic states in sandwich structure
616
+ FE1/MBT-4L/FE2, ∆GT
617
+ 1 < ∆GA
618
+ 1 < ∆GT
619
+ 2 < ∆GA
620
+ 2 . ∆GT
621
+ 1 and ∆GA
622
+ 1 are for one FE layer (FE1), which is colored in blue.
623
+ Critical electric fields needed to overcome these barriers are denoted as ET
624
+ 1 and EA
625
+ 1 ,respectively.
626
+ ∆GT
627
+ 2 and ∆GA
628
+ 2 are for
629
+ the other layer (FE2) colored in red, for which the critical fields are ET
630
+ 2 and EA
631
+ 2 , respectively. (d) Schematic illustration of
632
+ quadruple magnetic states in FE1/MnBi2Te4-4L/FE2 and transforming between the states under electric fields. (e) Kinetic
633
+ pathways of the quadruple states in In2SSe2/MBT-4L/In2Se3 during FE transforming. The convention of labeling spins of the
634
+ Mn+2 ions and the polarizations of In2Se3 is the same as in Fig. 2.
635
+ trically switchable magnetic multistates for MAT multi-
636
+ layers. We illustrate the concept in MnBi2Te4 trilayers
637
+ and quadlayers, i.e., MnBi2Te4-3L and MnBi2Te4-4L. We
638
+ first sandwich MnBi2Te4-3L in between two In2Se3 layers
639
+ (Fig. 3b). Suppose that both the top and bottom In2Se3
640
+ layers have up polarizations, which can be achieved by
641
+ applying external electric fields anyway.
642
+ According to
643
+ the polarization dependent IMCs discussed above, spins
644
+ in the MnBi2Te4 layer next to the top In2Se3 layer will be
645
+ flipped so that it will beferromagnetically coupled with
646
+ the underneath MnBi2Te4 layer. We label this magnetic
647
+ state as T1. Then one can apply an electrical field E↓
648
+ antiparallel to the z axis that is larger than the critical
649
+ field overcoming ∆GT but smaller than the critical field
650
+ required to overcome ∆GA, i.e., ET < E↓ < EA. As a re-
651
+ sult, the polarizations in the bottom layer will be reversed
652
+ while those in the top layer will remain unchanged. Then,
653
+ the magnetization of the bottom MnBi2Te4 layer will be
654
+ flipped to be ferromagnetically coupled with the adjacent
655
+ MnBi2Te4 layer, i.e., T2 in Fig. 3b. Further increasing
656
+ the electric field such that E↓ > EA will also drive the
657
+ polarizations of the top In2Se3 layer to be flipped. Cor-
658
+ respondingly, the magnetizations of the top MnBi2Te4
659
+ layer will be flipped, for which the magnetic state is la-
660
+ belled as T3. Now, an electric field along the z axis, i.e.,
661
+ E↑, will first force the polarization of the bottom In2Se3
662
+ to be reversed when ET < E↑ < EA. As a result, the
663
+ system will flow into T2.
664
+ Futher enhancing E↑ to the
665
+ level that E↑ > EA will drive the system back into T1.
666
+ So the whole system have triple magnetic states, which
667
+ can be ferroelectrically controlled. Likewise, sandwiching
668
+ thicker films than triple layers by the same FE layers also
669
+ gives rise to triple magnetic states.
670
+ More magnetic states can be obtained by sandwiching
671
+ the MAT thin films in between two different FE layers
672
+ with a special combination of the barrier heights. Such a
673
+ combination requires that the highest barrier for one FE
674
+ monolayer should be lower than the lowest barrier for the
675
+ other FE layer. We depict the barrier heights for the two
676
+ different FE layers in Fig3c, ∆GT
677
+ 1 and ∆GA
678
+ 1 are for one
679
+
680
+ 5
681
+ TABLE I. Energy difference between the interlayer FM and
682
+ AFM states for freestanding MAT bilayers and their bilayers
683
+ supported by In2Se3 monolayer in different polarization states
684
+ (denoted by arrows). ∆E = EF M − EAF M, EF M (EAF M)
685
+ represents the total energy of the FM (AFM) state.
686
+ Systems
687
+ ∆E [meV/(Mn pair)]
688
+ IMCs
689
+ MnBi2Te4-2L
690
+ 0.21
691
+ AFM
692
+ MnBi2Te4-2L/In2Se3(↑)
693
+ 0.22
694
+ AFM
695
+ MnBi2Te4-2L/In2Se3(↓)
696
+ -0.16
697
+ FM
698
+ MnSb2Te4-2L
699
+ 0.39
700
+ AFM
701
+ MnSb2Te4-2L/In2Se3(↑)
702
+ 0.36
703
+ AFM
704
+ MnSb2Te4-2L/In2Se3(↓)
705
+ -0.40
706
+ FM
707
+ MnBi4Te7-2L
708
+ 0.03
709
+ AFM
710
+ MnBi4Te7-2L/In2Se3(↑)
711
+ 0.03
712
+ AFM
713
+ MnBi4Te7-2L/In2Se3(↓)
714
+ -0.01
715
+ FM
716
+ MnSb4Te7-2L
717
+ 0.06
718
+ AFM
719
+ MnSb4Te7-2L/In2Se3(↑)
720
+ 0.09
721
+ AFM
722
+ MnSb4Te7-2L/In2Se3(↓)
723
+ -0.04
724
+ FM
725
+ FE layer (FE1), to which the corresponding critical elec-
726
+ tric fields are ET
727
+ 1 and EA
728
+ 1 , respectively. Whereas ∆GT
729
+ 2
730
+ and ∆GA
731
+ 2 are for the other layer colored in red (FE2),
732
+ for which the critical fields are ET
733
+ 2 and EA
734
+ 2 , respectively.
735
+ In the case that ∆GT
736
+ 1 < ∆GA
737
+ 1 < ∆GT
738
+ 2 < ∆GA
739
+ 2 , i.e.,
740
+ ET
741
+ 1 < EA
742
+ 1 < ET
743
+ 2 < EA
744
+ 2 , a layer-by-layer flipping mech-
745
+ anism for the FE contacts can be achieved by properly
746
+ controlling the electric field. As a result, one can have
747
+ quadruple magnetic states based on the polarization-
748
+ dependent IMCs in MAT heterostructures (Fig. 3d). Our
749
+ calculations find that the barrier heights of In2Se3 and
750
+ In2SSe2 monolayers fit the above requirement for the
751
+ quadruple magnetic states. Specifically, we obtain 245
752
+ meV (∆GT
753
+ 2 ) and 308 meV (∆GA
754
+ 2 ) for In2SSe2 with po-
755
+ larizations pointing toward and away from the MnBi2Te4
756
+ layer (see Figs.
757
+ S9 and S10), respectively, which are
758
+ larger than those of In2Se3 (see Fig. 3a, 152 meV for
759
+ ∆GT
760
+ 1 and 220 meV for ∆GA
761
+ 1 ). In Fig. 3e, we show the
762
+ kinetic pathway of transforming the polarization states,
763
+ which suggests that the quadruple states are ferroelectri-
764
+ cally switchable.
765
+ The ferroelectrically tunable magnetic multistates give
766
+ rise to a variety of distinct topological properties the
767
+ MAT thin films. We perform calculations of the Chern
768
+ number (C) for the MnBi2Te4 multilayers with the mag-
769
+ netic states show in Figs. 2 and 3. For the bilayer sys-
770
+ tems, the topological properties of MnBi2Te4 remain un-
771
+ changed upon interfacing, i.e., C = 1 for the FM state
772
+ and C = 0 for the AFM state, which is also supported
773
+ by the results of edge states (Figs. S11 and S12). For
774
+ MnBi2Te4-3L, we have C = 0, -1, and 0 for T1, T2, and
775
+ T3, respectively.
776
+ Whereas for MnBi2Te4-4L, there are
777
+ three Chern numbers for the quadruple states, i.e., 1,
778
+ 0, and -1. Table II summarizes the Chern numbers for
779
+ the studied MnBi2Te4 thin films. We expect that such a
780
+ TABLE II. Chern number (C) for MnBi2Te4 multilayers with
781
+ different magnetic states. Arrows denote the magnetizations
782
+ on Mn ions.
783
+ Systems
784
+ IMCs
785
+ C
786
+ MnBi2Te4-2L
787
+ M1 (↑↓)
788
+ 0
789
+ M2 (↓↓)
790
+ -1
791
+ MnBi2Te4-3L
792
+ T1 (↓↓↑)
793
+ 0
794
+ T2 (↓↓↓)
795
+ -1
796
+ T3 (↑↓↓)
797
+ 0
798
+ MnBi2Te4-4L
799
+ Q1 (↑↑↓↑)
800
+ 1
801
+ Q2 (↑↑↓↓)
802
+ 0
803
+ Q3 (↓↑↓↓)
804
+ -1
805
+ Q4 (↓↑↓↑)
806
+ 0
807
+ ferroelectrically tunable multiplet for the Chern number
808
+ may be seen in other MAT multilayers.
809
+ In conclusion, we have proposed to ferroelectrically
810
+ tune the magnetism of MAT thin films using model and
811
+ first-principles calculations. The scheme is based on the
812
+ fact that the IMCs are strongly dependent on the oc-
813
+ cupation of d-orbitals of the Mn2+ ions. The variation
814
+ in the occupation can be controlled by interfacing the
815
+ films with a FE layer with appropriate band alignments.
816
+ We have demonstrated the concept in MAT/In2Se3 het-
817
+ erostructures by performing first-principles calculations.
818
+ We find that the interfacing effect mainly has an im-
819
+ pact on the interfacial MAT layer. Specifically, there is
820
+ spin-flipping in the interfacial layer when polarizations of
821
+ the In2Se3 are reversed, which results in ferroelectrically
822
+ switchable IMCs and an AFM-to-FM transition. On the
823
+ other hand, the interfacing effect leads to asymmetric en-
824
+ ergy barrier heights, which means that different electric
825
+ fields are needed to switch the polarizations for the two
826
+ states. We further show that this physics can be used to
827
+ build magnetic multistates in their sandwich structures.
828
+ Our calculations suggest that triple and quadruple mag-
829
+ netic states with tunable Chern number can be obtained
830
+ for MnBi2Te4 thin films by sandwiching them in between
831
+ appropriate FE layers. Our results will not only attract
832
+ experimental interest in FE control of the magnetism and
833
+ topological properties of MAT thin films, but also inspire
834
+ designing novel magnetism in other 2D materials.
835
+ Acknowledgments
836
+ We thank Haijun Zhang and Zhixin Guo for useful dis-
837
+ cussions. This work was supported by the National Nat-
838
+ ural Science Foundation of China (Grants No. 12174098,
839
+ No. 11774084, No. U19A2090 and No. 91833302) and
840
+ project supported by State Key Laboratory of Powder
841
+ Metallurgy, Central South University, Changsha, China.
842
+
843
+ 6
844
845
+ 1 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein,
846
+ R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A.
847
+ McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-
848
+ Herrero, and X. Xu, Nature 546, 270 (2017).
849
+ 2 C. Gong, Z. Li, H. Ji, A. Stern, Y. Xia, W. Bao, Y. Wang,
850
+ Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang,
851
+ Nature 546, 265 (2017).
852
+ 3 Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song,
853
+ J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu,
854
+ D. H. Cobden, J.-H. Chu, and X. Xu, Nat. Mater. 17, 778
855
+ (2018).
856
+ 4 K. S. Burch, D. Mandrus, and J.-G. Park, Nature 563, 47
857
+ (2018).
858
+ 5 C. Gong and X. Zhang, Science 363, eaav4450 (2019).
859
+ 6 L. Wang, Y. Shi, M. Liu, A. Zhang, Y.-L. Hong, R. Li,
860
+ Q. Gao, M. Chen, W. Ren, H.-M. Cheng, Y. Li, and X.-
861
+ Q. Chen, Nat. Commun. 12, 2361 (2021).
862
+ 7 J. Y. Ni, X. Y. Li, D. Amoroso, X. He, J. S. Feng, E. J.
863
+ Kan, S. Picozzi, and H. J. Xiang, Phys. Rev. Lett. 127,
864
+ 247204 (2021).
865
+ 8 B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-
866
+ Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H.
867
+ Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu,
868
+ Nat. Nanotechnol. 13, 544 (2018).
869
+ 9 R. Xu and X. Zou, J. Phys. Chem. Lett. 11, 3152 (2020).
870
+ 10 S. Jiang, L. Li, Z. Wang, K. F. Mak,
871
+ and J. Shan, Nat.
872
+ Nanotechnol. 13, 549 (2018).
873
+ 11 D. Soriano and M. I. Katsnelson, Phys. Rev. B 101, 041402
874
+ (2020).
875
+ 12 Y. Lu, R. Fei, X. Lu, L. Zhu, L. Wang, and L. Yang, ACS
876
+ Appl. Mater. Interfaces 12, 6243 (2020).
877
+ 13 H.-X. Cheng, J. Zhou, C. Wang, W. Ji, and Y.-N. Zhang,
878
+ Phys. Rev. B 104, 064443 (2021).
879
+ 14 B. Yang, B. Shao, J. Wang, Y. Li, C. Yam, S. Zhang, and
880
+ B. Huang, Phys. Rev. B 103, L201405 (2021).
881
+ 15 S. Shen, Q. Wu, Y. Dai, B. Huang, and Y. Ma, Phys. Rev.
882
+ B 104, 064446 (2021).
883
+ 16 H. Tian, C. Xu, X. Li, Y. Yang, L. Bellaiche, and D. Wu,
884
+ Phys. Rev. B 103, 125426 (2021).
885
+ 17 P. Li, X.-S. Zhou,
886
+ and Z.-X. Guo, NPJ Comput. Mater.
887
+ 8, 1 (2022).
888
+ 18 Q. Tong, F. Liu, J. Xiao,
889
+ and W. Yao, Nano Lett. 18,
890
+ 7194 (2018).
891
+ 19 T. Song, Q.-C. Sun, E. Anderson, C. Wang, J. Qian,
892
+ T. Taniguchi, K. Watanabe, M. A. McGuire, R. St¨ohr,
893
+ D. Xiao, T. Cao, J. Wrachtrup, and X. Xu, Science 374,
894
+ 1140 (2021).
895
+ 20 M. Akram, H. LaBollita, D. Dey, J. Kapeghian, O. Erten,
896
+ and A. S. Botana, Nano Lett. 21, 6633 (2021).
897
+ 21 M. Otrokov, I. Klimovskikh, H. Bentmann, D. Estyunin,
898
+ A. Zeugner, Z. Aliev, S. Gaß, A. Wolter, A. Koroleva,
899
+ A. Shikin, M. Blanco-Rey, M. Hoffmann, I. Rusinov,
900
+ A. Vyazovskaya, S. Eremeev, Y. Koroteev, V. Kuznetsov,
901
+ F. Freyse, J. S´anchez-Barriga,
902
+ and E. Chulkov, Nature
903
+ 576, 416 (2019).
904
+ 22 D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang,
905
+ and
906
+ J. Wang, Phys. Rev. Lett. 122, 206401 (2019).
907
+ 23 J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He,
908
+ W. Duan, and Y. Xu, Sci. Adv. 5, eaaw5685 (2019).
909
+ 24 Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang,
910
+ L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song,
911
+ L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan,
912
+ Y. Xu, S.-C. Zhang, X. Ma, Q.-K. Xue, and K. He, Chin.
913
+ Phys. Lett. 36, 076801 (2019).
914
+ 25 Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier,
915
+ M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang,
916
+ Z. Hao, H.-Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shi-
917
+ mada, C. Chen, Q. Liu, and C. Liu, Phys. Rev. X 9, 041038
918
+ (2019).
919
+ 26 C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu,
920
+ J. Zhang, and Y. Wang, Nat. Mater. 19, 522 (2020).
921
+ 27 Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H.
922
+ Chen, and Y. Zhang, Science 367, 895 (2020).
923
+ 28 J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen,
924
+ J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales,
925
+ and R. J.
926
+ McQueeney, Phys. Rev. Materials 3, 064202 (2019).
927
+ 29 J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu,
928
+ and
929
+ J. Wang, Natl. Sci. Rev. 7, 1280 (2020).
930
+ 30 C.
931
+ Hu,
932
+ K.
933
+ N.
934
+ Gordon,
935
+ P.
936
+ Liu,
937
+ J.
938
+ Liu,
939
+ X.
940
+ Zhou,
941
+ P. Hao, D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu,
942
+ H. Brawer, A. P. Ramirez, L. Ding, H. Cao, Q. Liu,
943
+ D. Dessau, and N. Ni, Nat. Commun. 11, 97 (2020).
944
+ 31 Z. Li, J. Li, K. He, X. Wan, W. Duan, and Y. Xu, Phys.
945
+ Rev. B 102, 081107 (2020).
946
+ 32 L. Zhou, Z. Tan, D. Yan, Z. Fang, Y. Shi, and H. Weng,
947
+ Phys. Rev. B 102, 085114 (2020).
948
+ 33 X. Wu, J. Li, X.-M. Ma, Y. Zhang, Y. Liu, C.-S. Zhou,
949
+ J. Shao, Q. Wang, Y.-J. Hao, Y. Feng, E. F. Schwier,
950
+ S. Kumar, H. Sun, P. Liu, K. Shimada, K. Miyamoto,
951
+ T. Okuda, K. Wang, M. Xie, C. Chen, Q. Liu, C. Liu,
952
+ and Y. Zhao, Phys. Rev. X 10, 031013 (2020).
953
+ 34 B. Lian, Z. Liu, Y. Zhang, and J. Wang, Phys. Rev. Lett.
954
+ 124, 126402 (2020).
955
+ 35 S. Yang, X. Xu, Y. Zhu, R. Niu, C. Xu, Y. Peng, X. Cheng,
956
+ X. Jia, Y. Huang, X. Xu, J. Lu, and Y. Ye, Phys. Rev. X
957
+ 11, 011003 (2021).
958
+ 36 H. Zhang, W. Yang, Y. Wang, and X. Xu, Phys. Rev. B
959
+ 103, 094433 (2021).
960
+ 37 Z. Zhang, N. Wang, N. Cao, A. Wang, X. Zhou, K. Watan-
961
+ abe, T. Taniguchi, B. Yan, and W.-b. Gao, Nature Com-
962
+ munications 13, 6191 (2022).
963
+ 38 R. C. Vidal, A. Zeugner, J. I. Facio, R. Ray, M. H.
964
+ Haghighi, A. U. B. Wolter, L. T. Corredor Bohorquez,
965
+ F. Caglieris, S. Moser, T. Figgemeier, T. R. F. Peixoto,
966
+ H. B. Vasili, M. Valvidares, S. Jung, C. Cacho, A. Alfonsov,
967
+ K. Mehlawat, V. Kataev, C. Hess, M. Richter, B. B¨uchner,
968
+ J. van den Brink, M. Ruck, F. Reinert, H. Bentmann, and
969
+ A. Isaeva, Phys. Rev. X 9, 041065 (2019).
970
+ 39 A. Zeugner, F. Nietschke, A. U. B. Wolter, S. Gaß,
971
+ R. C. Vidal, T. R. F. Peixoto, D. Pohl, C. Damm,
972
+ A. Lubk, R. Hentrich, S. K. Moser, C. Fornari, C. H. Min,
973
+ S. Schatz, K. Kißner, M. ¨Unzelmann, M. Kaiser, F. Scar-
974
+ avaggi, B. Rellinghaus, K. Nielsch, C. Hess, B. B¨uchner,
975
+ F. Reinert, H. Bentmann, O. Oeckler, T. Doert, M. Ruck,
976
+ and A. Isaeva, Chemistry of Materials 31, 2795 (2019),
977
+ https://doi.org/10.1021/acs.chemmater.8b05017.
978
+ 40 P. M. Sass, J. Kim, D. Vanderbilt, J. Yan,
979
+ and W. Wu,
980
+ Phys. Rev. Lett. 125, 037201 (2020).
981
+ 41 J.-Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Aczel,
982
+ M. Matsuda, M. A. McGuire, and B. C. Sales, Phys. Rev.
983
+ Materials 4, 054202 (2020).
984
+
985
+ 7
986
+ 42 M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoff-
987
+ mann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M.
988
+ Echenique, A. Arnau, and E. V. Chulkov, Phys. Rev. Lett.
989
+ 122, 107202 (2019).
990
+ 43 Z. Zang, Y. Zhu, M. Xi, S. Tian, T. Wang, P. Gu, Y. Peng,
991
+ S. Yang, X. Xu, Y. Li, B. Han, L. Liu, Y. Wang, P. Gao,
992
+ J. Yang, H. Lei, Y. Huang,
993
+ and Y. Ye, Phys. Rev. Lett.
994
+ 128, 017201 (2022).
995
+ 44 H. Wang, D. Wang, Z. Yang, M. Shi, J. Ruan, D. Xing,
996
+ J. Wang, and H. Zhang, Phys. Rev. B 101, 081109 (2020).
997
+ 45 Y. Han, S. Sun, S. Qi, X. Xu, and Z. Qiao, Phys. Rev. B
998
+ 103, 245403 (2021).
999
+ 46 S. X. M. Riberolles, Q. Zhang, E. Gordon, N. P. Butch,
1000
+ L. Ke, J.-Q. Yan,
1001
+ and R. J. McQueeney, Phys. Rev. B
1002
+ 104, 064401 (2021).
1003
+ 47 T. Murakami, Y. Nambu, T. Koretsune, G. Xiangyu,
1004
+ T. Yamamoto, C. M. Brown,
1005
+ and H. Kageyama, Phys.
1006
+ Rev. B 100, 195103 (2019).
1007
+ 48 Y. Liu, L.-L. Wang, Q. Zheng, Z. Huang, X. Wang, M. Chi,
1008
+ Y. Wu, B. C. Chakoumakos, M. A. McGuire, B. C. Sales,
1009
+ W. Wu, and J. Yan, Phys. Rev. X 11, 021033 (2021).
1010
+ 49 M. Du, J. Yan, V. R. Cooper, and M. Eisenbach, Advanced
1011
+ Functional Materials 31, 2006516 (2021).
1012
+ 50 M.
1013
+ Garnica,
1014
+ M.
1015
+ M.
1016
+ Otrokov,
1017
+ P.
1018
+ C.
1019
+ Aguilar,
1020
+ I.
1021
+ I.
1022
+ Klimovskikh, D. Estyunin, Z. S. Aliev, I. R. Amiraslanov,
1023
+ N. A. Abdullayev, V. N. Zverev, M. B. Babanly, N. T.
1024
+ Mamedov, A. M. Shikin, A. Arnau, A. L. V. de Parga,
1025
+ E. V. Chulkov, and R. Miranda, npj Quantum Materials
1026
+ 7, 7 (2022).
1027
+ 51 M. Liu, C. Lei, H. Kim, Y. Li, L. Frammolino, J. Yan, A. H.
1028
+ Macdonald, and C.-K. Shih, Proceedings of the National
1029
+ Academy of Sciences 119, e2207681119 (2022).
1030
+ 52 S. Du, P. Tang, J. Li, Z. Lin, Y. Xu, W. Duan, and A. Ru-
1031
+ bio, Phys. Rev. Research 2, 022025 (2020).
1032
+ 53 J. Xiao and B. Yan, 2D Materials 7, 045010 (2020).
1033
+ 54 H. Fu, C.-X. Liu, and B. Yan, Sci. Adv. 6, eaaz0948 (2020).
1034
+ 55 G. Kresse and J. Furthm¨uller, Phys. Rev. B 54, 11169
1035
+ (1996).
1036
+ 56 W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu,
1037
+ Z. Zhang, and W. Zhu, Nat. Commun. 8, 14956 (2017).
1038
+ 57 Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Her-
1039
+ rera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai,
1040
+ Nano Lett. 17, 5508 (2017).
1041
+ 58 C. Cui, W.-J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang,
1042
+ Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef,
1043
+ T. Wu, W. Zhu, X. Pan, and L.-J. Li, Nano Lett. 18, 1253
1044
+ (2018).
1045
+ 59 P. E. Bl¨ochl, Phys. Rev. B 50, 17953 (1994).
1046
+ 60 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
1047
+ 61 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem.
1048
+ Phys. 132, 154104 (2010).
1049
+ 62 S. Grimme, J. Comput. Chem. 27, 1787 (2006).
1050
+ 63 J. Klimeˇs, D. R. Bowler,
1051
+ and A. Michaelides, J. Phys.:
1052
+ Condens. Matter 22, 022201 (2009).
1053
+ 64 J. c. v. Klimeˇs, D. R. Bowler, and A. Michaelides, Phys.
1054
+ Rev. B 83, 195131 (2011).
1055
+ 65 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J.
1056
+ Humphreys,
1057
+ and A. P. Sutton, Phys. Rev. B 57, 1505
1058
+ (1998).
1059
+ 66 G. Henkelman, B. P. Uberuaga, and H. J´onsson, J. Chem.
1060
+ Phys. 113, 9901 (2000).
1061
+ 67 G. Henkelman and H. J´onsson, J. Chem. Phys. 113, 9978
1062
+ (2000).
1063
+ 68 A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vander-
1064
+ bilt, and N. Marzari, Comput. Phys. Commun. 178, 685
1065
+ (2008).
1066
+ 69 Q. Wu, S. Zhang, H.-F. Song, M. Troyer,
1067
+ and A. A.
1068
+ Soluyanov, Comput. Phys. Commun. 224, 405 (2018).
1069
+ 70 F. Xue, Z. Wang, Y. Hou, L. Gu, and R. Wu, Phys. Rev.
1070
+ B 101, 184426 (2020).
1071
+
3NAyT4oBgHgl3EQfo_gV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NFQT4oBgHgl3EQf3DZF/content/tmp_files/2301.13426v1.pdf.txt ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Discrete Search in Heterogeneous Integer Spaces
2
+ for Automated Choice of Parameters using
3
+ Correct-by-Construction Methods
4
+ Omar Radwan
5
6
7
+ Viterbi School of Engineering
8
+ University of Southern California
9
+ Yilin Zhang
10
11
+ Viterbi School of Engineering
12
+ University of Southern California
13
+ Luca Geretti
14
15
+ Viterbi School of Engineering
16
+ University of Southern California
17
+ Abstract—Discrete Search of integer spaces for tool parame-
18
+ ter values provides a powerful methodology for modeling and
19
+ finding a heuristically optimal parameter list for a given system.
20
+ Current tools and implementations that exist focus primarily
21
+ on homogeneous tool parameters, and the implementations for
22
+ heterogeneous tool parameters is lacking. In this paper we
23
+ introduce a correct-by-construction method of heterogeneous
24
+ parameter reachability and validity search, and further outline
25
+ the implementation as well as a demonstration using examples
26
+ of heterogeneous systems that this tool can be used for.
27
+ I. INTRODUCTION
28
+ A. Premise
29
+ Discrete Search of integer spaces provides a powerful mech-
30
+ anism through which to explore the reachable set of a given
31
+ system. Current design cools work primarily for homogeneous
32
+ parameter spaces, and mapping a heterogeneous parameter
33
+ space into the integer domain would provide a strong backbone
34
+ for both performance and allow for a wide range of uses in
35
+ many hybrid systems as well as hybrid parameters that are
36
+ contained within a single system. There are precautions that
37
+ would need to be taken for hybrid systems, which primarily
38
+ consist of having unsafe states, that even though they are
39
+ reachable, they would be considered to be unsafe in a real-
40
+ world implementation, as well dependencies between vari-
41
+ ables, that could transcend the homogeneous dependencies that
42
+ are trivial (i.e. comparing two integers together as compared
43
+ to a comparison between floating point and Boolean). There
44
+ also would exist optimal state locations of the parameter set,
45
+ and those would be modeled using an arbitrary cost function.
46
+ B. Related Work
47
+ Related work consists primarily of homogeneous tool pa-
48
+ rameter exploration implementations, and those concern them-
49
+ selves primarily with arriving at the reachable set primarily
50
+ for homogeneous parameter sets. This would include the tool
51
+ Ariadne [1], which has features built-in that allow it to find
52
+ an approximation of the given reachable set by giving by
53
+ controlling the growth of the approximation error.
54
+ One other concern that arises when attempting to model
55
+ heterogeneous parameters in integer spaces is the problem
56
+ of solvability within bounded time with close approximation,
57
+ and as outlined in [2], there does exist a finite bound for
58
+ finite discovery. There was a foray into unbounded analysis,
59
+ but that is infeasible given the constraints and would be too
60
+ computationally exhaustive. Another issue that comes up is
61
+ discrete versus non-discrete evolution in terms of time, and
62
+ this was a problem resolved by setting as a condition that
63
+ there can only exist discrete time steps and discrete evolution.
64
+ Fig. 1. From Citation [3]
65
+ C. Our Approach
66
+ For the implementation demonstrated in this paper, we focus
67
+ on a number of contributions that create a fast and efficient
68
+ method of finding the optimal set given existing constraints
69
+ and cost. We also define a semantic format that supports the
70
+ representation of heterogeneous parameters, which better suits
71
+ it for discrete search along hybrid domains.
72
+ For exploring the adjacent set space from our beginning
73
+ iteration point(initial state), there are a number of possible
74
+ implementation decisions that would need to be made on how
75
+ best to explore the reachable set given the constraints. The
76
+ path that we decided on was to create a correct by construction
77
+ approach, that would allow the exploration tool to only explore
78
+ the reachable set that is also valid given the constraints and
79
+ dependencies that are supplied. Our flow is as follows: given
80
+ a parameter list which can consist of integer, Boolean, and
81
+ composite parameters, as well as a list of constraints and
82
+ dependencies between variables, and a cost function, we aim
83
+ to find a valid parameter state that satisfies all of our given
84
+ requirements.
85
+ For our implementation, we split our computational engine
86
+ into two general algorithms. Our first algorithm involves com-
87
+ arXiv:2301.13426v1 [eess.SY] 31 Jan 2023
88
+
89
+ Fig. 7. Evader keeps pursuer from entering reachable set, and hence avoids collision (animation
90
+ at [44]puting a correct-by-construction interval for a given parameter
91
+ given our requirements, and our current state when it comes
92
+ to other parameters that exist within our set space. The second
93
+ algorithm is our step-by-step evolution iteration across the set
94
+ space of the parameter list based on the computation of local
95
+ optimal cost.
96
+ Compared to existing and related works, our approach has
97
+ the following contributions:
98
+ • Developed a representation for heterogeneous parameter
99
+ sets that allows for the discretization of all parameters
100
+ and results in the ability for integer space exploration for
101
+ all relevant types
102
+ • Created a correct-by-construction approach to not only
103
+ finding the reachable set of a given parameter set, but also
104
+ allowing the inclusion of heterogeneous inter-parameter
105
+ dependencies and assertions.
106
+ • Designed a method of evolution that allows for quick
107
+ computation of adjacent states for a given set of already
108
+ locally-optimal parameter instances with a method of
109
+ back-tracing and reset if arriving at an invalid location
110
+ • Demonstrate the applicability and the versatility of our
111
+ implementation on two examples that involve computing
112
+ minimum cost for a computer architecture design and a
113
+ re-programmable logic circuit with a demonstration of the
114
+ implementation of pseudo-Boolean constraints
115
+ II. IMPLEMENTATION
116
+ A. Environment and Language Considerations
117
+ We decided on implementing our design in Python [4], the
118
+ reason for that being that Python allows a host of libraries
119
+ and type-interfacing that would allow us to quickly prototype,
120
+ verify, and extend during testing. We also chose Python for
121
+ the reason of being able to interface easily with JSON [5],
122
+ which is our input-format of choice. JSON was chosen due
123
+ to its status as being very well-adopted and would provide an
124
+ easy interface for other CAD tools to create tool-parameter
125
+ sets for analysis using our program.
126
+ We also use a number of Python libraries to do the necessary
127
+ computations that are required for our implementation. A spe-
128
+ cial recognition is deserved of Numpy [6], which is a library
129
+ that allows for very quick computation of intervals, arrays,
130
+ and sets. Since we are operating in the integer domain, integer
131
+ arrays using Numpy libraries make the cost of computation a
132
+ significantly smaller area of concern during implementation.
133
+ B. Motivation for Design
134
+ To better improve the performance of discrete search in
135
+ heterogeneous space, there do exist a number of limitations.
136
+ Firstly, a slight weakness exists in parsing string type asser-
137
+ tions and evaluating them in a computationally static format
138
+ as opposed to extensive abstract syntax trees and symbolic
139
+ interval computation. Secondly, considering various typed
140
+ parameters and assertion relations, it is necessary to have a
141
+ uniform interface design such that algorithm implementation
142
+ is isolated with complicated typed transformation, which is
143
+ why JSON was selected, which could become unwieldy if
144
+ enumerated or vector parameters which to be considered. In
145
+ this case, a tool that would generate a statically-enumerated
146
+ JSON format that is acceptable to our program would be
147
+ required.
148
+ C. Evolution Algorithm
149
+ In this section, we introduce how the program will explore
150
+ feasible set constrained by assertions. The JSON format input
151
+ will be interpreted and loaded into our program. For the sake
152
+ of generality, we assume that there are n parameters denoted
153
+ as x1, · · · xn. First of all, for each parameter xi, we randomly
154
+ generate N − 1 valid neighboring points. For the random
155
+ sampling of these points, we experimented with a couple
156
+ methods. One was uniform sampling from the valid interval,
157
+ the other two where linear and square weighted sampling with
158
+ respect of distance from the interval. After these were tested,
159
+ we found that square weighting was the most effective, and
160
+ we will demonstrate these findings during our examples. With
161
+ xi itself, these N points form a list {xj
162
+ i}N
163
+ j=1. In total there are
164
+ n lists.
165
+ During the evolution process, each point will randomly
166
+ generate a neighboring point from its valid set. Therefore, all
167
+ n·N points will generate another n new lists. Without loss of
168
+ generality, we denote these n new lists as {xj
169
+ i}2N
170
+ j=N+1. Next
171
+ we the original list and new list with the same footnote i to get
172
+ n new list {xj
173
+ i}2N
174
+ j=1. From these n list, we evaluate 2N cost
175
+ function values as {cj = F(xj
176
+ 1, xj
177
+ 2, · · · xj
178
+ n) | j = 1, · · · , 2N}.
179
+ For these 2N cost values, we keep the smaller half and
180
+ corresponding parameter values to form n new lists. Repeat
181
+ the above steps until the ending requirements are satisfied. A
182
+ pseudo-code for this algorithm can be found at Algorithm 1
183
+ D. Approach for feasibility checking between heterogeneous
184
+ parameters
185
+ For defining the the set of parameters that would exist for a
186
+ given system, we supply two atomic types and one composite
187
+ type:
188
+ 1) Integer type
189
+ 2) Boolean type
190
+ 3) Composite type
191
+ Integers exist in the Integer domain, and Boolean’s likewise
192
+ in the Boolean domain. Composites are different in that they
193
+ are modeled like an array, given a composite parameter C,
194
+ C can contain any number of composites, Boolean’s, and
195
+ integers. This allows the modeling of parameters that cannot
196
+ be modeled as strictly scalar integer or Boolean values. Floats,
197
+ complex numbers, and vectors are all examples of what can
198
+ be modeled as a composite set. Furthermore, to maintain the
199
+ desired behavior of these parameters, the constraint paradigm
200
+ that we introduce allows us to describe the behavior of how
201
+ these composite parameters undergo evolution.
202
+ As an example, take Cube, which of type composite, and it
203
+ is defined by 3-equal length sides x, y, z, such that Cube(t) =
204
+ {x, y, z ∈ Z, x == y == z}∀t where t is time-step during
205
+ evolution. For the case of this parameter, the instantiation of
206
+ the of the domain of each sub-parameter would go with the
207
+ 2
208
+
209
+ parameter declarations, while the instantiation of the constraint
210
+ that is intrinsic to cubes would be added to the constraints field
211
+ that is given.
212
+ This paradigm of allowing composite parameters to have
213
+ unique behaviors could lead to invalid states during evolution,
214
+ if one sub-parameter undergoes evolution independently and
215
+ is now not equal to the other two, that would lead to an unde-
216
+ sirable state. For this reason correct-by-construction interval
217
+ generation for each of the sub-parameters is done with all
218
+ assertions and constraints in mind.
219
+ One note on using composite parameters to model floating
220
+ point numbers. Initially during development we had planned
221
+ to incorporate a floating point type, however the tedious-
222
+ ness of setting properties for floating point as an atomic
223
+ type is redundant as all the properties of a floating point
224
+ value(mantissa, exponent, significant figures) can be modeled
225
+ as sub-parameters of a composite value, and the user can
226
+ specify the desired constraints and behaviors for comparison
227
+ and incorporation between the composite-ized floating point
228
+ value and other parameters.
229
+ E. Feasibility Checking given Constraints
230
+ In this section, a detailed explanation about how to construct
231
+ valid neighboring set is given. Suppose that there are m
232
+ assertions {Ai}m
233
+ i=1 on n parameters. For each parameter xi,
234
+ assertions containing xi are selected out of m, which is
235
+ {Ak | xi ∈ Ak}. Next, iterate through other parameters and
236
+ apply their values into these assertions. Finally, Intersect all
237
+ the intervals after evaluating the assertions to get the final
238
+ interval. A new value for xi is sampled randomly from the
239
+ final interval based on the square of their distance to xi. By
240
+ default, values closer to xi have higher probabilities to be
241
+ selected. More details can be found in Algorithm 2
242
+ F. Desired Implementation Aspects that Proved Infeasible
243
+ One initial idea that was considered well thought out and
244
+ feasible was the incorporation of symbolic computation for
245
+ our constraint and dependency valid interval generation. The
246
+ Sympy [7] library in Python was going to be utilized for this
247
+ purpose. Though the algorithm was functional, the symbolic
248
+ computation cost was extremely prohibitive, and was not
249
+ feasible for a general-use case. After doing much research
250
+ to attempt to make it feasible, we discovered that even Sympy
251
+ as an organization recognizes that the substitution and eval-
252
+ uation is cost-prohibitive, and recommends other avenues for
253
+ repetitive computation. For this reason we had to re-calibrate
254
+ and find another solution. This solution was to do string
255
+ replacement of our given parameters with their values into
256
+ the string representation of our constraints, dependencies, and
257
+ costs. Then these string representations would be converted
258
+ into lambda functions that would be operated on by the
259
+ Numpy array operations. Since Numpy on the back-end uses C
260
+ libraries to do computation, this lessened our computation time
261
+ by an order of magnitude, for mostly the same functionality.
262
+ The functionality that is missing is due to the inherent
263
+ behavioral properties of lambda functions. Symbolic compu-
264
+ Algorithm 1: Evolution of Adjacent Optimal Cost
265
+ Input: List of variables Lv, Iterating parameter T, List
266
+ of assertions La, Cost function F
267
+ Output: Optimal value of variables L∗
268
+ v
269
+ 1 //This is for initial value selection, since we need to
270
+ enter the set space is what we presume to be a valid
271
+ point foreach v in Lv do
272
+ 2
273
+ v := Sample Uniform Distribution(Lower Bound of
274
+ v, Upper Bound of v)
275
+ 3
276
+ Construct Vi as the set of n sample of vi
277
+ 4 end
278
+ 5 while T <= K do
279
+ 6
280
+ foreach variable vi in Lv do
281
+ 7
282
+ Vi is the set of n values of vi
283
+ Svi =get intersect of all valid intervals(La, Lv, vi).
284
+ 8
285
+ Svisorted = Arrange by incrementing closeness
286
+ to value of ak
287
+ 9
288
+ WeightsSvisorted = array from 0 to length of
289
+ Svisorted
290
+ 10
291
+ foreach w in WeightsSvisorted do
292
+ 11
293
+ w = (length of Svisorted - index of w)2
294
+ 12
295
+ end
296
+ 13
297
+ Use weighted sampling of WeightsSvisorted to
298
+ randomly sample n new values of vi from
299
+ Svisorted.
300
+ 14
301
+ Append these n values into Vi
302
+ 15
303
+ Construct n new list of variables {Lj
304
+ v}n
305
+ j=1,
306
+ Lj
307
+ v[i] = Lv[i].
308
+ 16
309
+ Pick Lk
310
+ v with minimum F(Lk
311
+ v) in {Lj
312
+ v}n
313
+ i=j.
314
+ 17
315
+ Update Lv[i] = Lk
316
+ v[i].
317
+ 18
318
+ Delete vi in Vi with n highest cost values.
319
+ 19
320
+ Update T.
321
+ 20
322
+ end
323
+ 21 end
324
+ 22 return Lv
325
+ tation was desired as it allowed the incorporation of very
326
+ rigorous Boolean SAT exploration, but this is not a feature
327
+ that is possible with the lambda paradigm. Therefore, to allow
328
+ the extend-ability of Boolean values, fuzzy pseudo-Boolean
329
+ logic [8] is implemented, which does allow for an adequate
330
+ semantic representation of Boolean logic.
331
+ III. EXAMPLES OF APPLICATION
332
+ For an example foray to explore what our program would
333
+ be able to handle, we decided on two different, yet related,
334
+ domains.
335
+ A. FPGA Synthesis
336
+ For our first example(outlined in 2), we decided on model-
337
+ ing our problem as an FPGA cost problem. Given a number of
338
+ constraints on an FPGA, i.e. memory size, available memory
339
+ ports, available input and output ports we have Routine1,2,3,
340
+ and only two of the previously mentioned three can be
341
+ 3
342
+
343
+ Algorithm 2: Get Intersect of All Valid Points in
344
+ Bounds and Assertions
345
+ Input: List of assertions La, List of variables Lv,
346
+ Target variable vi
347
+ Output: All valid set Svi of vi
348
+ 1 Initialize list of intervals Li = []
349
+ 2 foreach ak in La do
350
+ 3
351
+ if vi appears in ak then
352
+ 4
353
+ foreach vj in Lv do
354
+ 5
355
+ if vj ̸= vi then
356
+ 6
357
+ Plug in value of vj in ak.
358
+ 7
359
+ else
360
+ 8
361
+ continue
362
+ 9
363
+ end
364
+ 10
365
+ end
366
+ 11
367
+ Append ak into Li
368
+ 12
369
+ else
370
+ 13
371
+ continue
372
+ 14
373
+ end
374
+ 15 end
375
+ 16 Transform the intersection of Li into valid set Svi
376
+ 17 return Svi
377
+ installed on the FPGA fabric, and depending on which two
378
+ are loaded onto the fabric, we then must enable a minimum
379
+ number of memory, I/O, and interconnection ports, as well
380
+ as have different memory properties. We then created a
381
+ polynomial cost function of these constraints, in an aim of
382
+ it becoming nonlinear and make the algorithm demonstrate its
383
+ effectiveness in traversing the set space while attempting to
384
+ find the given most optimal cost.
385
+ One highlight of this example is the inclusion of pseudo-
386
+ Boolean constraints, which manifest in the requirement that
387
+ only two of the three routines can function at any time, which
388
+ in terms of cost, creates a piece-wise function. The parameter
389
+ variation that is generated during random sampling is able
390
+ to traverse this piece wise function, because even though we
391
+ generate points using a correct-by-construction approach, in
392
+ some cases there is no valid interval, and in that case we reset
393
+ for that specific parameter back to the largest valid interval,
394
+ and randomly sample that. This allows the program to exit
395
+ any possible rut that it enters while making an early decision
396
+ on which Routine set to choose, and so it can backtrack
397
+ as necessary and choose another Routine set if the specific
398
+ parameter space undergoing evolution is no longer valid. The
399
+ results for these are demonstrated in Figure 3 with different
400
+ weights for random sampling methods from the valid intervals
401
+ generated.
402
+ B. Computer Architecture Design
403
+ Another example that we used is the creation of of a
404
+ computer architecture system. During the creation of a new
405
+ computer architecture, or the generation of a new implementa-
406
+ tion of an architecture, multiple design decisions must be made
407
+ Fig. 2. Illustration of FPGA Paradigm for Testing Our Implementation
408
+ with respect to area, inter-connectivity, interface requirements,
409
+ and transistor count. In this example, we model a simple
410
+ multi-fetch, multi-execution, processor design. We drafted the
411
+ requirements in terms of dependencies and constraints, and
412
+ given the constraints and requirements for the interfaces and
413
+ inter-connectivity between components, we aim to find the
414
+ minimal transistor count. This was a more rudimentary design,
415
+ and it aimed to find the computation limit of our implemen-
416
+ tation. One thing that we attempted to model was having
417
+ very large integer sets, and exploring those. Emulating design
418
+ space exploration for computer architectures with such large
419
+ intervals was the reason we had to refactor our computation
420
+ engine from purely symbolic to the lambda paradigm, as
421
+ the symbolic computation was not able to run search space
422
+ exploration and computation in a reasonable amount of time
423
+ with this example. The results for those example are posted in
424
+ Figure 4, along with the variation between random sampling
425
+ methods from the valid intervals generated.
426
+ C. Performance and Efficacy
427
+ As aforementioned during the discussion on the implemen-
428
+ tation, performance was a major bottleneck in our implemen-
429
+ tation, and there were a number of features that needed to be
430
+ added to be able to guarantee reasonable performance. The
431
+ first was the use of lambdas to calculate the valid interval set.
432
+ The second, which is outlined in the algorithm, is keeping a
433
+ short list of the least-cost neighbors that exist, and generating
434
+ new random neighbors from that list. This allows us to have
435
+ multiple different forays into the search space, and we could
436
+ possibly arrive to many local minima’s, but we only choose
437
+ the most optimal local minima. Computation time is static
438
+ across iterations, and there are parameter options to increase
439
+ or decrease the exhaustiveness of the search depending on the
440
+ intended use cases.
441
+ 4
442
+
443
+ L2Cache
444
+ L1Cache
445
+ 品品
446
+ 00001
447
+ 0000
448
+ Memory Ports
449
+ Process 1
450
+ Process 2
451
+ indino
452
+ Input
453
+ Ports
454
+ Ports
455
+ Process 3We also wanted to verify the efficacy of our design and do
456
+ the best possible effort into generating the most optimal point.
457
+ To verify that our results where sane, we ran multiple differ-
458
+ ent instances of both the FPGA and Computer Architecture
459
+ description JSON files, and averaged those results out, and did
460
+ this for three different weights for random sampling(uniform,
461
+ linear weighted, square weighted), and what we found that in
462
+ all cases, our results for all runs where fairly similar, but there
463
+ are some noticeable differences worth discussion.
464
+ Firstly, the uniform random search has better performance
465
+ for lower iterations, and this is because during early stages
466
+ of evolution, a majority portion of the set space has yet
467
+ to be explored, and uniform sampling allows us to traverse
468
+ the majority of the set space early. However after a lot of
469
+ iterations, the square weighted random sampling from the
470
+ interval eventually makes us arrive to a more optimal cost, and
471
+ this is because as more and more of the set space is invalidated,
472
+ the parameters that are undergoing evolution get much closer
473
+ to the local optima, and square weighting allows us to more
474
+ likely sample these local optima and arrive at them at a quicker
475
+ rate than both uniform and linear random sampling.
476
+ Fig. 3. Table of the Impact of Different Weights and Effect on Set Exploration
477
+ for FPGA Example
478
+ IV. SUMMARY
479
+ To reiterate the major points that have been mentioned
480
+ throughout this paper, we have created a tool that performs
481
+ discrete search of integer spaces of mapped heterogeneous
482
+ parameters to the integer domain, and we utilized correct-
483
+ by-construction methods to ensure that given constraints and
484
+ dependencies are met, while attempting to find the most opti-
485
+ mal cost. This differs from the previous literature in that it is
486
+ able to accommodate for heterogeneous data structures and is
487
+ able to model hybrid systems, while comparatively the existing
488
+ literature exists primarily for reachability and homogeneous
489
+ parameter exploration. The main takeaways from this endeavor
490
+ include that there is a significant divide between the tools that
491
+ are used in industry, and the potential for tools that could be
492
+ used to better-optimize processes and methods that are used.
493
+ Fig. 4. Table of the Impact of Different Weights and Effect on Set Exploration
494
+ for Architecture Example
495
+ The main hurdle for widespread adoption of these methods
496
+ includes a difficulty of understanding and use, as well as
497
+ a computational cost-barrier that is evident in very complex
498
+ systems.
499
+ A. Wish-list of additional features
500
+ One feature that would have been useful to incorporate
501
+ would have been incorporating a Boolean SAT or SMT solver
502
+ [9], which would have allowed us to bypass pseudo-Boolean
503
+ constraints entirely, which are generated heuristically, and
504
+ instead rigorously solve Boolean equations for all possible
505
+ solutions. Incorporation a Boolean SAT solver such as Z3
506
+ would’ve been time-prohibitive, but would’ve allowed for a
507
+ greater range of expressively for constraints.
508
+ B. Application Files
509
+ Due to space reasons, we do not go into detail on the
510
+ specifics of the Computer Architecture Example and the FPGA
511
+ Example. Please contact the authors for more information.
512
+ V. SOME THOUGHTS ON OPTIMIZATION AND USE CASES
513
+ Optimization aims at searching for values of x which
514
+ minimizes the objective function f bounded by constraints.
515
+ A general formula of optimization problem is in equation (1).
516
+ arg
517
+ x min f(x)
518
+ s.t. Constraints on x
519
+ (1)
520
+ In addition to existing gradient based methods which re-
521
+ quires the objective function to be differentiable or even
522
+ more smooth, discrete search algorithm proposed in this paper
523
+ achieves a high degree of performance on all kinds of objective
524
+ functions.
525
+ One of the most important features of cyber-physical sys-
526
+ tems is that they contains both continuous system components
527
+ and discrete system components. In this case, the constraints
528
+ may include discrete forms like SATs, and continuous forms
529
+ like inequalities. Our discrete search algorithm can be used to
530
+ choose optimal parameters for a cyber-physical system.
531
+ 5
532
+
533
+ Different WeightTypesandCostper IterationForFPGA
534
+ Example
535
+ UniformWeightFPGA
536
+ Linear Weight FPGA Square Weight FPGA
537
+ 40000000
538
+ 20000000
539
+ 10000000
540
+ 8000000
541
+ 6000000
542
+ 4000000
543
+ 1
544
+ 5
545
+ 10
546
+ 50
547
+ 100
548
+ IterationDifferent Weight Types and Costper Iteration For Architecture
549
+ Example
550
+ Uniform Weight Arch
551
+ Linear Weight Arch
552
+ Square Weight Arch
553
+ 5000000000000000
554
+ 1000000000000000
555
+ 500000000000000
556
+ 100000000000000
557
+ 50000000000000
558
+ 10000000000000
559
+ 5
560
+ 10
561
+ 50
562
+ 100VI. FURTHER POSSIBLE WORK
563
+ We would like to explore more about the background of
564
+ reachability analysis. Where does this problem rise from.
565
+ Moreover, as for existing optimization algorithms like heuristic
566
+ algorithms, gradient based methods and interior point methods,
567
+ what are the bottlenecks on applying these algorithms on
568
+ hybrid system reachability analysis.
569
+ Another topic is the connection between reachability anal-
570
+ ysis and optimization algorithm. If the reachability problem
571
+ can be formulated into an optimization problem, then it will
572
+ be easier to understand the problem from the mathematical
573
+ properties of objective function.
574
+ REFERENCES
575
+ [1] Luca Geretti, Pieter Collins, Davide Bresolin, and Tiziano Villa. Automat-
576
+ ing numerical parameters along the evolution of a nonlinear system. In
577
+ Runtime Verification: 22nd International Conference, RV 2022, Tbilisi,
578
+ Georgia, September 28–30, 2022, Proceedings, page 336–345, Berlin,
579
+ Heidelberg, 2022. Springer-Verlag.
580
+ [2] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli.
581
+ Integer
582
+ Programming / Michele Conforti, G´erard Cornu´ejols, Giacomo Zambelli.
583
+ Springer, Cham, 2014.
584
+ [3] Ian M. Mitchell and Claire J. Tomlin.
585
+ Overapproximating reachable
586
+ sets by hamilton-jacobi projections.
587
+ Journal of Scientific Computing,
588
+ 19(1):323–346, 2003.
589
+ [4] Guido Van Rossum and Fred L Drake Jr.
590
+ Python reference manual.
591
+ Centrum voor Wiskunde en Informatica Amsterdam, 1995.
592
+ [5] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Mart´ın Ugarte, and
593
+ Domagoj Vrgoˇc. Foundations of json schema. In Proceedings of the
594
+ 25th International Conference on World Wide Web, pages 263–273.
595
+ International World Wide Web Conferences Steering Committee, 2016.
596
+ [6] Charles R. Harris, K. Jarrod Millman, St´efan J. van der Walt, Ralf
597
+ Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
598
+ lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
599
+ Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
600
+ Jaime Fern´andez del R´ıo, Mark Wiebe, Pearu Peterson, Pierre G´erard-
601
+ Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
602
+ Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
603
+ with NumPy. Nature, 585(7825):357–362, September 2020.
604
+ [7] Sympy Foundation.
605
+ [8] Y. Dote. Introduction to fuzzy logic. In Proceedings of IECON ’95 -
606
+ 21st Annual Conference on IEEE Industrial Electronics, volume 1, pages
607
+ 50–56 vol.1, 1995.
608
+ [9] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
609
+ Introduction and applications. Commun. ACM, 54(9):69–77, sep 2011.
610
+ 6
611
+
3NFQT4oBgHgl3EQf3DZF/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf,len=227
2
+ page_content='Discrete Search in Heterogeneous Integer Spaces for Automated Choice of Parameters using Correct-by-Construction Methods Omar Radwan oradwan@usc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
3
+ page_content='edu oradwan@alumni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
4
+ page_content='usc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
5
+ page_content='edu Viterbi School of Engineering University of Southern California Yilin Zhang yilinz80@usc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
6
+ page_content='edu Viterbi School of Engineering University of Southern California Luca Geretti geretti@usc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
7
+ page_content='edu Viterbi School of Engineering University of Southern California Abstract—Discrete Search of integer spaces for tool parame- ter values provides a powerful methodology for modeling and finding a heuristically optimal parameter list for a given system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
8
+ page_content=' Current tools and implementations that exist focus primarily on homogeneous tool parameters, and the implementations for heterogeneous tool parameters is lacking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
9
+ page_content=' In this paper we introduce a correct-by-construction method of heterogeneous parameter reachability and validity search, and further outline the implementation as well as a demonstration using examples of heterogeneous systems that this tool can be used for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
10
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
11
+ page_content=' INTRODUCTION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
12
+ page_content=' Premise Discrete Search of integer spaces provides a powerful mech- anism through which to explore the reachable set of a given system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
13
+ page_content=' Current design cools work primarily for homogeneous parameter spaces, and mapping a heterogeneous parameter space into the integer domain would provide a strong backbone for both performance and allow for a wide range of uses in many hybrid systems as well as hybrid parameters that are contained within a single system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
14
+ page_content=' There are precautions that would need to be taken for hybrid systems, which primarily consist of having unsafe states, that even though they are reachable, they would be considered to be unsafe in a real- world implementation, as well dependencies between vari- ables, that could transcend the homogeneous dependencies that are trivial (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
15
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
16
+ page_content=' comparing two integers together as compared to a comparison between floating point and Boolean).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
17
+ page_content=' There also would exist optimal state locations of the parameter set, and those would be modeled using an arbitrary cost function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
18
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
19
+ page_content=' Related Work Related work consists primarily of homogeneous tool pa- rameter exploration implementations, and those concern them- selves primarily with arriving at the reachable set primarily for homogeneous parameter sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
20
+ page_content=' This would include the tool Ariadne [1], which has features built-in that allow it to find an approximation of the given reachable set by giving by controlling the growth of the approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
21
+ page_content=' One other concern that arises when attempting to model heterogeneous parameters in integer spaces is the problem of solvability within bounded time with close approximation, and as outlined in [2], there does exist a finite bound for finite discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
22
+ page_content=' There was a foray into unbounded analysis, but that is infeasible given the constraints and would be too computationally exhaustive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
23
+ page_content=' Another issue that comes up is discrete versus non-discrete evolution in terms of time, and this was a problem resolved by setting as a condition that there can only exist discrete time steps and discrete evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
24
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
25
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
26
+ page_content=' From Citation [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
27
+ page_content=' Our Approach For the implementation demonstrated in this paper, we focus on a number of contributions that create a fast and efficient method of finding the optimal set given existing constraints and cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
28
+ page_content=' We also define a semantic format that supports the representation of heterogeneous parameters, which better suits it for discrete search along hybrid domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
29
+ page_content=' For exploring the adjacent set space from our beginning iteration point(initial state), there are a number of possible implementation decisions that would need to be made on how best to explore the reachable set given the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
30
+ page_content=' The path that we decided on was to create a correct by construction approach, that would allow the exploration tool to only explore the reachable set that is also valid given the constraints and dependencies that are supplied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
31
+ page_content=' Our flow is as follows: given a parameter list which can consist of integer, Boolean, and composite parameters, as well as a list of constraints and dependencies between variables, and a cost function, we aim to find a valid parameter state that satisfies all of our given requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
32
+ page_content=' For our implementation, we split our computational engine into two general algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
33
+ page_content=' Our first algorithm involves com- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
34
+ page_content='13426v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
35
+ page_content='SY] 31 Jan 2023 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
36
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
37
+ page_content=' Evader keeps pursuer from entering reachable set, and hence avoids collision (animation at [44]puting a correct-by-construction interval for a given parameter given our requirements, and our current state when it comes to other parameters that exist within our set space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
38
+ page_content=' The second algorithm is our step-by-step evolution iteration across the set space of the parameter list based on the computation of local optimal cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
39
+ page_content=' Compared to existing and related works, our approach has the following contributions: Developed a representation for heterogeneous parameter sets that allows for the discretization of all parameters and results in the ability for integer space exploration for all relevant types Created a correct-by-construction approach to not only finding the reachable set of a given parameter set, but also allowing the inclusion of heterogeneous inter-parameter dependencies and assertions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
40
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
41
+ page_content='Designed a method of evolution that allows for quick ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
42
+ page_content='computation of adjacent states for a given set of already ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
43
+ page_content='locally-optimal parameter instances with a method of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
44
+ page_content='back-tracing and reset if arriving at an invalid location ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
45
+ page_content='Demonstrate the applicability and the versatility of our ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
46
+ page_content='implementation on two examples that involve computing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
47
+ page_content='minimum cost for a computer architecture design and a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
48
+ page_content='re-programmable logic circuit with a demonstration of the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
49
+ page_content='implementation of pseudo-Boolean constraints ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
50
+ page_content='II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
51
+ page_content=' IMPLEMENTATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
52
+ page_content=' Environment and Language Considerations We decided on implementing our design in Python [4], the reason for that being that Python allows a host of libraries and type-interfacing that would allow us to quickly prototype, verify, and extend during testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
53
+ page_content=' We also chose Python for the reason of being able to interface easily with JSON [5], which is our input-format of choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
54
+ page_content=' JSON was chosen due to its status as being very well-adopted and would provide an easy interface for other CAD tools to create tool-parameter sets for analysis using our program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
55
+ page_content=' We also use a number of Python libraries to do the necessary computations that are required for our implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
56
+ page_content=' A spe- cial recognition is deserved of Numpy [6], which is a library that allows for very quick computation of intervals, arrays, and sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
57
+ page_content=' Since we are operating in the integer domain, integer arrays using Numpy libraries make the cost of computation a significantly smaller area of concern during implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
58
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
59
+ page_content=' Motivation for Design To better improve the performance of discrete search in heterogeneous space, there do exist a number of limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
60
+ page_content=' Firstly, a slight weakness exists in parsing string type asser- tions and evaluating them in a computationally static format as opposed to extensive abstract syntax trees and symbolic interval computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
61
+ page_content=' Secondly, considering various typed parameters and assertion relations, it is necessary to have a uniform interface design such that algorithm implementation is isolated with complicated typed transformation, which is why JSON was selected, which could become unwieldy if enumerated or vector parameters which to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
62
+ page_content=' In this case, a tool that would generate a statically-enumerated JSON format that is acceptable to our program would be required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
63
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
64
+ page_content=' Evolution Algorithm In this section, we introduce how the program will explore feasible set constrained by assertions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
65
+ page_content=' The JSON format input will be interpreted and loaded into our program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
66
+ page_content=' For the sake of generality, we assume that there are n parameters denoted as x1, · · · xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
67
+ page_content=' First of all, for each parameter xi, we randomly generate N − 1 valid neighboring points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
68
+ page_content=' For the random sampling of these points, we experimented with a couple methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
69
+ page_content=' One was uniform sampling from the valid interval, the other two where linear and square weighted sampling with respect of distance from the interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
70
+ page_content=' After these were tested, we found that square weighting was the most effective, and we will demonstrate these findings during our examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
71
+ page_content=' With xi itself, these N points form a list {xj i}N j=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
72
+ page_content=' In total there are n lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
73
+ page_content=' During the evolution process, each point will randomly generate a neighboring point from its valid set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
74
+ page_content=' Therefore, all n·N points will generate another n new lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
75
+ page_content=' Without loss of generality, we denote these n new lists as {xj i}2N j=N+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
76
+ page_content=' Next we the original list and new list with the same footnote i to get n new list {xj i}2N j=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
77
+ page_content=' From these n list, we evaluate 2N cost function values as {cj = F(xj 1, xj 2, · · · xj n) | j = 1, · · · , 2N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
78
+ page_content=' For these 2N cost values, we keep the smaller half and corresponding parameter values to form n new lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
79
+ page_content=' Repeat the above steps until the ending requirements are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
80
+ page_content=' A pseudo-code for this algorithm can be found at Algorithm 1 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
81
+ page_content=' Approach for feasibility checking between heterogeneous parameters For defining the the set of parameters that would exist for a given system, we supply two atomic types and one composite type: 1) Integer type 2) Boolean type 3) Composite type Integers exist in the Integer domain, and Boolean’s likewise in the Boolean domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
82
+ page_content=' Composites are different in that they are modeled like an array, given a composite parameter C, C can contain any number of composites, Boolean’s, and integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
83
+ page_content=' This allows the modeling of parameters that cannot be modeled as strictly scalar integer or Boolean values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
84
+ page_content=' Floats, complex numbers, and vectors are all examples of what can be modeled as a composite set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
85
+ page_content=' Furthermore, to maintain the desired behavior of these parameters, the constraint paradigm that we introduce allows us to describe the behavior of how these composite parameters undergo evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
86
+ page_content=' As an example, take Cube, which of type composite, and it is defined by 3-equal length sides x, y, z, such that Cube(t) = {x, y, z ∈ Z, x == y == z}∀t where t is time-step during evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
87
+ page_content=' For the case of this parameter, the instantiation of the of the domain of each sub-parameter would go with the 2 parameter declarations, while the instantiation of the constraint that is intrinsic to cubes would be added to the constraints field that is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
88
+ page_content=' This paradigm of allowing composite parameters to have unique behaviors could lead to invalid states during evolution, if one sub-parameter undergoes evolution independently and is now not equal to the other two, that would lead to an unde- sirable state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
89
+ page_content=' For this reason correct-by-construction interval generation for each of the sub-parameters is done with all assertions and constraints in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
90
+ page_content=' One note on using composite parameters to model floating point numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
91
+ page_content=' Initially during development we had planned to incorporate a floating point type, however the tedious- ness of setting properties for floating point as an atomic type is redundant as all the properties of a floating point value(mantissa, exponent, significant figures) can be modeled as sub-parameters of a composite value, and the user can specify the desired constraints and behaviors for comparison and incorporation between the composite-ized floating point value and other parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
92
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
93
+ page_content=' Feasibility Checking given Constraints In this section, a detailed explanation about how to construct valid neighboring set is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
94
+ page_content=' Suppose that there are m assertions {Ai}m i=1 on n parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
95
+ page_content=' For each parameter xi, assertions containing xi are selected out of m, which is {Ak | xi ∈ Ak}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
96
+ page_content=' Next, iterate through other parameters and apply their values into these assertions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
97
+ page_content=' Finally, Intersect all the intervals after evaluating the assertions to get the final interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
98
+ page_content=' A new value for xi is sampled randomly from the final interval based on the square of their distance to xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
99
+ page_content=' By default, values closer to xi have higher probabilities to be selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
100
+ page_content=' More details can be found in Algorithm 2 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
101
+ page_content=' Desired Implementation Aspects that Proved Infeasible One initial idea that was considered well thought out and feasible was the incorporation of symbolic computation for our constraint and dependency valid interval generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
102
+ page_content=' The Sympy [7] library in Python was going to be utilized for this purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
103
+ page_content=' Though the algorithm was functional, the symbolic computation cost was extremely prohibitive, and was not feasible for a general-use case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
104
+ page_content=' After doing much research to attempt to make it feasible, we discovered that even Sympy as an organization recognizes that the substitution and eval- uation is cost-prohibitive, and recommends other avenues for repetitive computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
105
+ page_content=' For this reason we had to re-calibrate and find another solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
106
+ page_content=' This solution was to do string replacement of our given parameters with their values into the string representation of our constraints, dependencies, and costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
107
+ page_content=' Then these string representations would be converted into lambda functions that would be operated on by the Numpy array operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
108
+ page_content=' Since Numpy on the back-end uses C libraries to do computation, this lessened our computation time by an order of magnitude, for mostly the same functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
109
+ page_content=' The functionality that is missing is due to the inherent behavioral properties of lambda functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
110
+ page_content=' Symbolic compu- Algorithm 1: Evolution of Adjacent Optimal Cost Input: List of variables Lv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
111
+ page_content=' Iterating parameter T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
112
+ page_content=' List of assertions La,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
113
+ page_content=' Cost function F Output: Optimal value of variables L∗ v 1 //This is for initial value selection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
114
+ page_content=' since we need to enter the set space is what we presume to be a valid point foreach v in Lv do 2 v := Sample Uniform Distribution(Lower Bound of v,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
115
+ page_content=' Upper Bound of v) 3 Construct Vi as the set of n sample of vi 4 end 5 while T <= K do 6 foreach variable vi in Lv do 7 Vi is the set of n values of vi Svi =get intersect of all valid intervals(La,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
116
+ page_content=' Lv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
117
+ page_content=' vi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
118
+ page_content=' 8 Svisorted = Arrange by incrementing closeness to value of ak 9 WeightsSvisorted = array from 0 to length of Svisorted 10 foreach w in WeightsSvisorted do 11 w = (length of Svisorted - index of w)2 12 end 13 Use weighted sampling of WeightsSvisorted to randomly sample n new values of vi from Svisorted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
119
+ page_content=' 14 Append these n values into Vi 15 Construct n new list of variables {Lj v}n j=1, Lj v[i] = Lv[i].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
120
+ page_content=' 16 Pick Lk v with minimum F(Lk v) in {Lj v}n i=j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
121
+ page_content=' 17 Update Lv[i] = Lk v[i].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
122
+ page_content=' 18 Delete vi in Vi with n highest cost values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
123
+ page_content=' 19 Update T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
124
+ page_content=' 20 end 21 end 22 return Lv tation was desired as it allowed the incorporation of very rigorous Boolean SAT exploration, but this is not a feature that is possible with the lambda paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
125
+ page_content=' Therefore, to allow the extend-ability of Boolean values, fuzzy pseudo-Boolean logic [8] is implemented, which does allow for an adequate semantic representation of Boolean logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
126
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
127
+ page_content=' EXAMPLES OF APPLICATION For an example foray to explore what our program would be able to handle, we decided on two different, yet related, domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
128
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
129
+ page_content=' FPGA Synthesis For our first example(outlined in 2), we decided on model- ing our problem as an FPGA cost problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
130
+ page_content=' Given a number of constraints on an FPGA, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
131
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
132
+ page_content=' memory size, available memory ports, available input and output ports we have Routine1,2,3, and only two of the previously mentioned three can be 3 Algorithm 2: Get Intersect of All Valid Points in Bounds and Assertions Input: List of assertions La, List of variables Lv, Target variable vi Output: All valid set Svi of vi 1 Initialize list of intervals Li = [] 2 foreach ak in La do 3 if vi appears in ak then 4 foreach vj in Lv do 5 if vj ̸= vi then 6 Plug in value of vj in ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
133
+ page_content=' 7 else 8 continue 9 end 10 end 11 Append ak into Li 12 else 13 continue 14 end 15 end 16 Transform the intersection of Li into valid set Svi 17 return Svi installed on the FPGA fabric, and depending on which two are loaded onto the fabric, we then must enable a minimum number of memory, I/O, and interconnection ports, as well as have different memory properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
134
+ page_content=' We then created a polynomial cost function of these constraints, in an aim of it becoming nonlinear and make the algorithm demonstrate its effectiveness in traversing the set space while attempting to find the given most optimal cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
135
+ page_content=' One highlight of this example is the inclusion of pseudo- Boolean constraints, which manifest in the requirement that only two of the three routines can function at any time, which in terms of cost, creates a piece-wise function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
136
+ page_content=' The parameter variation that is generated during random sampling is able to traverse this piece wise function, because even though we generate points using a correct-by-construction approach, in some cases there is no valid interval, and in that case we reset for that specific parameter back to the largest valid interval, and randomly sample that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
137
+ page_content=' This allows the program to exit any possible rut that it enters while making an early decision on which Routine set to choose, and so it can backtrack as necessary and choose another Routine set if the specific parameter space undergoing evolution is no longer valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
138
+ page_content=' The results for these are demonstrated in Figure 3 with different weights for random sampling methods from the valid intervals generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
139
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
140
+ page_content=' Computer Architecture Design Another example that we used is the creation of of a computer architecture system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
141
+ page_content=' During the creation of a new computer architecture, or the generation of a new implementa- tion of an architecture, multiple design decisions must be made Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
142
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
143
+ page_content=' Illustration of FPGA Paradigm for Testing Our Implementation with respect to area, inter-connectivity, interface requirements, and transistor count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
144
+ page_content=' In this example, we model a simple multi-fetch, multi-execution, processor design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
145
+ page_content=' We drafted the requirements in terms of dependencies and constraints, and given the constraints and requirements for the interfaces and inter-connectivity between components, we aim to find the minimal transistor count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
146
+ page_content=' This was a more rudimentary design, and it aimed to find the computation limit of our implemen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
147
+ page_content=' One thing that we attempted to model was having very large integer sets, and exploring those.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
148
+ page_content=' Emulating design space exploration for computer architectures with such large intervals was the reason we had to refactor our computation engine from purely symbolic to the lambda paradigm, as the symbolic computation was not able to run search space exploration and computation in a reasonable amount of time with this example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
149
+ page_content=' The results for those example are posted in Figure 4, along with the variation between random sampling methods from the valid intervals generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
150
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
151
+ page_content=' Performance and Efficacy As aforementioned during the discussion on the implemen- tation, performance was a major bottleneck in our implemen- tation, and there were a number of features that needed to be added to be able to guarantee reasonable performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
152
+ page_content=' The first was the use of lambdas to calculate the valid interval set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
153
+ page_content=' The second, which is outlined in the algorithm, is keeping a short list of the least-cost neighbors that exist, and generating new random neighbors from that list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
154
+ page_content=' This allows us to have multiple different forays into the search space, and we could possibly arrive to many local minima’s, but we only choose the most optimal local minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
155
+ page_content=' Computation time is static across iterations, and there are parameter options to increase or decrease the exhaustiveness of the search depending on the intended use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
156
+ page_content=' 4 L2Cache L1Cache 品品 00001 0000 Memory Ports Process 1 Process 2 indino Input Ports Ports Process 3We also wanted to verify the efficacy of our design and do the best possible effort into generating the most optimal point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
157
+ page_content=' To verify that our results where sane, we ran multiple differ- ent instances of both the FPGA and Computer Architecture description JSON files, and averaged those results out, and did this for three different weights for random sampling(uniform, linear weighted, square weighted), and what we found that in all cases, our results for all runs where fairly similar, but there are some noticeable differences worth discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
158
+ page_content=' Firstly, the uniform random search has better performance for lower iterations, and this is because during early stages of evolution, a majority portion of the set space has yet to be explored, and uniform sampling allows us to traverse the majority of the set space early.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
159
+ page_content=' However after a lot of iterations, the square weighted random sampling from the interval eventually makes us arrive to a more optimal cost, and this is because as more and more of the set space is invalidated, the parameters that are undergoing evolution get much closer to the local optima, and square weighting allows us to more likely sample these local optima and arrive at them at a quicker rate than both uniform and linear random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
160
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
161
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
162
+ page_content=' Table of the Impact of Different Weights and Effect on Set Exploration for FPGA Example IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
163
+ page_content=' SUMMARY To reiterate the major points that have been mentioned throughout this paper, we have created a tool that performs discrete search of integer spaces of mapped heterogeneous parameters to the integer domain, and we utilized correct- by-construction methods to ensure that given constraints and dependencies are met, while attempting to find the most opti- mal cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
164
+ page_content=' This differs from the previous literature in that it is able to accommodate for heterogeneous data structures and is able to model hybrid systems, while comparatively the existing literature exists primarily for reachability and homogeneous parameter exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
165
+ page_content=' The main takeaways from this endeavor include that there is a significant divide between the tools that are used in industry, and the potential for tools that could be used to better-optimize processes and methods that are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
166
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
167
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
168
+ page_content=' Table of the Impact of Different Weights and Effect on Set Exploration for Architecture Example The main hurdle for widespread adoption of these methods includes a difficulty of understanding and use, as well as a computational cost-barrier that is evident in very complex systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
169
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
170
+ page_content=' Wish-list of additional features One feature that would have been useful to incorporate would have been incorporating a Boolean SAT or SMT solver [9], which would have allowed us to bypass pseudo-Boolean constraints entirely, which are generated heuristically, and instead rigorously solve Boolean equations for all possible solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
171
+ page_content=' Incorporation a Boolean SAT solver such as Z3 would’ve been time-prohibitive, but would’ve allowed for a greater range of expressively for constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
172
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
173
+ page_content=' Application Files Due to space reasons, we do not go into detail on the specifics of the Computer Architecture Example and the FPGA Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
174
+ page_content=' Please contact the authors for more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
175
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
176
+ page_content=' SOME THOUGHTS ON OPTIMIZATION AND USE CASES Optimization aims at searching for values of x which minimizes the objective function f bounded by constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
177
+ page_content=' A general formula of optimization problem is in equation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
178
+ page_content=' arg x min f(x) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
179
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
180
+ page_content=' Constraints on x (1) In addition to existing gradient based methods which re- quires the objective function to be differentiable or even more smooth, discrete search algorithm proposed in this paper achieves a high degree of performance on all kinds of objective functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
181
+ page_content=' One of the most important features of cyber-physical sys- tems is that they contains both continuous system components and discrete system components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
182
+ page_content=' In this case, the constraints may include discrete forms like SATs, and continuous forms like inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
183
+ page_content=' Our discrete search algorithm can be used to choose optimal parameters for a cyber-physical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
184
+ page_content=' 5 Different WeightTypesandCostper IterationForFPGA Example UniformWeightFPGA Linear Weight FPGA Square Weight FPGA 40000000 20000000 10000000 8000000 6000000 4000000 1 5 10 50 100 IterationDifferent Weight Types and Costper Iteration For Architecture Example Uniform Weight Arch Linear Weight Arch Square Weight Arch 5000000000000000 1000000000000000 500000000000000 100000000000000 50000000000000 10000000000000 5 10 50 100VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
185
+ page_content=' FURTHER POSSIBLE WORK We would like to explore more about the background of reachability analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
186
+ page_content=' Where does this problem rise from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
187
+ page_content=' Moreover, as for existing optimization algorithms like heuristic algorithms, gradient based methods and interior point methods, what are the bottlenecks on applying these algorithms on hybrid system reachability analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
188
+ page_content=' Another topic is the connection between reachability anal- ysis and optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
189
+ page_content=' If the reachability problem can be formulated into an optimization problem, then it will be easier to understand the problem from the mathematical properties of objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
190
+ page_content=' REFERENCES [1] Luca Geretti, Pieter Collins, Davide Bresolin, and Tiziano Villa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
191
+ page_content=' Automat- ing numerical parameters along the evolution of a nonlinear system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
192
+ page_content=' In Runtime Verification: 22nd International Conference, RV 2022, Tbilisi, Georgia, September 28–30, 2022, Proceedings, page 336–345, Berlin, Heidelberg, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
193
+ page_content=' Springer-Verlag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
194
+ page_content=' [2] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
195
+ page_content=' Integer Programming / Michele Conforti, G´erard Cornu´ejols, Giacomo Zambelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
196
+ page_content=' Springer, Cham, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
197
+ page_content=' [3] Ian M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
198
+ page_content=' Mitchell and Claire J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
199
+ page_content=' Tomlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
200
+ page_content=' Overapproximating reachable sets by hamilton-jacobi projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
201
+ page_content=' Journal of Scientific Computing, 19(1):323–346, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
202
+ page_content=' [4] Guido Van Rossum and Fred L Drake Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
203
+ page_content=' Python reference manual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
204
+ page_content=' Centrum voor Wiskunde en Informatica Amsterdam, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
205
+ page_content=' [5] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Mart´ın Ugarte, and Domagoj Vrgoˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
206
+ page_content=' Foundations of json schema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
207
+ page_content=' In Proceedings of the 25th International Conference on World Wide Web, pages 263–273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
208
+ page_content=' International World Wide Web Conferences Steering Committee, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
209
+ page_content=' [6] Charles R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
210
+ page_content=' Harris, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
211
+ page_content=' Jarrod Millman, St´efan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
212
+ page_content=' van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay- lor, Sebastian Berg, Nathaniel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
213
+ page_content=' Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
214
+ page_content=' van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern´andez del R´ıo, Mark Wiebe, Pearu Peterson, Pierre G´erard- Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
215
+ page_content=' Oliphant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
216
+ page_content=' Array programming with NumPy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
217
+ page_content=' Nature, 585(7825):357–362, September 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
218
+ page_content=' [7] Sympy Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
219
+ page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
220
+ page_content=' Dote.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
221
+ page_content=' Introduction to fuzzy logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
222
+ page_content=' In Proceedings of IECON ’95 - 21st Annual Conference on IEEE Industrial Electronics, volume 1, pages 50–56 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
223
+ page_content='1, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
224
+ page_content=' [9] Leonardo De Moura and Nikolaj Bjørner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
225
+ page_content=' Satisfiability modulo theories: Introduction and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
226
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
227
+ page_content=' ACM, 54(9):69–77, sep 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
228
+ page_content=' 6' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf'}
3NFST4oBgHgl3EQfYjhQ/content/tmp_files/2301.13788v1.pdf.txt ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Synthesis and characterization of PEG-coated Zn0.3MnxFe2.7-xO4 nanoparticles as
4
+ the dual T1/T2-weighted MRI contrast agent
5
+ Bahareh Rezaei, Ahmad Kermanpur*, Sheyda Labbaf
6
+ Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
7
+
8
+
9
+
10
+
11
+
12
+ Abstract
13
+ Super-paramagnetic nanoparticles (NPs) have been widely explored as magnetic resonance imaging
14
+ (MRI) contrast agents because of a combination of favorable magnetic properties, biocompability and
15
+ ease of fabrication. MRI using traditional T1- or T2-weighted single mode contrast-enhanced
16
+ techniques may yield inaccurate imaging results. In the present work, a T1/T2 dual mode contrast agent
17
+ based on the super-paramagnetic zinc-manganese ferrite (Zn0.3MnxFe2.7-xO4, x= 0, 0.25, 0.75 and 1)
18
+ NPs with small core size and a hydrophilic PEG surface coating is reported. The TEM, TGA and FTIR
19
+ results confirmed the formation of a uniform coating on the NPs surface. The MRI analysis revealed
20
+ that the Zn0.3Mn0.5Fe2.2O4 NPs had the maximum image contrast compared to other zinc-manganese
21
+ ferrite samples. Cell viability evaluations revealed that the coated and uncoated particles did not
22
+ inhibit cell growth pattern. The present PEG-coated Zn0.3Mn0.5Fe2.2O4 NPs can be utilized as a suitable
23
+ T1/T2-weighted MRI contrast agent for better diagnostic of abnormalities in the organs or tissues.
24
+
25
+ Keywords
26
+ Magnetic Resonance Imaging (MRI); Super-paramagnetic nanoparticles; Zn0.3MnxFe2.7-xO4
27
+ nanoparticles; Polyethylene Glycol (PEG) coating
28
+
29
+ 1. Introduction
30
+
31
+ The most potent and painless test that gives extremely clear images of the internal organs in
32
+ the body is the magnetic resonance imaging (MRI) scan [1, 2]. Based on the magnetic relaxation
33
+ processes of water protons on soft tissue of nearly every internal structure in the human body [1, 3-5],
34
+ this method is a sort of diagnostic test that generates detailed images and functional information in a
35
+ non-invasive and real-time monitoring manner [6, 7]. It is a distinguished device since there is no
36
+ ionizing radiation during the imaging process and obviously reduces harmful side effects [2, 4, 8, 9].
37
+ However, this test typically provides poor anatomical details, and clinicians have some difficulties to
38
+ distinguish between normal and abnormal tissues due to its low sensitivity [9, 10]. Hence, the clinical
39
+
40
+ * Corresponding author; Tel. (+98)3133915738; Fax (+98)3133912752; Email: [email protected]
41
+
42
+ 2
43
+
44
+ domains urgently require more reliable MR images. There is a potential to create more accurate and
45
+ crisper images by adding contrast agents, which enables physicians to detect organs or in-vivo systems
46
+ more clear. This opens up a wide range of MRI applications for therapeutic medicine in addition to
47
+ diagnostic radiology. Despite the fact of shorter circulation time of Gd3+ ions as a T1-weighted MRI
48
+ contrast agent, which renders them useless for high-resolution and/or targeted MRI [9, 11] and many
49
+ concerns about potential trace deposition of Gd ions in the body, known as Nephrogenic Systemic
50
+ Fibrosis (NSF) [12-14], which is a rare disease that frequently develops in patients with severe renal
51
+ failure or after liver transplantation [15], Gd-based contrast agents can shorten the T1 relaxation time
52
+ effectively and provide brighter images in the regions of interest [16]. Following the increased
53
+ awareness of this side effect, researchers have much more emphasis on alternative methods based on
54
+ Mn-based complexes [15]. Although no scientific relationship has been proved between the NSF side
55
+ effect and Mn so far, the metal is still known to pose some toxicity when inhaled. However, small
56
+ amounts are essential to human health, but overexposure to free Mn ions may result in the
57
+ neurodegenerative disorder known as ‘Manganism’ with symptoms similar Parkinson’s disease [11].
58
+ Unlike Gd3+ and Mn2+ chelates, iron oxide nanoparticles (NPs) have achieved great attention
59
+ due to the outstanding properties they exhibit at the nano-metric scale. A large number of benefits
60
+ including biocompatibility, superparamagnetic behavior at room temperature, high saturation
61
+ magnetization that can be tailored by size, shape, composition and assembly, tunable cellular uptake,
62
+ biodispersibility, and large surface areas that make them a good candidate for polymer coating,
63
+ conjugation with targeting molecules and other probes for achieving targeting and multimodal agents
64
+ [17, 18] is reported for the iron oxide NPs. Super-paramagnetic NPs can be employed as T2-weighted
65
+ MRI contrast agents since they are more sensitive in the micro- or nano-molar range than Gd
66
+ complexes [17]. Clinical MR imaging applications often use iron oxide-based NPs with strong
67
+ magnetic moments as T2-weighted MRI contrast agents. The limited usage of iron oxide NPs as T1
68
+ contrast agents is due to their high transverse to longitudinal relaxivity ratio [19]. However, the use of
69
+ superparamagnetic NPs in MRI is constrained by a negative contrast effect and magnetic susceptibility
70
+ artifacts. Because the signal is frequently confused with signals from bleeding, calcification, or metal
71
+ deposits and the susceptibility artifacts alter the background image, the resulting dark signal in T2-
72
+ weighted MRI may be exploited to mislead clinical diagnosis [18]. The T1-weighted MRI contrast
73
+ agents, however, have advantages over T2-weighted MRI contrast agents. These advantages include
74
+ better imaging quality, brighter images that can more effectively distinguish between normal and
75
+ lesion tissues, and also the ability to provide better resolution for blood imaging. Nonetheless, in T1-
76
+
77
+ 3
78
+
79
+ weighted MR imaging, some normal tissues (such as fatty tissue) may be mistaken for bright lesions
80
+ that have been increased by T1 contrast agents [20]. Therefore, efforts to integrate T1 and T2 imaging
81
+ to prevent probable MRI artifacts and produce superior clinical images have been made as a result of
82
+ the rising demand in the clinical diagnosis for both T1- and T2-weighted MR images. [18, 21].
83
+ Additionally, when several organ scans are required, injecting one dosage offers unmatched benefits
84
+ to patients and doctors [16]. Super-paramagnetic NPs have the potential to exhibit significant dual
85
+ T1/T2 relaxation performances when their sizes are decreased to less than 10 nm, according to some
86
+ theoretical investigations [21-24]. Recently, super-paramagnetic iron oxide-gold composite NPs is
87
+ synthesized by a green method [25]. It is shown that the NPs exhibited a high relaxivities ratio (r2/r1)
88
+ of 13.20, indicating the potential as a T2 contrast agent.
89
+ Surface modification is often practical to provide better stability under physiological
90
+ conditions and prolong bloodstream circulation time, thereby increasing MR imaging quality [26].
91
+ This surface modification is known to restrict the uptake of plasma proteins (i.e., corona proteins),
92
+ which lowers the likelihood that macrophages will recognize and remove them [27]. In order to
93
+ overcome the aforementioned difficulties, polymeric coatings on the surface of magnetic NPs are
94
+ recommended [28]. In a recent work [29], iron oxide ferrofluid is synthesized by thermal
95
+ decomposition using poly (maleic anhydride-alt-1-octadecene, noted as PMAO) as a phase
96
+ transferring ligand. The results have demonstrated that the magnetic particles were fully covered at
97
+ high coverage by long non-magnetic polymeric chains. It is shown that this ligand could improve the
98
+ ferrofluid stability up to as long as 6 months. The MR images in solution and in rabbit using the
99
+ prepared PMAO-coated magnetic NPs had the best contrast effect on T2 weighted maps.
100
+ Polyethylene glycol (PEG) is a highly water soluble, hydrophilic, biocompatible, non-
101
+ antigenic, and protein-resistant polymer that is easily eliminated through the kidneys and is not
102
+ absorbed by humans' immune systems among all forms of polymeric coatings. PEG has also been
103
+ frequently employed for linking anticancer medications to proteins to prolong their half-life, as well
104
+ as for organ preservation [30. It also functions as an antibacterial, non-toxic lubricant and binder that
105
+ is frequently used in a variety of medicinal applications [31, 32]. Additionally, PEG-capped magnetic
106
+ NPs have demonstrated promise as effective and efficient magnetic hyperthermia candidates as well
107
+ as multifunctional nano-carriers for the encapsulation of hydrophobic medicines [28]. In our previous
108
+ work, we successfully synthesized Zn0.3MnxFe2.7-xO4 (x=0, 0.25, 0.5, 0.75 and 1) NPs by a one-step
109
+ citric acid-assistant hydrothermal method and reported the effect of citric acid concentration, pH of
110
+ the medium and the amount of Mn addition on the structure, purity, and magnetic properties of the
111
+
112
+ 4
113
+
114
+ synthesized NPs [33]. According to the author’s knowledge, citric acid-assistant hydrothermal
115
+ synthesis of PEG-6000 coated Zn0.3Mn0.5Fe2.2O4 NPs as a dual mode T1/T2 imaging contrast agent
116
+ have not been previously reported. In the present study, PEG surface coating is applied on the surface
117
+ of the zinc-manganese ferrite NPs and then physiochemical properties of the optimized sample is
118
+ thoroughly investigated. The mono-dispersed magnetic PEG-coated and uncoated Zn-Mn ferrite NPs
119
+ containing different levels of Mn content is synthesized and the MR imaging of the NPs in the presence
120
+ of external magnetic field is investigated.
121
+ 2. Materials and Experimental Techniques
122
+ 2.1. Materials
123
+ All raw materials, including Fe (NO3)3.9 H2O, NH4OH 25%, Zn (NO3)2.4H2O, Mn (NO3)2.4H2O and
124
+ C6H8O7.H2O (citric acid), CH3OH, and PEG (MW=6000 g/mol) were purchased from Merck Co. with
125
+ minimum purity of 99%.
126
+ 2.2. Synthesis of Mn-Zn NPs
127
+ In order to synthesize Zn0.3MnxF2.7-xO4 NPs, where x is the molar fraction of manganese ions (Mn2+)
128
+ from 0 to 1, various amounts of manganese iron nitrate, zinc nitrate and manganese nitrate were
129
+ dissolved in 25 ml of distilled water. A reddish brown slurry was formed after adding a solution of
130
+ 25% NH4OH which was added for the purpose of adjusting the pH of the media to 10. The resulting
131
+ slurry was then washed with the deionized distilled water three times. Following the addition of the
132
+ citric acid (CA), the mixture was rapidly stirred for 30 minutes before being placed to a 350 ml Teflon-
133
+ lined autoclave with a 65% fill level. The autoclave was kept at 185 °C for 15 h and then cooled to
134
+ room temperature [33]. Table 1 shows the experimental conditions of the synthesized samples. The
135
+ uncoated samples were coded as NCZMX in which X is the molar fraction of Mn2+ ions.
136
+ Table 1: The hydrothermal process parameters and the corresponding sample codes in the present work
137
+ Sample code
138
+ Temperature (℃)
139
+ Time (h)
140
+ Citric acid (mmol)
141
+ pH
142
+ Molar fraction of Mn2+(x)
143
+ NCZM
144
+ 185
145
+ 15
146
+ 3.5
147
+ 10.5
148
+ 0
149
+ NCZM25
150
+ 185
151
+ 15
152
+ 3.5
153
+ 10
154
+ 0.25
155
+ NCZM50
156
+ 185
157
+ 15
158
+ 3.5
159
+ 10
160
+ 0.5
161
+ NCZM75
162
+ 185
163
+ 15
164
+ 3.5
165
+ 10
166
+ 0.75
167
+ NCZM100
168
+ 185
169
+ 15
170
+ 3.5
171
+ 10
172
+ 1
173
+
174
+ 5
175
+
176
+ 2.3. Coating of Mn-Zn NPs
177
+ 15 mg of NCZM50 and NCZM25 NPs were added to 1 ml deionized distilled water and then placed
178
+ in an ultrasonic bath for 30 min. A polymeric solution containing 3 wt% PEG was dissolved in 1.5 ml
179
+ of deionized distilled water and stirred for 30 min. The prepared magnetic ferro-fluid placed on a
180
+ magnetic stirrer and then, the PEG solution were slowly added. This mixture was stirred at room
181
+ temperature for another 1 h at ambient temperature (25 °C). Finally, the coated NPs were magnetically
182
+ collected, washed with distilled water and dried in a vacuum oven at 40 °C for 24 h. The synthesized
183
+ coated NPs are named as CZM25 and CZM50.
184
+ 2.4. Cell viability
185
+ The MCF-7 cells were cultured in Dulbecco’s modified Eagle’s medium DMEM (Gibco 12800, UK)
186
+ supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM
187
+ L-glutamine at 37 °C in a humidified atmosphere of 5% CO2. The MG-63 osteoblast-like-cells were
188
+ seeded at a density of 10,000 cells/well in a 96 well plate and cultured with complete medium
189
+ containing NPs at concentrations of 50, 100 and 250 g/ml. MCF-7 cells were exposed to particles
190
+ for 24 h, after which Alamar Blue cytotoxicity assay was conducted and absorbance was measured at
191
+ 450 nm using a micro-plate reader. The results represent the mean values ± SD of two individual
192
+ experiments each performed in quadruplicate. Differences between groups were determined by
193
+ student’s t test with values of p<0.05 considered significant [34, 35].
194
+ 2.5. Characterizations
195
+ Philips diffractometer, MPD-XPERT model, using CuKα radiation (λ = 1.5406 Å), was used for phase
196
+ identification. Estimation of the average crystallite size (L) of the samples, using the full width at half
197
+ maximum value (β) obtained from the spinel peaks located at every 2θ in the pattern, was carried out
198
+ by the modified Scherer’s formula. According to Scherer's modified formula, Lnβ (β in radians) is
199
+ plotted against Ln(1/cosθ). A linear plot is obtained using the linear regression which is defined as Eq.
200
+ (1). The intercept of the line would be Ln(kλ/L) (k=0.9); the value of L (mean crystallite size) can be
201
+ obtained using all the peaks: [33, 36].
202
+ 𝐋𝐧𝛃 = 𝐋𝐧 ((𝟎. 𝟗𝟒𝛌
203
+ 𝐋
204
+ ) + 𝐋𝐧 ( 𝟏
205
+ 𝐜𝐨𝐬𝛉))
206
+ (1)
207
+
208
+ The miller indices of the planes were extracted from the cards in the X’Pert software. Then, the mean
209
+ lattice parameter was calculated based on Eq. (2) [37]:
210
+
211
+ 6
212
+
213
+
214
+ (2)
215
+ The shape, size, and size distribution of NPs were investigated using transmission electron microscopy
216
+ (TEM) with energy of 200 kV at Arya Rastak company in Tehran. A droplet of diluted magnetic flux
217
+ was placed on a carbon coated copper mesh and placed at room temperature to allow water to
218
+ evaporate. The average particle size of the produced zinc-manganese ferrite NPs from the TEM and
219
+ SEM data was calculated by measuring the diameter of at least 100 NPs with ImageJ software. The
220
+ data were fitted by a log-normal distribution curve and then the mean size was obtained.
221
+ Fourier transform infrared spectra (FTIR) were recorded in the range of 4000-400 cm-1 to detect
222
+ functional groups.
223
+ Saturation magnetization (Ms) values were conducted from the high field part of the measured
224
+ magnetization curves, where the magnetization curve becomes linear and line’s slope reaches to zero.
225
+ Colloidal properties of the aqueous magnetic ferro-fluids were investigated using a Zeta Potential
226
+ Estimator to measure the surface charge of NPs, hydrodynamic size, zeta potential and poly-dispersity
227
+ index of NPs (in pH=7) under different conditions.
228
+ Thermo-gravimetric analysis (TGA) was used to investigate the presence of polymer coating on the
229
+ surface of NPs.
230
+ MRI tests were performed with a 1.5 T clinical MRI instrument with a head coil working at 37 ℃. For
231
+ T1 and T2-weighted MRI of in-vitro cells at 1.5 T, the following parameters were adopted: [Mat
232
+ (320*192), FoV (184*230), and TR (407)], [Mat (256*192), FoV (260*260), and TR (7)], [Mat
233
+ (320*192), FoV (184*230), TR (2570)]. In order to simulate the physiological state of the body, PBS
234
+ solution and water was used to create a positive and negative contrast in the images.
235
+
236
+ aj = d; × Jh,? +k;? + ?7
237
+
238
+
239
+ Fig. 1. Image of the prepared instrument for MRI imaging.
240
+ 3. Results and Discussion
241
+ 3.1. Structural properties
242
+ Fig. 2. shows XRD pattern of the NCZM50 NPs in which the diffraction peaks are in good agreement
243
+ with planes (220), (311), (222), (400), (422), (511), (440), (620), (533) and (444) representing
244
+ synthesis of pure spinel phase without the need for any calcination step. The crystallite size of the
245
+ sample was estimated as 22 nm.
246
+
247
+ Fig. 2. The XRD pattern of the NCZM50 sample.
248
+ Surface coating is important in preventing NPs from agglomeration in physiological environment
249
+ which also act as a barrier, effectively shielding the magnetic core against the attack of chemical
250
+
251
+ 140-
252
+ S
253
+ S
254
+ NC7.M50
255
+ 120-
256
+ Spincl:01-086-510
257
+ 100 -
258
+ 80
259
+ S
260
+ ntensi
261
+ F09三
262
+ S
263
+ S
264
+ S
265
+ 40-
266
+ S
267
+ S
268
+ S
269
+ 20 -
270
+ 0:
271
+ -
272
+ 20
273
+ 40
274
+ 60
275
+ 80
276
+ 208
277
+
278
+ species in the aqueous solution. Here, PEG was utilized to coat the optimized NPs. The FT-IR spectra
279
+ of the pure NCZM50, the PEG-coated CZM50 NPs and the PEG are shown in Fig. 3. For the pure
280
+ NPs, at around 3300 cm-1, a strong wide band exists which is attributed to the O-H stretching vibrations
281
+ of water molecules which are assigned to –OH group of CA absorbed by NCZM50 NPs (a structural
282
+ bond). The stretching vibration of C-H corresponds to the peak at ~2925 cm- 1 [38, 39]. The absorption
283
+ band at 1690-1760 cm-1 is due to the vibration of asymmetric carboxyl group (-COOH) [28, 40].
284
+ Hence, it is suggested that CA binds to the NPs surface through carboxylate groups of citrate ions
285
+ [28]. Furthermore, Fe-O stretching band as the characteristic peak of magnetite NPs was located at
286
+ around 520 cm−1 which is attributed to the Fe-O stretching vibration bond in tetrahedral sites and the
287
+ absorption band in the 437 cm-1 corresponds to a Fe-O vibrating bond in octahedral sites of ferrite
288
+ phase [41]. Hydroxyl groups (-OH) of PEG are linked to the carboxyl group (-COOH) of citric acid
289
+ (CA) for coating of Zn0.3Mn0.5Fe2.2O4 NPs. As it can be seen in Fig. 3, the highest peak for PEG curve
290
+ showed a very small shift in PEG-coated sample. The peak at 1105 cm-1 for pure PEG were shifted to
291
+ lower frequencies which is a proof of C-O-C and C-O-H groups bonding with Zn0.3Mn0.5Fe2.2O4 NPs.
292
+ The absorption band at 2884 cm-1 can also be due to the H-C bonds stretching vibrations of the
293
+ polymeric chain. The peaks corresponding to the bonds, C-H and C-O-C are the strong evidence to
294
+ show that the synthesized magnetite NPs surface has been coated with PEG [38, 40].
295
+
296
+ Fig. 3. The FT-IR spectra of the pure NCZM50 and PEG-coated CZM50 NPs along with the PEG coating and
297
+ citric acid.
298
+
299
+ citricacid
300
+ 2.4
301
+ Zn0.3Mn0.5Fe2.204
302
+ PEG-Zn0.3Mn0.5Fe2.204
303
+ PEG
304
+ 2.2
305
+ 2.0-
306
+ 1.8
307
+ -COOH
308
+ .6
309
+ 1.4
310
+ C-H
311
+ HO
312
+ 1.2
313
+ 1.0
314
+ 0.8
315
+ 0.6-
316
+ C-O-C groups
317
+ C-H groups
318
+ 0.4
319
+ 500
320
+ 1000
321
+ 1500
322
+ 2000
323
+ 2500
324
+ 3000
325
+ 3500
326
+ 4000
327
+ Wave number (cm-')9
328
+
329
+
330
+ The presence of PEG layer on the NPs surface was also characterized by TGA which is presented in
331
+ Fig. 4. The first stage of weight loss at a temperature about 32-35 °C can be related to the removal of
332
+ water molecules (hydroxyl ions) that are physically absorbed to the surface of the NPs. This weight
333
+ loss in the uncoated sample is 2.45% and in the coated sample is equal to 2.15%. The comparison of
334
+ the first weight loss in the two samples shows that the total water loss of the NPs is more than coated
335
+ NPs which is due to the total absence of water from the magnetic material structure [42]. The second
336
+ step, starting at about 50-300 °C, results from the loss of organic groups that were conjugated to the
337
+ surface of the particles. PEG desorption and subsequent evaporation were the causes of this weight
338
+ loss. When 7.5 mg of PEG 6000 were used, the weight loss for particles was almost 24%, indicating
339
+ 76% iron oxide in the polymer-coated NPs. Weight losses less than 15–20% can imply that the
340
+ coverage of particle surface by the polymer is not complete [40].
341
+
342
+ Fig. 4. The TGA result of the NCZM50 and CZM50 samples.
343
+ 3.2. Microstructural analysis
344
+ Fig. 5 shows TEM micrograph and particle size distribution curve of the coated and uncoated samples.
345
+ By using ImageJ software to measure the diameter of at least 100 NPs, the average particle size and
346
+ the standard deviation was determined. As it can be seen, the synthesized NPs exhibit a rather uniform
347
+ size distribution, shape, and morphology. The mean particle size of the coated NPs is a bit greater than
348
+ that of the uncoated ones. It can be seen that NPs have become more dispersed after applying the
349
+
350
+ 100
351
+ -
352
+ 95
353
+ Weight Percent (%)
354
+ 90
355
+ NCZM50
356
+ 85
357
+ CZM50
358
+ 08
359
+ 75
360
+ -
361
+ -
362
+ 1
363
+ 50
364
+ 100
365
+ 150
366
+ 200
367
+ 250
368
+ 300
369
+ 0
370
+ Temperature (°C)10
371
+
372
+ coating in an aqueous medium. The average size of NPs obtained from the results of the TEM images
373
+ before and after coating was 6.9±1.54 nm and 9.25±1.6 nm, respectively, which indicates that the
374
+ polymer coating is applied on the surface of NPs at a low thickness [39].
375
+
376
+ Fig. 5. (a, c) TEM images and (b, d) particle size distribution histogram of the (a, b) uncoated NCZM50 and
377
+ (c, d) coated CZM50 NPs.
378
+ 3.3. Stability and colloidal properties
379
+ The colloidal stability of magnetic fluids of NCZM50 sample was investigated using a zeta potential
380
+ measurement at pH=7 and various time points. The result indicated that the NCZM50 NPs sample had
381
+ a mean zeta potential of -48.86± 0.70 mV and a mean hydrodynamic size of 104 nm. According to
382
+ the results, the strong negative charge of the NPs (caused by the presence of citrate ions on their
383
+ surface) and the steric and electrostatic forces ensure their long-term stability in aqueous media [43].
384
+ c
385
+ d
386
+
387
+ (a)
388
+ 70
389
+ 60
390
+ 50
391
+ Frequency
392
+ 40
393
+ 30
394
+ 20
395
+ 10
396
+ 0
397
+ 5
398
+ 6
399
+ 7
400
+ 8
401
+ 9
402
+ 10
403
+ 11
404
+ 12
405
+ 13
406
+ 14
407
+ 100nm
408
+ 15
409
+ 16
410
+ size (nm)
411
+ (d)
412
+ 100
413
+ 80-
414
+ 60
415
+ 40-
416
+ 20-
417
+ 5
418
+ 6
419
+ 7
420
+ 8
421
+ 9
422
+ 10
423
+ 11
424
+ 12
425
+ 13
426
+ 14
427
+ 15
428
+ 16
429
+ size (nm)
430
+ 75nm11
431
+
432
+ Poly-dispersity index (PDI) of NCZM50 sample was found to be 0.306. PDI is a parameter for
433
+ determining the particle size distribution of different NPs, which is obtained from photon correlation
434
+ spectroscopic analysis. It is a dimensionless number calculated from the autocorrelation function and
435
+ ranges from a value of 0.01 up to 0.7 for mono-dispersed and greater than 0.7 for poly-dispersed
436
+ particles [44]. In general, the particle size between 10 and 100 nm have the longest circulation time;
437
+ by contrast, it has been reported that particles of more than 200 nm tend to be immediately destroyed
438
+ by one of the MPS organs [43] and tend to be eliminated by the RES [9, 45], those with diameters <10
439
+ nm are removed mainly by renal filtration, and particles larger than 400 nm (minimum diameter of
440
+ capillaries) will be filtered by the lung [46].
441
+
442
+ 3.4. Magnetic properties
443
+ The particle size and magnetization saturation values of different NPs are presented in Table 2. The
444
+ room temperature M–H curve for NCZM50 and CZM50 samples is shown in Fig. 6. No hysteresis
445
+ loop can be seen and the value of magnetization sharply increases with the external magnetic field
446
+ strength. The M–H curve has an S-shape at the low field region, and the high field side of the curve is
447
+ almost linear with the external field [47]. Saturation magnetization for the NCZM50 and CZM50 NPs
448
+ is 55 emu/g and 38 emu/g respectively. The difference in particle size and the softening of the
449
+ magnetization caused by the presence of PEG can both be used to explain this mismatch [38]. The
450
+ magnetization curve of the CZM50 sample also revealed a negligible remnant magnetization at zero
451
+ field, reflecting the super-paramagnetic behavior of the ferro-fluid. Since magnetic powder has a
452
+ diameter much below the 20 nm cut-off expected for magnetite to show super-paramagnetic behavior,
453
+ the lack of hysteresis at ambient temperature is consistent with this theory [48].
454
+
455
+ Table 2. The size and Ms values of different NPs
456
+ Code
457
+ Chemistry
458
+ Size (nm)
459
+ Ms (emu/gr)
460
+ NCZM0
461
+ Zn0.3Fe2.7O4
462
+ 14.5±2.7
463
+ 47
464
+ NCZM25
465
+ Zn0.3Mn0.25Fe2.45O4
466
+ 23.6±2.3
467
+ 47
468
+ NCZM50
469
+ Zn0.3Mn0. 5Fe2.2O4
470
+ 6.9±1.5
471
+ 55
472
+ NCZM75
473
+ Zn0.3Mn0. 75Fe1.95O4
474
+ 11.3 ±2.3
475
+ 41
476
+ NCZM100
477
+ Zn0.3Mn1Fe1.7O4
478
+ 6.7±2.4
479
+ 37
480
+ CZM50
481
+ PEG coated- Zn0.3Mn0.5Fe2.2O4
482
+ 9.3±1.6
483
+ 38
484
+
485
+
486
+ 12
487
+
488
+
489
+ Fig. 6. The M vs H curves of the synthesized NCZM50 and CZM50 NPs.
490
+
491
+ 3.5. MRI analysis
492
+ MRI examination of the body can be performed with several coil types, depending on the design of
493
+ the MRI unit and the information required. Figs. 7(a-b) show T1– and T2-weighted MR images of
494
+ Fe3O4 and Zn-Mn ferrite solutions recorded on a 1.5-T MRI scanner at room temperature at different
495
+ concentrations (0.1, 0.15 and 0.2 mg/ml). As it can be seen, both T1 and T2-weighted MR images show
496
+ a strong dependence of signal intensity on manganese concentrations and among the Fe3O4 control
497
+ sample, Zn-based and Mn-Zn-based super-paramagnetic NPs, Mn-Zn ferrites represent a better MRI
498
+ contrast [49]. This is due to the fact that Mn2+ with five unpaired electrons, after Gd3+, is the most
499
+ powerful cation used as a MRI contrast agent [50]. Due to their greater paramagnetism and five
500
+ unpaired electrons, divalent manganese ions (Mn2+) have been shown to be a successful method of
501
+ increasing the r1 of ultra-small iron oxide NPs. A peculiar mixed spinel structure, a greater saturation
502
+ magnetization (Ms), and a high r2 of manganese doped iron oxide NPs result from the doped Mn2+
503
+ with a higher magnetic moment (B=5.92) being able to fill both the tetrahedral (Td) and octahedral
504
+ (Oh) sites in the crystal lattice. The doped Mn2+ and ultra-small iron oxide NPs also exhibit synergetic
505
+
506
+ 60 -
507
+ CZM50
508
+ NCZM50
509
+ 40-
510
+ Magnetization (emu/g)
511
+ 20
512
+ 0
513
+ 40
514
+ Magnetization (emu/g)
515
+ 20
516
+ 20
517
+ 0
518
+ -40 -
519
+ 20
520
+ -40
521
+ 09-
522
+ -400
523
+ -200
524
+ 0
525
+ 200
526
+ 400
527
+ Applied field (Oe)
528
+ -15000
529
+ -10000
530
+ -5000
531
+ 0
532
+ 5000
533
+ 10000
534
+ 15000
535
+ Applied field (Oe)13
536
+
537
+ enhancement, which will further enhance both r1 and r2 of Mn-iron oxide NPs, according to the
538
+ embedding logic. The Mn-iron oxide NPs may therefore make superior candidates for dual-contrast
539
+ CA [20]. Indeed, it has recently been discovered that decreasing iron oxide NPs below 10 nm improves
540
+ their effectiveness as T1 contrast agents, suggesting that this approach could be employed to create
541
+ dual contrast agents. The utility of these NPs as T1 contrast agents is unfortunately limited by the low
542
+ r2/r1 values caused by the large decrease in r2 that occurred along with the increase in r1. To get over
543
+ this restriction, alloy-based NPs which has a high Ms are a suitable candidate to achieve NPs with
544
+ high MRI sensitivity [51]. The addition of Mn2+ and Zn2+ divalent cation ions to the spinel ferrite
545
+ structure causes the mass magnetization of the material to rise, which enhances the magnetic
546
+ characteristics. Therefore, the higher contrast in Zn0.3Mn0.5Fe2.2O4 NPs with higher saturation
547
+ magnetization can be justified [52]. As it is presented in Fig. 7, NCZM50 sample with core diameters
548
+ about 6.7±1.54 nm and saturation magnetization about 55 emu/g is capable of producing dual positive
549
+ and negative contrast in images [26, 53]. However, the length of the polymer chain, which relates to
550
+ coating thickness, has a substantial impact on relaxivity as well. According to computer simulations,
551
+ the physical exclusion of protons from the super-paramagnetic iron oxide magnetic field and the
552
+ protons' residence period within the coating zone compete to decide the influence of coating thickness
553
+ on relaxivity.
554
+ As it can be seen in the Fig. 8, the surface coatings also affect the relaxivity of NPs. Laconte et al.
555
+ reported that the increased coating thickness would dramatically decrease the r2 and r1 relaxivity of
556
+ mono-crystalline magnetic NPs. Therefore it is important to note that both the chemistry of coating
557
+ and its thickness affect the value of r2 and r1 in which as the coating thickness increases, the ratio r2/r1
558
+ decreases. This is due to the inner hydrophobic layer excluding water, while the outer hydrophilic
559
+ PEG layer allows water to diffuse within the coating zone [53] .
560
+
561
+
562
+
563
+
564
+ 14
565
+
566
+
567
+ Fig. 7. (a) T1-weighted and (b) T2-weighted MR images of the uncoated Fe3O4 and Mn-Zn ferrite NPs at
568
+ different concentrations indicated by different numbers: (1) Fe3O4 control sample, (2) NCZM0, (3) NCZM25,
569
+ (4) NCZM50, (5) NCZM75, and (6) NCZM100.
570
+
571
+
572
+
573
+
574
+
575
+ Fig. 8. (a) T1-weighted and (b) T2-weighted MR images of un-coated and uncoated samples indicated by
576
+ different numbers: (1) Fe3O4 control sample, (2) NCZM50, and (3) CZM50.
577
+
578
+ 3.6. Cell viability
579
+ Cytotoxicity evaluations of the uncoated and coated NPs were investigated by evaluating their
580
+ cytotoxicity using MCF-7 cell line. The results of Alamar blue cytotoxicity assay are presented in Fig.
581
+ 9. According to the results, a similar trend is observed in the activity of cells affected by different
582
+ concentrations of NPs after 24 h compared with the control group. In general, coated and uncoated
583
+ particles did not negatively change the cell growth process, and did not result significant reduction in
584
+ cell viability. In fact, a better growth was observed in the presence of coated NPs.
585
+
586
+
587
+ (a)
588
+ (b)(a)
589
+ (b)
590
+ 215
591
+
592
+
593
+ Fig. 9. The cytotoxicity assays performed on MCF-7 cells in the presence of coated and uncoated NPs after
594
+ 24 h.
595
+ 4. Conclusions
596
+ Mono-dispersed Zn0.3Mn0.5Fe2.2O4 NPs with an average size of about 6.9±1.5 nm were successfully
597
+ synthesized by a facile, one step citric acid-assisted hydrothermal method. The NPs were stabilized
598
+ with a layer of hydrophilic PEG and exhibited long-term colloidal stability in aqueous media at pH=7.
599
+ The magnetic properties of the uncoated and coated Zn-Mn ferrite NPs were measured as 55 and 38
600
+ emu/g, respectively, showing super-paramagnetic behavior at room temperature. More significantly,
601
+ the synthesized NPs displayed unexpectedly high T1 and T2 imaging contrast due to Zn2+ and Mn2+
602
+ doping and PEG-6000 coating. The present zinc manganese iron oxide NPs coated by PEG
603
+ (ZnMnIONPs@PEG) are supposed to be a suitable candidate for application as T1/T2 dual contrast
604
+ agent, as shown by in-vitro MR imaging. Interestingly, applying low thickness of PEG layer on the
605
+ surface of the Zn0.3Mn0.5Fe2.2O4 NPs had no significant effect on the MR imaging.
606
+
607
+ References
608
+ [1]
609
+ S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, Magnetic nanoparticle design for medical diagnosis
610
+ and therapy, J. Mater. Chem., 14 (2004) 2161-2175.
611
+ [2]
612
+ Y.-M. Huh et al., In vivo magnetic resonance detection of cancer by using multifunctional magnetic
613
+ nanocrystals, J. Amer. Chem. Soc., 127 (2005) 12387-12391.
614
+
615
+ 0.2
616
+ *
617
+ Control
618
+ 0.18
619
+ 50 ug/ml
620
+ *
621
+ Absorbance OD 490
622
+ 0.16
623
+ 100 ug/ml
624
+ 0.14
625
+ 250 ug/ml
626
+ 0.12
627
+ 0.1
628
+ 0.08
629
+ 0.06
630
+ A
631
+ 0.04
632
+ 0.02
633
+ 0
634
+ Coated
635
+ Uncoated16
636
+
637
+ [3]
638
+ B. Issa, S. Qadri, I. M. Obaidat, R. W. Bowtell, and Y. Haik, PEG coating reduces NMR relaxivity of
639
+ Mn0. 5Zn0.5Gd0.02Fe1.98O4 hyperthermia nanoparticles, J. Mag. Reson. Imag., 34 (2011) 1192-1198.
640
+ [4]
641
+ S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, Magnetic nanoparticles:
642
+ preparation methods, applications in cancer diagnosis and cancer therapy, Artif. Cell. Nanomed.
643
+ Biotechnol., 45 (2017) 6-17.
644
+ [5]
645
+ M. Létourneau et al., MnO-labeled cells: positive contrast enhancement in MRI, J. Phys. Chemi. B,
646
+ 116 (2012) 13228-13238.
647
+ [6]
648
+ H. B. Na et al., Development of a T1 contrast agent for magnetic resonance imaging using MnO
649
+ nanoparticles, Angew. Chem., 119 (2007) 5493-5497.
650
+ [7]
651
+ T. Tegafaw et al., Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on
652
+ ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo
653
+ application, Nanotechnol., 26 (2015) 365102.
654
+ [8]
655
+ A. Szpak et al., T1–T2 dual-modal MRI contrast agents based on superparamagnetic iron oxide
656
+ nanoparticles with surface attached gadolinium complexes, J. Nanopart. Res., 16 (2014) 2678.
657
+ [9]
658
+ N. Lee and T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient
659
+ magnetic resonance imaging contrast agents, Chem. Soc. Rev., 41 (2012) 2575-2589.
660
+ [10]
661
+ C. Núñez, S. V. Estévez, and M. del Pilar Chantada, Inorganic nanoparticles in diagnosis and treatment
662
+ of breast cancer, JBIC J. Biolog. Inorg. Chem., 23 (2018) 331-345.
663
+ [11]
664
+ D. Pan, A. H. Schmieder, S. A. Wickline, and G. M. Lanza, Manganese-based MRI contrast agents:
665
+ past, present and future, Tetrahed., 67 (2011) 8431.
666
+ [12]
667
+ S. Arsalani et al., Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent,
668
+ J. Mag. Mag. Mater., 475 (2019) 458-464.
669
+ [13]
670
+ J. Wan, X. Jiang, H. Li, and K. Chen, Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T
671
+ 1 MRI contrast agents, J. Mater. Chem., 22 (2012) 13500-13505.
672
+ [14]
673
+ A. G. Roca, S. Veintemillas-Verdaguer, M. Port, C. Robic, C. J. Serna, and M. P. Morales, Effect of
674
+ nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high
675
+ quality magnetite nanoparticles, J. Phys. Chem. B, 113 (2009) 7033-7039.
676
+ [15]
677
+ D. Pan, S. D. Caruthers, A. Senpan, A. H. Schmieder, S. A. Wickline, and G. M. Lanza, Revisiting an
678
+ old friend: manganese‐based MRI contrast agents, Wiley Interdisciplinary Reviews: Nanomedicine and
679
+ Nanobiotechnology, 3 (2011) 162-173.
680
+ [16]
681
+ L. Yang et al., Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide
682
+ nanoparticles as T1–T2 dual-mode magnetic resonance imaging probes, Regen. Biomater., 8 (2021)
683
+ rbab064.
684
+ [17]
685
+ A. M. Prodan, S. L. Iconaru, C. S. Ciobanu, M. C. Chifiriuc, M. Stoicea, and D. Predoi, Iron oxide
686
+ magnetic nanoparticles: characterization and toxicity evaluation by in vitro and in vivo assays, J.
687
+ Nanomater., 2013, Article ID 587021.
688
+ [18]
689
+ F. Hu, Q. Jia, Y. Li, and M. Gao, Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for
690
+ dual-contrast T1-and T2-weighted magnetic resonance imaging, Nanotechnol., 22 (2011) 245604.
691
+ [19]
692
+ L. Wang, S.-M. Lai, C.-Z. Li, H.-P. Yu, P. Venkatesan, and P.-S. Lai, D-Alpha-Tocopheryl Poly
693
+ (ethylene Glycol 1000) Succinate-Coated Manganese-Zinc Ferrite Nanomaterials for a Dual-Mode
694
+ Magnetic Resonance Imaging Contrast Agent and Hyperthermia Treatments, Pharmaceut., 14 (2022)
695
+ 1000.
696
+ [20]
697
+ S. Xiao et al., Synthesis of PEG-coated, ultrasmall, manganese-doped iron oxide nanoparticles with
698
+ high relaxivity for T1/T2 dual-contrast magnetic resonance imaging, Int. J. Nanomed., 14 (2019) 8499.
699
+ [21]
700
+ M. Borges et al., Dual T 1/T 2 MRI contrast agent based on hybrid SPION@ coordination polymer
701
+ nanoparticles, RSC Advan., 5 (2015) 86779-86783.
702
+ [22]
703
+ L. Zeng, W. Ren, J. Zheng, P. Cui, and A. Wu, Ultrasmall water-soluble metal-iron oxide nanoparticles
704
+ as T 1-weighted contrast agents for magnetic resonance imaging, Phys. Chem. Chem. Phys., 14 (2012)
705
+ 2631-2636
706
+ [23]
707
+ U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, and H. Weller, A highly effective, nontoxic
708
+ T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles, Nano Lett., 9 (2009)
709
+ 4434-4440.
710
+
711
+ 17
712
+
713
+ [24]
714
+ Y. Mao et al., Continuous synthesis of extremely small-sized iron oxide nanoparticles used for T1-
715
+ weighted magnetic resonance imaging via a fluidic reactor, Sci. Chin. Mater., 65 (2022) 1646-1654.
716
+ [25]
717
+ P. Kharey, M. Goel, Z. Husain, R. Gupta, D. Sharma, Manikandan M, I.A. Palani, Sh. Gupta, Green
718
+ synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic
719
+ resonance imaging, hyperthermia and photothermal therapeutic applications, Mater. Chem. Phys., 293
720
+ (2023) 126859.
721
+ [26]
722
+ N. Chan et al., Multidentate block copolymer stabilization: a versatile strategy for colloidal
723
+ superparamagnetic iron oxide nanoparticles exhibiting excellent colloidal stability and enhanced
724
+ positive MRI visualization, ACS Symposium Series, Vol. 1285 (2018), Materials and Applications,
725
+ Chapter 6, 107-128.
726
+ [27]
727
+ C. C. Berry, Progress in functionalization of magnetic nanoparticles for applications in biomedicine, J.
728
+ Phys. D: Appl. Phys., 42 (2009) 224003.
729
+ [28]
730
+ T. Zargar, A. Kermanpur, S. Labbaf, A. B. Houreh, and M. N. Esfahani, PEG coated Zn0.3Fe2.7O4
731
+ nanoparticles in the presence of <alpha> Fe2O3 phase synthesized by citric acid assisted hydrothermal
732
+ reduction process for magnetic hyperthermia applications, Mater. Chem. Phys., 212 (2018) 432-439.
733
+ [29]
734
+ T.K. Oanh Vuong, T.T. Le, H.D. Do, X.T. Nguyen, X.C. Nguyen, T.T. Vu, T.L. Le, D.L. Tran, PMAO-
735
+ assisted thermal decomposition synthesis of high-stability ferrofluid based on magnetite nanoparticles
736
+ for hyperthermia and MRI applications, Mater. Chem. Phys., 245 (2020) 122762.
737
+ [30]
738
+ S. Sheng-Nan, W. Chao, Z. Zan-Zan, H. Yang-Long, S. S. Venkatraman, and X. Zhi-Chuan, Magnetic
739
+ iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications, Chin.
740
+ Phys. B, 23 (2014) 037503.
741
+ [31]
742
+ M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, and K. Balamurugan, Synthesis and
743
+ characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-
744
+ precipitation method for biomedical applications, Spectrochim. Acta Part A: Molec. Biomolecul.
745
+ Spect., 135 (2015) 536-539.
746
+ [32]
747
+ M. Mahmoudi, A. Simchi, M. Imani, and U. O. Hafeli, Superparamagnetic iron oxide nanoparticles
748
+ with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug
749
+ delivery, J. Phys. Chem. C, 113 (2009) 8124-8131.
750
+ [33]
751
+ B. Rezaei, A. Kermanpur, and S. Labbaf, Effect of Mn addition on the structural and magnetic
752
+ properties of Zn-ferrite nanoparticles, J. Mag. Mag. Mater., 481 (2019) 16-24.
753
+ [34]
754
+ S. Labbaf, O. Tsigkou, K. H. Müller, M. M. Stevens, A. E. Porter, and J. R. Jones, Spherical bioactive
755
+ glass particles and their interaction with human mesenchymal stem cells in vitro, Biomater., 32 (2011)
756
+ 1010-1018.
757
+ [35]
758
+ A. K. Gupta and A. S. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery:
759
+ interaction studies with human fibroblasts in culture, J. Mater. Sci.: Mater. Medic., 15 (2004) 493-496.
760
+ [36]
761
+ A. Monshi, M. R. Foroughi, and M. R. Monshi, Modified Scherrer equation to estimate more accurately
762
+ nano-crystallite size using XRD, World J. Nano Sci. Eng., 2 (2012) 154-160.
763
+ [37]
764
+ S. Abedini Khorrami, Q. Sadr Manuchehri, Magnetic properties of cobalt ferrite synthesized by
765
+ hydrothermal and Co-precipitation methods: a comparative study, J Appl. Chem. Res., 7 (2013) 15-23.
766
+ [38]
767
+ S. A. Jayanthi, D. Sukanya, A. J. A. Pragasam, and P. Sagayaraj, The influence of PEG 20,000
768
+ concentration on the size control and magnetic properties of functionalized bio-compatible magnetic
769
+ nanoparticles, Der Pharm. Chem., 5 (2013) 90-102.
770
+ [39]
771
+ F. Salehpour, A. Khorramdin, H. Shokrollahi, A. Pezeshki, F. Mirzaei, and N. D. Nader, Synthesis of
772
+ Zn-Doped Manganese Ferrite Nanoparticles Via Coprecipitation Method for Magnetic Resonance
773
+ Imaging Contrast Agent, J. Nanotechnol. Eng. Medic., 5 (2014) 041002.
774
+ [40]
775
+ S. García-Jimeno and J. Estelrich, Ferrofluid based on polyethylene glycol-coated iron oxide
776
+ nanoparticles: characterization and properties, Colloid. Surf. A: Physicochem. Eng. Aspec., 420 (2013)
777
+ 74-81.
778
+ [41]
779
+ S. Khoee and A. Kavand, A new procedure for preparation of polyethylene glycol-grafted magnetic
780
+ iron oxide nanoparticles, J. Nanostruct. Chem., 4 (2014) 111.
781
+
782
+ 18
783
+
784
+ [42]
785
+ B. Behdadfar, A. Kermanpur, H. Sadeghi-Aliabadi, M. del Puerto Morales, and M. Mozaffari,
786
+ Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-
787
+ reduction route for magnetic hyperthermia applications, J. Mag. Mag. Mater., 324 (2012) 2211-2217.
788
+ [43]
789
+ M. Latorre-Esteves, A. Cortés, M. Torres-Lugo, and C. Rinaldi, Synthesis and characterization of
790
+ carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications, J. Mag. Mag. Mater., 321
791
+ (2009) 3061-3066.
792
+ [44]
793
+ M. Nidhin, R. Indumathy, K. Sreeram, and B. U. Nair, Synthesis of iron oxide nanoparticles of narrow
794
+ size distribution on polysaccharide templates, Bullet. Mater. Sci., 31 (2008) 1.
795
+ [45]
796
+ V. Mulens, M. d. P. Morales, and D. F. Barber, Development of magnetic nanoparticles for cancer gene
797
+ therapy: a comprehensive review, Int. Schol. Res. Notic., 2013, Article ID 646284.
798
+ [46]
799
+ Y. Shi, Superparamagnetic nanoparticles for magnetic resonance imaging (MRI) diagnosis, MSc thesis,
800
+ The University of Adelaide, 2006.
801
+ [47]
802
+ M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, and A. Başaran, Synthesis and magnetic
803
+ characterization of Zn0. 6Ni0. 4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal
804
+ route, J. Mag. Mag. Mater., 321 (2009) 157-162.
805
+ [48]
806
+ K. M. Krishnan, Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and
807
+ therapy, IEEE Trans. Magnet., 46 (2010) 2523-2558.
808
+ [49]
809
+ Z. Li et al., Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic
810
+ resonance imaging, Advanc. Healthc. Mmater., 2 (2013) 958-964.
811
+ [50]
812
+ J. Estelrich, M. J. Sánchez-Martín, and M. A. Busquets, Nanoparticles in magnetic resonance imaging:
813
+ from simple to dual contrast agents, Int. J. Nanomedic., 10 (2015) 1727.
814
+ [51]
815
+ M. P. Leal, S. Rivera-Fernández, J. M. Franco, D. Pozo, M. Jesús, and M. L. García-Martín, Long-
816
+ circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging, Nanoscale,
817
+ 7 (2015) 2050-2059.
818
+ [52]
819
+ C. Fang and M. Zhang, Multifunctional magnetic nanoparticles for medical imaging applications, J.
820
+ Mater. Chem., 19 (2009) 6258-6266.
821
+ [53]
822
+ Z. R. Stephen, F. M. Kievit, and M. Zhang, Magnetite nanoparticles for medical MR imaging, Mater.
823
+ Tod., 14 (2011) 330-338.
824
+
825
+
826
+
827
+
828
+
3NFST4oBgHgl3EQfYjhQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dE1T4oBgHgl3EQflwTE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d41870ddf8eb9a7c95a746aeff7f33f528f97816ca542df64519aab62df2ec
3
+ size 418997
3tAzT4oBgHgl3EQf9f42/content/2301.01919v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fdb3a96719f3aa0a4f053aa9658927fb749a26452def8c80f98d73e3edb84aa
3
+ size 1229423
3tAzT4oBgHgl3EQf9f42/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:929b709e0428e2309f3f0fa35a32847c830e570031f621b959819a6ad58554b7
3
+ size 2621485
3tAzT4oBgHgl3EQf9f42/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89306b9ca41fa8d29ee844f3418d8ff3aba9a87ebd5f29f62b5cf03c212bc0f2
3
+ size 104699
6tAzT4oBgHgl3EQf-P5_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd9d98a685edfd5453241cbd4125158da4a7ce0b10a7022b3ce6be4d34787f3a
3
+ size 4784173
79E1T4oBgHgl3EQfnQTu/content/tmp_files/2301.03308v1.pdf.txt ADDED
@@ -0,0 +1,1377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Efficient Design of Helical Higher-Order Topological Insulators
2
+ in 3D Elastic Medium
3
+ Jiachen Luo1, Zongliang Du1,2*, Hui Chen3, Xianggui Ding1, Chang Liu1,2,
4
+ Weisheng Zhang1,2, Xu Guo1,2*
5
+ 1State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering
6
+ Mechanics, Dalian University of Technology, Dalian, 116023, China
7
+ 2Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
8
+ 3Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics,
9
+ Ningbo University, Ningbo 315211, China
10
+ E-mail: [email protected] (ZD); [email protected] (XG)
11
+ Abstract
12
+ Topological materials (TMs) are well-known for their topological protected properties.
13
+ Phononic system has the advantage of direct observation and engineering of topological
14
+ phenomena on the macroscopic scale. For the inverse design of 3D TMs in continuum
15
+ medium, however, it would be extremely difficult to classify the topological properties,
16
+ tackle the computational complexity, and search solutions in an infinite parameter space.
17
+ This work proposed a systematic design framework for the 3D mechanical higher-order
18
+ topological insulators (HOTIs) by combining the symmetry indicators (SI) method and the
19
+ moving morphable components (MMC) method. The 3D unit cells are described by the
20
+ MMC method with only tens of design variables. By evaluating the inherent singularity
21
+ properties in the 3D mechanical system, the classic formulas of topological invariants are
22
+ modified accordingly for elastic waves. Then a mathematical formulation is proposed for
23
+ designing the helical multipole topological insulators (MTIs) featured corner states and
24
+ helical energy fluxes, by constraining the corresponding topological invariants and
25
+ maximizing the width of band gap. Mechanical helical HOTIs with different symmetries
26
+ are obtained by this method and verified by full wave simulations. This design paradigm
27
+ can be further extended to design 3D TMs among different symmetry classes and space
28
+ groups, and different physical systems.
29
+ Keywords: Topological materials, Mechanical higher-order topological insulators,
30
+ Topology optimization, Symmetry indicators
31
+
32
+
33
+ 1. Introduction
34
+ Metamaterials are well-known for its novel modulation of photons, phonons, and matter
35
+ waves in various applications. Enriching with the topological characteristics, it gives out a
36
+ new innovative material—topological materials (TMs), which are robust to various
37
+ defects1–3. Recently, the photonic and phononic TMs have attracted a great research interest
38
+ in engineering topological phenomena on the macroscopic scale2–12. Related topologically
39
+ protected states revealed some prospective applications2,3,12–23.
40
+ For example, the quantum spin/valley Hall topological insulators guide the energy flux in
41
+ a spin-locked transmission, which alternatively switches the one-way tunnel for the
42
+ propagated waves with immunity to defects6,8,9,24–28. That is an ideal way to improve the
43
+ effectivity of applications in opto-mechanics, current semiconductor and integrated circuit
44
+ industry13–22. For the higher-order topological materials (HOTIs), it is characterized by an
45
+ intensively localized topological phase within the lower dimensional domain such as the
46
+ edges and corners3,7,29–31. As a pioneering example of the HOTIs, the multipole topological
47
+ insulators (MTIs) can also provide a multipole moment enhanced topological phases,
48
+ where the bulk dipole is vanished3,30,31. Together with the pseudo-spin phenomenon, a
49
+ helical multipole-induced topological phase is inherited in the helical MTI32,33. Those
50
+ topological phases in the HOTIs are robust to various defects in manufacture, and show a
51
+ promising prospective in optical/acoustic subwavelength imaging, microelectronics, laser
52
+ aspects3,19,23,31,34–36.
53
+ Although the theoretical tight binding models have been developed, how to efficiently
54
+ design 3D unit cells with the demanded topological behaviors is still a crucial challenge.
55
+ Some typical options include tracing the featured degenerated states near the Dirac points,
56
+ restricting a special band structure from the band folded mechanism, keeping an obvious
57
+ Berry curvature (a quantity to topology), or realizing the maximal pseudo-spin energy
58
+ fluxes in the crossing waveguide37–44. To calculate the topological invariants, however, it
59
+ is very expensive to integrate the Berry curvature or its related terms in the whole Brillouin
60
+ zone. This issue would be more pronounced for the 3D continuous TMs, which generally
61
+ cover an infinite design parameter space and are more computationally expensive for
62
+ analysis and design optimization.
63
+ Luckily, the theoretical breakthrough in topological quantum chemistry gives new insight
64
+ into this bottleneck, from the fruitful meeting between chemistry and physics (in the real
65
+ and momentum space)45–48. The fundamental tool is calculating the real space orbits for
66
+ every band, with the aids of the elementary band representations (EBRs) or the symmetry
67
+ indicators (SIs). It gives out the topology in a simple linear function of the symmetry
68
+
69
+ characters at some listed point29,30,46,48. Successful applications of the SI method include
70
+ the classification of TMs among the whole 230 space and 1651 magnetic groups, and the
71
+ discovery of thousands of TMs with many uncovered for the first time47,49,50. Most recently,
72
+ the catalogue of topological phononic materials becomes an attractive focus4,5,11. This
73
+ inspires us to efficiently identify the topological properties of the 3D mechanical unit cells
74
+ using the SI method. It is worth to note that, in the mechanical system, rigid body motions
75
+ corresponding to zero energy states yield the singularity at some high symmetry point. As
76
+ a result, the classic formulas derived in the quantum mechanics system need to be modified
77
+ at first.
78
+ Furthermore, how to describe the 3D unit cells is an essential factor for choosing design
79
+ optimization method39,41,43,44,51. This is because the topological invariants are discrete
80
+ variables, which cannot in general effectively handled by the gradient-based algorithms.
81
+ The Moving Morphable Component (MMC) method could describe 3D unit cells using
82
+ only a few explicit geometry parameters, and this makes it suitable to guarantee a
83
+ computationally tractable solution process of the inverse design formulation52,53. In general,
84
+ we summarize three characteristics of a desired optimization framework of the TMs as: (i)
85
+ effective to identify the topological characters for arbitrary unit cells; (ii) suitable to
86
+ topological materials in different classes and different physical systems; (iii) efficient to
87
+ execute the solution procedure.
88
+ In this study, we proposed a unified optimization framework for the 3D continuum TMs
89
+ by combining the SI method and the MMC method. In this design framework, the helical
90
+ MTIs with the helical edge and helical corner states can be effectively obtained by
91
+ simultaneously constraining the modified fractional corner charge and pseudo-spin
92
+ invariants. The proposed method thoughtfully modified the topological invariants for 3D
93
+ elastic HOTIs according to the singularity points with zero energy, and successfully
94
+ obtained optimized 3D helical MTIs in different symmetries, where the in-gap corner states
95
+ are derived from the quadrupole moment. The numerical simulations of the transmission
96
+ spectra and crossing waveguide applications validated the intensive corner energy and the
97
+ spin-locked energy flux.
98
+ The rest of the paper is organized as follows: in Section 2, the governing equations for
99
+ elastic waves are introduced. And then based on the description method of 3D elastic unit
100
+ cells using the MMC method and the specialized formulas of topological invariants in
101
+ Sections 3 and 4, an efficient deign paradigm is proposed for the mechanical helical MTIs.
102
+ Optimized designs with different symmetries are presented in Section 6 together with the
103
+ applications in a novel crossing elastic waveguide. Finally, some concluding remarks are
104
+ discussed in Section 7.
105
+
106
+ 2. The governing equations for elastic waves
107
+ In 3D elastic mechanics, the harmonic wave formulation is expressed as54
108
+ (������������ + ������������)∇(∇ ⋅ ������������) + ������������∇2������������ = −������������2������������������������
109
+ (1)
110
+ where ������������ is the angular frequency, ������������, ������������, and ������������ are the Lame’s parameters and mass density,
111
+ and ������������ = (������������, ������������, ������������)⊤ denotes the displacement field.
112
+ Since the considered phononic crystal is periodic, the displacement field satisfies the
113
+ translation condition as ������������(������������ + ������������) = ������������(������������) with ������������ denoting the primitive lattice vector.
114
+ According to the Bloch theorem, the harmonic elastic wave propagation can be determined
115
+ by the following discretized equations
116
+ ������������������������ = −������������2������������������������
117
+ ������������(������������0 + ������������)|BC = ������������(������������0)|BC ������������i������������⋅������������
118
+ (2)
119
+ Here, the matrices ������������ and ������������� refer to the stiffness and mass matrixes, and ������������ is the
120
+ eigenvector.
121
+ In order to handle the periodic constraints in the above eigenvalue problem, the standard
122
+ Lagrange multiplier method is adopted55. By defining a Lagrange multiplier ������������, Eq. (2) can
123
+ be reformulated as
124
+ ������������� + ������������2������������
125
+ ������������f
126
+ ������������
127
+ ������������ � �������������
128
+ ������������� = ������������
129
+ (3)
130
+ in which the constraint matrices ������������ and ������������f are used to homogenize the eigenvalue problem.
131
+ Now, let us decompose the eigenvector with the solution ������������c as ������������ = ������������null������������c + ������������0, where
132
+ the matrix ������������null and vector ������������0 belong to the null space of ������������. An allowable value is ������������0 =
133
+ ������������. After left multiplying Eq. (3) by ������������nullf
134
+
135
+ (������������nullf is the null space of ������������f
136
+ ⊤), we have the final
137
+ governing equation of the 3D elastic wave as
138
+ ������������c������������c = −������������2������������c������������c
139
+ (4)
140
+ where the eliminated stiffness matrix is ������������c = ������������nullf
141
+
142
+ ������������������������null, and the eliminated mass matrix
143
+ is ������������c = ������������nullf
144
+
145
+ ������������������������null. Because Eq. (3) requires ������������f ������������ = ������������, it is needless to solve for it since
146
+ ������������ is useless, and a practical choice is setting ������������f = ������������⊤, then ������������nullf = ������������null.
147
+
148
+ 3. Description of the 3D unit cells via the MMC method
149
+ Structural topology optimization has been successfully applied to inverse design various
150
+ topological metamaterials11,38–44,56. For designing the 3D elastic topological insulators, we
151
+ adopt the Moving Morphable Component (MMC) method40,42,52,53,56, which has the
152
+ advantages of the explicit geometry description and improved computational efficiency.
153
+ The building block in the MMC method is a set of morphable components, described by
154
+ some geometry parameters, such as the center coordinate, length, width, and thickness. As
155
+ a result, through updating those geometry parameters, every component can move, morph,
156
+ merge or disappear to form the optimized structure, as shown in Fig. 1. In this way, the
157
+ optimal parameter space will be deeply shrunk, and the solution efficiency will be
158
+ significantly improved.
159
+ In our work, each 3D component (the inclusion phase) is explicitly characterized by the
160
+ ellipsoid with a design variable vector ������������������������ = (������������0������������
161
+ ⊤ , ������������������������
162
+ ⊤, ������������������������
163
+ ⊤)⊤, i.e., the center coordinate
164
+ ������������0 = (������������0, ������������0, ������������0), the length vector of semi-axes ������������ = (������������1, ������������2, ������������3), and the Euler rotation
165
+ angles ������������ = (������������, ������������, ������������), as shown in Fig. 1(a). In this manner, each MMC can be explicitly
166
+ determined by only 9 design variables. Furthermore, in a unit cell, the inclusion phase is
167
+ identified by the topology description function ������������������������(������������, ������������������������) for each component expressed
168
+ with its covered region ������������ as
169
+ ��������������������������(������������, ������������������������) = ‖������������′‖2
170
+ 2 − 1 = �
171
+ > 0
172
+ if ������������ ∈ Ω������������
173
+ = 0
174
+ if ������������ ∈ ������������Ω������������
175
+ < 0
176
+ else
177
+ (5)
178
+ In Eq. (5), the local coordinates are determined by the global coordinates ������������ and the rotation
179
+ matrix ������������(������������) as
180
+ ������������������������
181
+ ′ = 1
182
+ ������������������������
183
+ R������������������������(������������)������������������������� − ������������0�������������
184
+ (6)
185
+ According to the symmetry requirement of the unit cells, only the MMCs in a reduced
186
+ design domain need to be optimized and they can be transformed to the rest part.
187
+ Furthermore, all the inclusions represented by MMCs in the design domain can be
188
+ smoothed by the K-S aggregation technique 57 or the Boolean operation (adopted by this
189
+ work).
190
+
191
+
192
+
193
+ (a)
194
+ (b)
195
+ Fig. 1. An illustration of a 3D unit cell described by the MMC method. (a) The geometric
196
+ description of the 3D components and (b) some representative configurations in the
197
+ optimization.
198
+ 4. The SI induced topological invariants of the helical MTIs
199
+ The helical multipole topological insulators (MTIs)32,33, as a compound topological
200
+ material, should simultaneously hold the characters (or the topological invariants) from the
201
+ multipole moment and the pseudo-spin. In general, the calculation of topological invariants
202
+ is computationally expensive for the continuum unit cells. Nevertheless, recent work in
203
+ topological quantum chemistry reveals a rapid approach to identify topological invariants
204
+ through its symmetry indicators (SIs)4,5,46,49,50,58. Next, we will introduce the SI method
205
+ into the calculation of topological invariants, and then give out the method to design helical
206
+ MTIs.
207
+ Based on the SI method, for a spinless ������������������������=3,6-symmetric mechanic system with the time
208
+ reversal symmetry (TRS), we identify the eigenvalue ������������
209
+ (������������) of the ������������̂������������ rotational operator as
210
+ ������������
211
+ (������������) = ������������i2������������(������������−1)/������������ = �������������(Π)�������������̂�������������������������(Π)�, ������������ ∈ [1, ������������]
212
+ (7)
213
+ where ������������(Π) denotes the ������������-component of the displacement at the high-symmetry point Π.
214
+ The symbol #������������
215
+ (������������) counts the number of ������������
216
+ (������������) below the target band gap. Compared to the
217
+ reference point à = (0,0), we define the SI at Рas �������������
218
+ (������������)� = #������������
219
+ (������������) − #Γ������������
220
+ (������������). At the high-
221
+ symmetry points, it satisfies ������������̂������������������������ = ������������ + ������������ with ������������ denoting the reciprocal lattice vector.
222
+ For the ������������3-symmetric hexagonal unit cells, the high-symmetry points include à and K in
223
+ the ������������3 symmetry, while for the ������������6-symmetric hexagonal unit cells, they include à in the ������������6
224
+ symmetry, K in the ������������3 symmetry, and M in the ������������2 symmetry, respectively. In this manner,
225
+
226
+ AZ
227
+ Z'RY
228
+ X
229
+ L3
230
+ L2Original
231
+ Morphing
232
+ Moving
233
+ Mergingthe topological classification is determined completely by the corresponding SIs, such as
234
+ the fractional corner charge and the pseudo-spin invariants in the following contents.
235
+ 4.1 The fractional corner charge invariants
236
+ For the MTIs, the fractional corner charge ������������(������������) is an effective topological invariant to
237
+ determine the topological corner states29–31. For the 3D mechanical topological system with
238
+ the TRS and ������������3 symmetry, we propose the following formulas
239
+ ������������(3) = �1
240
+ 3 �#K������������≠1
241
+ (3) − 1
242
+ 2 #Γ(3)� mod 1� × ��#Γ(3) + 1�mod 2�
243
+ ������������(6) = �1
244
+ 4 �#M1
245
+ (2)� + 1
246
+ 6 �#K1
247
+ (3)�� mod 2
248
+ (8)
249
+ Here, the red terms in the function of ������������(3) are introduced to avoid the confused distinction
250
+ of the unpaired degenerate states6,9,10,25. As an alternative strategy, #Γ(3) counts the two-
251
+ order degeneracy at the Γ point, and #Γ(3)/2 identically equals the #Γ2
252
+ (3) or #Γ3
253
+ (3). The red
254
+ modulo term in ������������(3) guarantees the degenerate states to be in pairs (i.e., #Γ(3) is an even
255
+ number). For a visualization, the Fig. 2 shows that our modification successful avoids the
256
+ confused distinction of degenerate states when ������������ = 4. For more details, refer to Appendix
257
+ A.
258
+
259
+
260
+
261
+ (a)
262
+ (b)
263
+ (c)
264
+ Fig. 2. The script of the modification procedure. (a) The singularity in mechanics and
265
+ degenerate states in a hexagonal unit cell. (b) and (c) The vector transformation of
266
+ displacement component (������������, ������������) and ������������. Here, only the degenerate states are calculated
267
+ under the ������������̂3 operator, and denoted as 1/2 = (������������ + ������������∗)/2 with its eigenvalues ������������ and its
268
+ conjugation ������������∗; the other states are calculated under the ������������̂2 operator.
269
+ 4.2 The pseudo-spin invariants
270
+ For the photonic/phononic quantum spin/valley Hall effects, the protected chiral energy
271
+ flux can be well identified from the pseudo-spin vortex phenomenon and can be well
272
+
273
+ Degenerate
274
+ -m=5
275
+ 1/2
276
+ 1/2
277
+ States
278
+ m=4
279
+ -1
280
+ m=3
281
+ -1
282
+ +1
283
+ 个个
284
+ 00
285
+ Singularity
286
+ ky个
287
+ (u, v)
288
+ (-xo,yo)
289
+ (xo, yo) x
290
+ (-u, v)w
291
+ (xo, Yo.
292
+ (-xo,-yo)
293
+ x
294
+ wquantified by the Chen-spin or ������������2 invariants6,9,24,25. In our spinless 3D mechanical system
295
+ without spatial inversion symmetry, an alternative approach is adopted through tracing the
296
+ (broken) Dirac cone and band inversion9,10,25,38,40,42–44.
297
+ Practically, for the 3D ������������3 and ������������6 symmetric unit cells, the pseudo-spin invariants are
298
+ modified as10,29
299
+ ������������(3) = sgn�#K2
300
+ (3) − #K3
301
+ (3)�
302
+ ������������(6) = sgn�#Γp
303
+ (6) − #Γd
304
+ (6) − 2�
305
+ (9)
306
+ Here, terms #Γp
307
+ (6) and #Γd
308
+ (6) count the orbits p and d under the ������������̂6 operator for the Γ point,
309
+ respectively. Notably, the subtracted red term is introduced to correct the #Γp
310
+ (6) due to the
311
+ singularity in the 3D elastic wave or the transverse electromagnetic wave (the singularity
312
+ has the same eigenvalue as the orbit p)5,59. For the 3D elastic wave, the singularity relates
313
+ to three translational motions, their displacement and vector transformation are shown in
314
+ Fig. 2. This modification is based on counting all occupied bands below the target band
315
+ gap, including the first three bands crossed through the singularity. Furthermore, the
316
+ counting idea keeps target bands isolated from other bands, as the SI method requires. For
317
+ more details, refer to Appendix B.
318
+ 5. An efficient design paradigm of 3D mechanical helical MTIs
319
+ With the above topological invariants presented in Eqs. (8) and (9), we can now design the
320
+ helical MTIs using explicit topology optimization method. The corresponding optimization
321
+ formulation and solution process are introduced as follows.
322
+ 5.1 Mathematical formulation
323
+ Combining the MMC-based description method and the modified formulas of topological
324
+ invariants in elastic medium, optimized 3D helical MTIs can be obtained by solving the
325
+ following mathematical formulation:
326
+ find
327
+ ������������ = (������������1
328
+ ⊤, … , ������������������������
329
+ ⊤, ������������)⊤
330
+ max
331
+ min(������������ref − max������������������������������������
332
+ ������������ , min������������������������������������
333
+ ������������+1 − ������������ref)
334
+ s. t.
335
+ ������������c������������c = −������������2������������c������������c
336
+ �������������(������������), ������������(������������)� = �������������ref
337
+ (������������), ������������ref
338
+ (������������)�
339
+ ������������min ≤ ������������ ≤ ������������max
340
+ (10)
341
+
342
+ In the design variable vector, ������������������������ describes the ������������th component in the slab with a thickness
343
+ ������������ (in the ������������-axis), as illustrated in Fig. 1. By denoting the eigenfrequency of the ������������th band
344
+ as ������������������������, the gap width between the ������������th and (������������ + 1)th bands is maximized with a target
345
+ mid-frequency ������������ref. The third equation in Eq. (10) is the governing equation for the 3D
346
+ elastic waves. Since the fractional corner charge and the pseudo-spin invariants
347
+ simultaneously contribute to the existence of helical corner states, the target topology
348
+ invariants �������������ref
349
+ (������������), ������������ref
350
+ (������������)� is introduced as a constraint. The last inequality persists the lower
351
+ and upper bounds of the design variable vector.
352
+ In principle, by updating the governing equation and target topological invariants, the
353
+ mathematical formulation in Eq. (10) can be applied for designing TMs among different
354
+ symmetry classes, and different physical systems. In this work, we focused on the inverse
355
+ design of 3D helical MTIs in elastic medium with ������������3 and ������������6 symmetries.
356
+
357
+ Fig. 3. The scheme of optimization for the helical MTIs.
358
+ 5.2 Solution process
359
+ Since the topological invariants are quantized, gradient-based optimization algorithms
360
+ would be ineffective for solving Eq. (10). Thanks to the advantage of a fewer number of
361
+ design variables in the MMC method, the genetic algorithm (GA) is adopted here and the
362
+ settings are presented in Appendix C. To be specific, the flowchart for the rational design
363
+ of helical MTIs is shown in Fig. 3, and its solution process is summarized as follows:
364
+
365
+ STEP 1: Initialization of the MMC method and the GA solver.
366
+ The gap label ������������, the mid-frequency ������������ref, and the nonzero topological invariants
367
+ �������������ref
368
+ (������������), ������������ref
369
+ (������������)� are initialized first through a trial process, starting from ������������ = 3;
370
+
371
+ STEP 2: Optimal design of the first MTI.
372
+
373
+ Init.
374
+ STEP1
375
+ Band Order
376
+ 200 Random
377
+ FEA
378
+ Count Cases
379
+ If No Case
380
+ (Q(n), z(n))
381
+ Q(n) ± 0&z(n) ±0?
382
+ m=3
383
+ Unit Cells
384
+ (COMSOL)
385
+ N
386
+ Y
387
+ m=m+1
388
+ STEP2
389
+ 1st MTI
390
+ GA
391
+ Generate
392
+ Set Valid Para.
393
+ 'ref
394
+ FEA
395
+ Calculate
396
+ Unit Cell
397
+ Conv.?
398
+ fref, m
399
+ (COMSOL)
400
+ Q(n), z(n)
401
+ MTI Partner
402
+ Y
403
+ MMC
404
+ N
405
+ STEP3
406
+ 0,
407
+ ref
408
+ EndWith the parameters determined in STEP 1, solve the mathematical programming
409
+ Eq. (10) to obtain the first optimized MTI with the predefined invariant
410
+ �������������ref
411
+ (������������), ������������ref
412
+ (������������)� and mid-frequency ������������ref;
413
+
414
+ STEP 3: Optimal design of the MTI partner (if necessary).
415
+ With the desired topological invariants setting as �0, −������������ref
416
+ (������������)� and the other
417
+ parameters the same as STEP 2, solve Eq. (10) to obtain the optimized MTI partner
418
+ with the inverted pseudo-spin effect.
419
+
420
+
421
+ (a)
422
+ (b)
423
+ Fig. 4. The statistical charts (b) of different states at the Γ point (the partitions of p and d
424
+ would be decomposed into the boxed partitions without the modification in Eq. (8)) and
425
+ (c) of different TMs. Hint: s.p. —singularity point.
426
+ To illustrate the effectiveness of the proposed design framework, the statistical charts of
427
+ the states at the Γ point (6000 samples) and of different TMs (8000 samples) are illustrated
428
+ in Fig. 4(a) and 4(b), respectively. It can be found that, using Eq. (8), the states p and d are
429
+ successfully identified, and they take about 21.6% and 26.2% of the whole set as shown in
430
+ Fig. 4(a). Without the modification in Eq. (8), however, such states would be decomposed
431
+ to Γ2
432
+ (3) state (22.1%), Γ3
433
+ (3) (22.1%), and an unpaired set of state (3.5%). This unpaired set
434
+ would further make troubles for the calculation of the fractional corner charge invariant. In
435
+ Fig. 4(b), 6.6% of 8000 samples are four typical TMs (quantum valley/spin Hall
436
+ topological insulators (QVTIs/QSTIs), MTIs and helical MTIs), while the desired helical
437
+ MTIs only account for 4.0%. This validates the necessity of developing inverse design
438
+ paradigm for the helical MTIs.
439
+
440
+ s.p.
441
+ 31.1%
442
+ d
443
+ 11.1%
444
+ 21.6%
445
+ 9.5%
446
+ 0.6%
447
+ 26.2%
448
+ 3
449
+ Other
450
+ 22.1%
451
+ Unpaired
452
+ 3.5%
453
+ 22.1%
454
+ p
455
+ **
456
+ (3)
457
+ S
458
+ pOther
459
+ 93.4%
460
+ 0.7%
461
+ QVTI
462
+ 2.4%
463
+ 4.0%
464
+ Helical MTI
465
+ QSTI
466
+ 0.2%
467
+ MTI6. Applications of the MMC-based design framework for 3D helical MTIs
468
+ in elastic medium
469
+ In the present work, the helical MTIs are periodic in the in-plane direction and made of the
470
+ basic medium EP and scattering medium Fe (materials parameters and more setup details
471
+ are referred to Appendix C).
472
+ 6.1 Optimal design of ������������3-symmetric mechanical helical MTIs
473
+ Under the optimization framework, the optimized ������������3-symmetric helical MTIs are obtained
474
+ in Fig. 5(a). And there is a normalized bulk band gap at 0.741-1.069 between the 6th and
475
+ 7th bands (colored in grey in Fig. 5(a)). The symmetry behaviors of the high-symmetry
476
+ points are shown in the Fig. 5(b). There are three broken degenerate states (from the Dirac
477
+ cone) at the K point below the target bandgap, while only the third one is unpaired, and
478
+ implies the possibility of a pseudo-spin vortex. The phase field of this unpaired state is also
479
+ inserted in Fig. 5(a). The corner charge and the pseudo-spin invariants are (2/3,1).
480
+ In order to realize the band inversion, the corresponding MTI partner can be easily
481
+ constructed by applying the spatial reversal operation, or in other words, its invariants are
482
+ set as (0, −1). An opposite pair of ������������(3) invariants would produce a helical topological state
483
+ from the bulk-boundary correspondence. Moreover, a pair of zero and nonzero fractional
484
+ corner charges reveal the appearance of corner states18, as shown in Fig. 6(a) around the
485
+ normalized frequencies of 0.894 and 0.966. The latter localized corner mode is displayed
486
+ in the inserted diagram.
487
+
488
+
489
+
490
+ (a)
491
+
492
+ (b)
493
+ Fig. 5. The optimized ������������3-symmetric mechanical helical MTIs. (a) The band structure
494
+ inserted with the unit cell and the phase field of the unpaired state. (b) The symmetry-
495
+
496
+ 1.2
497
+ (2A/2πC)
498
+ 1
499
+ 0.8
500
+ 0.6
501
+ Freq
502
+ 0.4
503
+ 0.2
504
+ 0
505
+ T
506
+ M
507
+ K
508
+ Singularity(2)
509
+ Band
510
+ -(3)
511
+ b
512
+ b
513
+ 1
514
+ -1
515
+ 3
516
+ wt
517
+ 2
518
+ -1
519
+ +1
520
+ 3
521
+ +1
522
+ +1
523
+ m
524
+ 4
525
+ +1
526
+ +1
527
+ 5
528
+ +1
529
+ +1
530
+ 6
531
+ +1
532
+ +1
533
+ mbehavior-table, in which the degenerate states are tagged as ������������ = ������������i2������������/3 for the K point,
534
+ while for the à point they are tagged as ������������.
535
+
536
+
537
+ (a)
538
+ (b)
539
+
540
+
541
+ (c)
542
+ (d)
543
+ Fig. 6. Simulation results of the optimized ������������3-symmetric helical MTIs. (a) The eigenvalue
544
+ spectrum (points are colored according to the corner energy intensity) and the energy field
545
+ of a corner state. (b) The transmission spectra from the probes in bulk, edge, and corner
546
+ area (colored in legend). (c) Energy fields tagged in (b) at the normalized frequencies of
547
+ 0.793, 0.879, 0.966, and 1.121. (d) The energy flux and their zoom-in views of helical edge
548
+ states at the normalized frequency of 0.862.
549
+ Besides, the full-wave transmission is presented in Fig. 6(b), where energy is captured from
550
+ different regions around the outer bulk, the interface edges, and the interface corners. A
551
+ spin-down (clockwise) helical source is excited near the supercell’s center, shown as the
552
+ star in Fig. 6(c). The transmission reveals some edge energy peaks around the normalized
553
+ frequencies of 0.793 and 1.001, and some intensively localized corner states around the
554
+ normalized frequencies of 0.879 and 0.966. For a clear visualization, the corresponding
555
+
556
+ 1.02
557
+ 0.98
558
+ (S2A/2 TC)
559
+ 0.94
560
+ 0.9
561
+ Freq (
562
+ 0.86
563
+ 0.82
564
+ Index(dB)
565
+ 3
566
+ Transmission (
567
+ 2
568
+ -60
569
+ Corner
570
+ -120
571
+ Edge
572
+ Bulk
573
+ 0.7
574
+ 0.8
575
+ 0.9
576
+ 1
577
+ 1.1
578
+ Freg (2 A/2πc)1
579
+ 2
580
+ 3Spin-Down
581
+ Spin-Upbulk, edge, and corner energy fields are displayed in Fig. 6(c). In contrast to the edge gap
582
+ around the normalized frequency range of 0.872-1.001 (colored in light-green), those in-
583
+ gap corner states are derived from the quadrupole moment.
584
+ For the verification of the helical behavior, a biased helical source off the center is excited
585
+ additionally, as shown in Fig. 6(d). The inserted arrow diagrams displayed the energy flux
586
+ near their corners and edges. We found that these two supercells had significant opposite
587
+ responses under different exciting helical sources (spin-up or spin-down). All their corners
588
+ held a clear energy vortex (clockwise or anticlockwise). Their edge energy fluxes are
589
+ locked by their exciting sources and only could flow forward or backward.
590
+ 6.2 Optimal design of ������������6-symmetric mechanical helical MTIs
591
+ For the optimized ������������6-symmetric MTI pairs, as illustrated by the band structures shown in
592
+ Fig. 7(a), band gaps are observed in the normalized frequency ranges of 1.344-1.489 (up)
593
+ and 1.332-1.450 (below), respectively. Below the gap, there are four degenerate states
594
+ found at the Γ points for both cases, but only the last two states formed an unpaired double
595
+ Dirac cone, which features the pseudo-spin vortex. The phase fields of these unpaired states
596
+ are inserted in Fig. 7(a), from which the band inversion is clearly displayed. The symmetry
597
+ behaviors in Fig. 7(a) show that the corner charges and the modified pseudo-spin invariants
598
+ are (1/2,1)and (0, −1), respectively. Specifically, the pair of opposite ������������(6) invariants lock
599
+ the energy flux by the pseudo-spin phenomenon. In contrast, the pair of zero and nonzero
600
+ corner charges predict the topological corner states (according to the vanished bulk
601
+ polarization in ������������6-symmetric unit cells, these nonzero corner charges are only derived from
602
+ the quadrupole moment30). By combining these two topological characters, the topological
603
+ corner state will also have pseudo-spin behaviors and present as a helical corner state. For
604
+ a verification of this helical corner state, the eigenvalue spectrum of the supercell’s
605
+ simulation is shown in Fig. 7(b), and its energy density distribution, at the normalized
606
+ frequency of 1.426, is highly localized at corners.
607
+ 6.3 Applications of the optimized helical MTIs in a crossing waveguide
608
+ As an application of the helical MTIs, a crossing waveguide (a single layer) composed of
609
+ the two optimized ������������3-symmetric helical TMIs in Subsection 6.1 (colored blue/yellow for
610
+ the original/inversed TMIs mentioned above) is developed in Fig. 8(a). Since the additional
611
+ pseudo-spin freedom locks the energy flux in the waveguide, two opposite transmissions
612
+ would be discovered when we sequentially excited the Port 1 and Port 2. By gradually
613
+ modulating the exciting frequency, the energy will spread through the center wall and
614
+ induce the output corner states.
615
+
616
+
617
+
618
+ (a)
619
+ (b)
620
+ Fig. 7. Simulation results of the optimized ������������6-symmetric helical MTIs. (a) The band
621
+ structures and the symmetry-behavior-tables of the optimized MTI pairs. The inserted
622
+ diagrams include the optimized unit cells and the ������������-directional displacement fields of the
623
+ unpaired states. In those tables, the degenerate states for the K point are tagged as ������������ =
624
+ ������������i2������������/3, while for the à point they are tagged as ������������. (b) The eigenvalue spectrum and the
625
+ inserted energy field of the corner state (points are colored according to the corner energy
626
+ intensity).
627
+ The simulations in the normalized frequency range of 0.7-1.1 are processed to test the
628
+ performance of the waveguide, as shown in Fig. 8(b). It is clear that when Port 1 is excited
629
+ at the normalized frequency of 0.776, the energy only transmits to Port 2 and Port 3, yet it
630
+ only transmits to Port 1 and Port 4 from Port 2. This phenomenon reveals the locked helical
631
+ energy flux as expected. At the normalized frequency of 0.897, the corner states in the
632
+ lower half of the waveguide are excited in both cases. Here, these states stay in the band
633
+ gap of the edge states (i.e., 0.872-1.001, refer to Appendix D for more details), and their
634
+ energy only localizes at corners, and no edge states exist.
635
+ To test the working range of the one-way transmission in this waveguide, we distinguished
636
+ the energy from the different ports (Port 3 or Port 4), as shown in Figs. 8(c) and 8(d). Here
637
+ the light-green area and yellow-solid points refer to the band gap of the edge states and the
638
+ states in Fig. 8(b). In this much wider frequency range of 0.749-0.861, the average
639
+ difference between both ports is higher than 10dB. When we reverse the exciting port, the
640
+ output port, which has a higher transmission, is also turned, as shown in Fig. 8(d). In this
641
+ frequency range, the first two edge bands, as illustrated in Appendix D, will be excited.
642
+
643
+ 1.6
644
+ Band
645
+ a
646
+ (2A/2πc)
647
+ 1
648
+ -1
649
+ +1
650
+ m
651
+ 1.2
652
+ 2
653
+ -1
654
+ -1
655
+ wt
656
+ 1
657
+ 3
658
+ +1
659
+ +1
660
+ +1
661
+ +1
662
+ 0.8
663
+ Freq (
664
+ 4
665
+ +1
666
+ +1
667
+ +1
668
+ at
669
+ 0.6
670
+ 5
671
+ +1
672
+ 1
673
+ m
674
+ 0.4
675
+ 6
676
+ -1
677
+ -1
678
+ +1
679
+ 0.2
680
+ 7
681
+ 0
682
+ M
683
+ K
684
+ Singularity
685
+ 1.6
686
+ r(2) r(3) m(2) k(3)
687
+ Band
688
+ a
689
+ 1.4
690
+ b
691
+ 9
692
+ b
693
+ Freq (2A/2πc)
694
+ 1
695
+ w)
696
+ 1
697
+ 2
698
+ -1
699
+ +1
700
+ wt
701
+ 1
702
+ 3
703
+ +1
704
+ +1
705
+ +1
706
+ +1
707
+ 0.8
708
+ 4
709
+ +1
710
+ wt
711
+ 0.6
712
+ 5
713
+ +1
714
+ +1
715
+ +1
716
+ m
717
+ 0.4
718
+ 6
719
+ +1
720
+ -1
721
+ +1
722
+ 0.2
723
+ 7
724
+ +1
725
+ +1
726
+ 0
727
+ M
728
+ K
729
+ Singularity1.47
730
+ (S2A/2 TC)
731
+ 1.44
732
+ 1.41
733
+ Freq (
734
+ 1.38
735
+ 1.35
736
+ IndexHence, these one-way transmission results from the helical edge states. Moreover, the
737
+ corner states tagged with the number 2 and 4 are in the gap of the edge state but display an
738
+ apparent energy concentration from the exciting source.
739
+
740
+
741
+ (a)
742
+ (b)
743
+
744
+
745
+ (c)
746
+ (d)
747
+ Fig. 8. The crossing waveguide made of the optimized ������������3-symmetric helical MTIs. (a) The
748
+ sketches of the waveguide and its energy fluxes in different exciting cases (the exciting
749
+ line sources are tagged as stars). (b) The energy fields at the normalized frequencies of
750
+ 0.776 and 0.897. The measured transmission of Ports 3 and 4 (c) from the exciting Port 1
751
+ or (d) from the exciting Port 2. Here the band gap of the edge states (light-green region)
752
+ and the typical states (yellow-solid points) are colored.
753
+ 7. Concluding remarks
754
+ In this work, we proposed an optimization framework for the inverse design of multi-
755
+ functional topological materials in the 3D continuous medium. By carefully manifesting
756
+ the degenerate states and singularity points in the elastic waves, the 3D helical multipole
757
+
758
+ Port1
759
+ Port 2
760
+ Port 4
761
+ Port 3
762
+ C
763
+ Q2
764
+ 32
765
+ 0
766
+ (dB)
767
+ -50
768
+ Transmission (
769
+ -100
770
+ -150
771
+ -200
772
+ Port 3
773
+ -250
774
+ Port 4
775
+ 0.7
776
+ 0.8
777
+ 0.9
778
+ 1
779
+ 1.1
780
+ Freq (2 A/2πc)3
781
+ Transmission (dB)
782
+ -50
783
+ -100
784
+ -150
785
+ -200
786
+ Port 3
787
+ -250
788
+ -Port 4
789
+ 0.7
790
+ 0.8
791
+ 0.9
792
+ 1
793
+ 1.1
794
+ Freq (2 A/2πc)topological insulators are well-classified by the fractional corner charge and the pseudo-
795
+ spin invariants. With the explicit topology optimization and the symmetry indicator
796
+ methods, the proposed design paradigm has the advantages of (1) rapid classification of
797
+ the 3D topological materials and (2) efficient optimization of the 3D continuum unit cells
798
+ in a smaller explicit parameter space. This framework shows outstanding suitability to the
799
+ 3D topological system and can also be generalized to other symmetry classes and space
800
+ groups. Besides, building up a topological materials library in continuous medium would
801
+ be an exciting topic for further research.
802
+ Methods
803
+ The solid mechanic simulation is performed in the commercial software COMSOL
804
+ MULTIPHYSICS. The default open surfaces are set as free boundaries. The Bloch theorem
805
+ is numerical expressed by the Floquet periodic boundaries. In common, the energy in solid
806
+ mechanics is consistent in distribution as the amplitude of total displacement ‖(������������, ������������, ������������)‖2
807
+ 2.
808
+ Acknowledgements
809
+ The financial supports from the National Natural Science Foundation (11821202,
810
+ 11732004, 12002073, 12002077, 12272075, 11922204), the National Key Research and
811
+ Development Plan (2020YFB1709401), Dalian Talent Innovation Program (2020RQ099),
812
+ the Fundamental Research Funds for the Central Universities (DUT20RC(3)020,
813
+ DUT21RC(3)076), and 111 Project (B14013) are gratefully acknowledged.
814
+ Author contributions
815
+ X. G. and Z. D. conceived the idea and initiated the project. J. L. and Z. D. established the
816
+ theory. J. L and X. D. performed the numerical calculations and simulations. All the other
817
+ authors contributed to the discussions of the results and the manuscript preparation.
818
+ Declaration of competing interest
819
+ There are no conflicts to declare.
820
+ Data availability
821
+ Data will be made available on request.
822
+
823
+
824
+ Appendix
825
+ Appendix A: Modification of the fractional corner charge invariant
826
+ According to the results in literature30, the fractional corner charge invariant of the ������������3-
827
+ symmetric hexagonal unit cells is
828
+ ������������������������
829
+ ′(3) = 1
830
+ 3 �K������������≠1
831
+ (3) � mod 1
832
+ (A. 1)
833
+ where subscript ������������ equals 2 or 3 depending on the symmetry of the constructed supercell.
834
+ Due to the TRS and ������������3 symmetry, some two-order degenerate states are protected at the Γ
835
+ point, such as states from the linear combination of the Γ2
836
+ (3) and Γ3
837
+ (3), and they are
838
+ computationally expensive to identify clearly, especially for the unpaired degenerate
839
+ states6,9,10,25,28. Instead, we termed the invariant with the number of the two-order
840
+ degenerate states #Γ(3). To be specific, the topological character of the ������������3-symmetric
841
+ hexagonal unit cell is given by
842
+ ������������‾(3) = �#Γ(3), #K2
843
+ (3), #K3
844
+ (3)�
845
+ (A. 2)
846
+ Considering Eq. (A.2), the modified fractional corner charge invariants and the symmetry
847
+ behaviors are listed in Table A.1 for some possible cases.
848
+ Table A.1. The symmetry behaviors of the ������������3-symmetric unit cells with TRS
849
+ (for the fractional corner charge invariants)
850
+ ������������������������=2
851
+ (3)
852
+ ������������������������=3
853
+ (3)
854
+ #K2
855
+ (3)
856
+ #K3
857
+ (3)
858
+ #Γ(3)
859
+ #Γ2
860
+ (3)
861
+ #Γ2
862
+ (3)
863
+ 1/3
864
+ 0
865
+ 1
866
+ 0
867
+ 0
868
+ 0
869
+ 0
870
+ 0
871
+ 1/3
872
+ 0
873
+ 1
874
+ 0
875
+ 0
876
+ 0
877
+ 0
878
+ 2/3
879
+ 1
880
+ 0
881
+ 2
882
+ 1
883
+ 1
884
+ 0
885
+ 0
886
+ 1
887
+ 1
888
+ 2
889
+ 1
890
+ 1
891
+ 0
892
+ 0
893
+ 1
894
+ 0
895
+ 1
896
+ 1
897
+ 0
898
+ 0
899
+ 0
900
+ 0
901
+ 1
902
+ 1
903
+ 0
904
+ 1
905
+ 0
906
+ 0
907
+ 1
908
+ 0
909
+ 1
910
+ 0
911
+ 1
912
+ 0
913
+ 0
914
+ 0
915
+ 1
916
+ 1
917
+ 1
918
+ 0
919
+ In Table A.1, the red colored invariants ������������������������
920
+ (3) are modified from Eq. (A.2). This
921
+ modification is derived from the fact that the degenerate states #Γ(3) always appear in a
922
+
923
+ pair; or not, it is gapless 6,9,10,25,28. For the unpaired case, it is ambiguous to be tagged as
924
+ Γ2
925
+ (3) or Γ3
926
+ (3), hence the invariants ������������������������
927
+ (3) in the last four cases cannot be solely identified by
928
+ the ������������‾(3) in Eq. (A.2). Therefore, when #Γ(3) is odd, the corresponding fractional corner
929
+ charge should be modified into zero with gapless band reality. When #Γ(3) is even, number
930
+ #Γ(3) can be equivalently divided as: #Γ2
931
+ (3) = #Γ3
932
+ (3) = #Γ(3)/2.
933
+ Thus, the modified fractional corner charge invariant gives
934
+ ������������(3) = �1
935
+ 3 �#K������������≠1
936
+ (3) − 1
937
+ 2 #Γ(3)� mod 1� × ��#Γ(3) + 1�mod 2�
938
+ (A. 3)
939
+ where the red module term aims to avoid the unpaired two-order degenerate states.
940
+ Appendix B: Modification of the pseudo-spin invariant
941
+ For the ������������3 or ������������6-symmetric unit cells with the TRS, an alternative approach to get the
942
+ pseudo-spin invariants is to trace the broken (double) Dirac cones at the K or Γ point
943
+ 9,10,25,38,40,42–44. Thus, their topological characters are given by
944
+ ������������‾(3) = �#K2
945
+ (3), #K3
946
+ (3)�
947
+ ������������‾(6) = �#Γ1
948
+ (2), #Γ2
949
+ (2), #Γ(3)�
950
+ (B. 1)
951
+ Here, #Γ(3) counts the two-order degenerate states of the Γ point in the ������������3 operator. The
952
+ modified pseudo-spin invariants and their symmetry behaviors are listed in Table B.1 and
953
+ Table B.2 for some possible cases.
954
+ Different as scaling a function5,59, the operation of a symmetry operator ������������� on a vector
955
+ function ������������(������������) transforms as �������������������������(������������) = �������������������������(�������������−1������������), where ������������� is the rotational operator in �������������.
956
+ For the present symmetry groups (������������3 or ������������6) in our paper, all group elements behave as a
957
+ rotation around ������������ -axis, and the transformation can be simplified as �������������������������(������������) =
958
+ �������������������������T(�������������−1������������) + �������������������������L(�������������−1������������) ,
959
+ where ������������ = ������������T + ������������L = (������������, ������������, 0)⊤ + (0,0, ������������)⊤ is
960
+ the
961
+ displacement vector in mechanics. This decomposed equation implies ������������T and ������������L hold the
962
+ same symmetry, except for the singular cases with displacement component ������������T = ������������ or
963
+ ������������L = ������������.
964
+
965
+
966
+
967
+
968
+ Table B.1. The symmetry behaviors of the ������������3-symmetric unit cells with TRS
969
+ (for the pseudo-spin invariants)
970
+ ������������(3)
971
+ #K2
972
+ (3)
973
+ #K3
974
+ (3)
975
+ 1
976
+ 1
977
+ 0
978
+ 1
979
+ 2
980
+ 0
981
+ -1
982
+ 0
983
+ 1
984
+ 0
985
+ 1
986
+ 1
987
+ Table B.2. The symmetry behaviors of the ������������6-symmetric unit cells with TRS
988
+ (for the pseudo-spin invariants)
989
+ ������������(6)
990
+ #Γ1
991
+ (2)
992
+ #Γ2
993
+ (2)
994
+ #Γ(3)
995
+ Orbits
996
+ -1
997
+ 2
998
+ 0
999
+ 2
1000
+ 2d
1001
+ 1
1002
+ 0
1003
+ 2
1004
+ 2
1005
+ 2p
1006
+ 0
1007
+ 2
1008
+ 2
1009
+ 4
1010
+ 2p + 2d
1011
+ 0
1012
+ 1
1013
+ 0
1014
+ 0
1015
+ 1s
1016
+ 0
1017
+ 0
1018
+ 1
1019
+ 0
1020
+ 1f
1021
+ 0
1022
+ 1
1023
+ 2
1024
+ 2
1025
+ 2 s.p.
1026
+ In the original SI theory29,30, the occupied bands counted in the SI method should be
1027
+ isolated from others, and an alternative approach is to count all bands below the target band
1028
+ gap. For the photonic and phononic systems, however, the first two or three bands always
1029
+ converge to plane waves when |������������| → 0, where transverse modes produce two singularities
1030
+ with ������������L = ������������5,59. In Table B.2, the red-colored data reveal the symmetry behaviors of the
1031
+ first three bands that always cross through the singularities around the zero energy. Hence,
1032
+ we defined the modified pseudo-spin invariants to overcount those singularities as
1033
+ ������������(3) = sgn�#K2
1034
+ (3) − #K3
1035
+ (3)�
1036
+ ������������(6) = sgn�#Γp
1037
+ (6) − #Γd
1038
+ (6) − 2�
1039
+ (B. 2)
1040
+ where the red term is the modification from the singularities. For the case of photonics, the
1041
+ Eq. (B.2) should be further modified as the work5. And the terms #Γp
1042
+ (6) and #Γd
1043
+ (6) count
1044
+ the p and d states at the Γ point.
1045
+
1046
+ Table C.1. Some typical optimized unit cells for the ������������3 and the ������������6-symmetric TMs.
1047
+ (Here, the red data refers to the examples presented in our paper)
1048
+ ������������������������
1049
+ ������������{������������}
1050
+ ������������{������������}
1051
+ ������������{deg}
1052
+ ������������{������������} �������������(������������), ������������(������������)� ������������max
1053
+ (������������)
1054
+ ∼ ������������min
1055
+ (������������+1)
1056
+ ������������3 (0.7217,0.95,0.0275)
1057
+ (0.3382,0.5073,0.1691)
1058
+ (108,18,126)
1059
+ 0.55
1060
+ (2/3, 1)
1061
+ 0.741~1.069
1062
+
1063
+ (0.4041,1.00,0.0900)
1064
+ (0.3082,0.3082,0.2568)
1065
+ (144,72,90)
1066
+ 0.45
1067
+ (2/3, -1)
1068
+ 0.772~1.000
1069
+ ������������6 (0.9238,0.90,0.3250)
1070
+ (0.3682,0.2455,0.3068)
1071
+ (90,108,0)
1072
+ 0.65
1073
+ (1/2, 1)
1074
+ 1.344~1.489
1075
+
1076
+ (0.8776,0.90,0.1750)
1077
+ (0.2155,0.3232,0.2693)
1078
+ (90, 144, 72)
1079
+ 0.50
1080
+ (0, -1)
1081
+ 1.332~1.450
1082
+
1083
+ (0.9584,0.80,0.1800)
1084
+ (0.1766,0.4121,0.2355)
1085
+ (126,126,72)
1086
+ 0.60
1087
+ (1/2, 1)
1088
+ 1.254~1.319
1089
+
1090
+ (0.8603,0.95,0.1575)
1091
+ (0.2055,0.3596,0.3082)
1092
+ (108,144,90)
1093
+ 0.45
1094
+ (0, -1)
1095
+ 1.249~1.344
1096
+
1097
+
1098
+ Fig. C.1. Some optimized unit cells with the ������������3 and ������������6 symmetries. The order refers to
1099
+ the row number of Table C.1.
1100
+ Appendix C: The setup of the optimization and the GA solver
1101
+ For the parameters of material and optimization solver in our paper, the setup gives: the
1102
+ basic medium is epoxy (EP) with the elastic modulus ������������0 = 4.35GPa, the Poisson’s ratio
1103
+ ������������0 = 0.37, and the mass density ������������0 = 1180kg ⋅ m−3. The scattering medium is steel (Fe)
1104
+ with the elastic modulus ������������ = 200GPa, the Poisson’s ratio ������������ = 0.2, and the mass density
1105
+ ������������ = 7800kg ⋅ m−3. The genetic algorithm (GA) solver is set as: the population size of 100,
1106
+ the crossover fraction of 0.9, the migration fraction of 0.3, the elite size of 5, the
1107
+ objectivation tolerance of 1e-5, the stall generation limit of 15. The lattice constant is ������������ =
1108
+ |������������| = 1m.
1109
+
1110
+ 3
1111
+ 5
1112
+ 2Table C.1 and Fig. C.1 list some typical optimized unit cells. The row number in Table
1113
+ C.1 is consistent with the order of unit cells in Fig. C.1. For the examples in the main text,
1114
+ we set their optimization procedure as
1115
+
1116
+ For the ������������3-symmetric helical MTIs, the broken Dirac cone appears at the K point.
1117
+ The first unit cell is optimized with setting ������������ = 6, nonzero topological invariants
1118
+ (2/3,1) and no specific ������������ref, which will auto-update as the mid-frequency of the
1119
+ target gap.
1120
+
1121
+ For the ������������6-symmetric helical MTIs, the broken Dirac cone appears at the à point.
1122
+ The first unit cell is optimized with setting ������������ = 7, �������������ref
1123
+ (������������), ������������ref
1124
+ (������������)� = (1/2,1), and
1125
+ ������������ref = 1.4. Then the MTI partner is optimized with setting ������������ = 7, �������������ref
1126
+ (������������), ������������ref
1127
+ (������������)� =
1128
+ (0, −1), and ������������ref = 1.4.
1129
+ Appendix D: The supercell’s setup for the edge and the corner states
1130
+ The setups for two example supercells are detailed as
1131
+
1132
+ For the ������������3-symmetric unit cells in the main text, the script of the truncated supercell
1133
+ is shown in Fig. D.1, where it provides an approach to adjust the frequency of the
1134
+ edge states. This truncation does not break the crystalline symmetry, and the
1135
+ topological edge states would not vanish. In Fig. D.1(a) and D.1(b), the truncation
1136
+ is set as ������������ = 1/4 × 2������������/√3 , and the edge gap is between 0.872-1.001. In Fig. D.1(c)
1137
+ and (d), the eigenvalue spectrum and the crossing waveguide are simulated with the
1138
+ truncation ������������ = 1 × 2������������/√3. The light-blue areas in Fig. D.1 refer to the supercell’s
1139
+ structures in the main text.
1140
+
1141
+ For the ������������6-symmetric unit cell, the inner interface between the unit cell pairs can
1142
+ be alternatively truncated as Fig. D.2. In Fig. D.2 (a) and D.2(b), the gap of the
1143
+ edge states is found between 1.398-1.425 with the truncation ������������ = 1/2 × ������������. The
1144
+ supercell’s script for the eigenvalue spectrum is displayed in Fig. D.2(c) with the
1145
+ truncation ������������ = 1 × 2������������/√3 . In Fig. D.2(c), except for the inner hexagonal interface,
1146
+ six base medium cylinders with a diameter of 0.4������������ are added to adjust the
1147
+ supercell’s corners. The light-blue areas in Fig. D.2 refer to the supercell’s
1148
+ structures in the main text.
1149
+
1150
+
1151
+
1152
+ (a)
1153
+ (b)
1154
+
1155
+
1156
+ (c)
1157
+ (d)
1158
+ Fig. D.1. The supercell’s scripts of the ������������3-symmetric unit cell. (a) The band of the edge
1159
+ state (light-grey band belongs to the lower interface counterpart), and (b) the script of the
1160
+ ribbon-shaped supercell in (a). The supercell’s script (c) for the eigenvalue spectrum and
1161
+ (d) for the simulation of the crossing waveguide.
1162
+
1163
+
1164
+
1165
+ (a)
1166
+ (b)
1167
+ (c)
1168
+ Fig. D.2. The supercell’s scripts for the ������������6-symmetric unit cell. (a) The band of the edge
1169
+ states, (b) the script of the ribbon-shaped supercell in (a), and (c) the supercell’s script for
1170
+ the simulation of the crossing waveguide.
1171
+
1172
+ Edgestates
1173
+ 1.1
1174
+ (2A/2πc)
1175
+ 0.9
1176
+ Freq
1177
+ 0.8
1178
+ 0.7
1179
+ X12A
1180
+ 8A
1181
+ T8A
1182
+ 7AEdgestates
1183
+ 1.5
1184
+ Freq (2A/2πc)
1185
+ 1.45
1186
+ 1.4
1187
+ 1.35
1188
+ X12A
1189
+ 0.4A
1190
+ 8AReference
1191
+ 1.
1192
+ Hasan, M. Z. & Kane, C. L. Colloquium : topological insulators. Rev Mod Phys
1193
+ 82, 3045 (2010).
1194
+ 2.
1195
+ Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat Photon 8,
1196
+ 821–829 (2014).
1197
+ 3.
1198
+ Xie, B. et al. Higher-order band topology. Nat Rev Phy 3, 520–532 (2021).
1199
+ 4.
1200
+ Xu, Y. et al. Catalogue of topological phonon materials. ArXiv (2022).
1201
+ 5.
1202
+ Christensen, T., Po, H. C., Joannopoulos, J. D. & Soljačić, M. Location and
1203
+ topology of the fundamental gap in photonic crystals. Phys Rev X 12, 21066
1204
+ (2022).
1205
+ 6.
1206
+ Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J Phys
1207
+ 18, 025012 (2016).
1208
+ 7.
1209
+ Wu, Q., Chen, H., Li, X. & Huang, G. In-plane second-order topologically
1210
+ protected states in elastic Kagome lattices. Phys Rev Appl 14, 014084 (2020).
1211
+ 8.
1212
+ Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a
1213
+ mechanical topological insulator. Science (1979) 349, 47–50 (2015).
1214
+ 9.
1215
+ Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using
1216
+ dielectric material. Phys Rev Lett 114, 223901 (2015).
1217
+ 10.
1218
+ Košata, J. & Zilberberg, O. Second-order topological modes in two-dimensional
1219
+ continuous media. Phys Rev Res 3, L032029 (2021).
1220
+ 11.
1221
+ Peano, V., Sapper, F. & Marquardt, F. Rapid exploration of topological band
1222
+ structures using deep learning. Phys Rev X 11, 21052 (2021).
1223
+ 12.
1224
+ Long, Y., Ren, J. & Chen, H. Intrinsic spin of elastic waves. Proc Natl Acad Sci
1225
+ 115, 9951–9955 (2018).
1226
+ 13.
1227
+ Zhang, Z. et al. Directional acoustic antennas based on valley-Hall topological
1228
+ insulators. Adv Mater 30, 1803229 (2018).
1229
+ 14.
1230
+ Zhang, Z. et al. Topological acoustic delay line. Phys Rev Appl 9, 34032 (2018).
1231
+ 15.
1232
+ Nii, Y. & Onose, Y. Microwave impedance microscopy imaging of acoustic
1233
+ topological edge mode on a patterned substrate. ArXiv (2022).
1234
+ 16.
1235
+ Kumar, A. et al. Topological sensor on a silicon chip. Appl Phys Lett 121, 11101
1236
+ (2022).
1237
+ 17.
1238
+ Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines
1239
+ with topological protection. Nat Phys 7, 907–912 (2011).
1240
+
1241
+ 18.
1242
+ Gong, Y. et al. Topological insulator laser using valley-Hall photonic crystals.
1243
+ ACS Photon 7, 2089–2097 (2020).
1244
+ 19.
1245
+ Bandres, M. A. et al. Topological insulator laser: experiments. Science (1979) 359,
1246
+ eaar4005 (2018).
1247
+ 20.
1248
+ Yu, S. Y. et al. Elastic pseudospin transport for integratable topological phononic
1249
+ circuits. Nat Commun 9, 3072 (2018).
1250
+ 21.
1251
+ Ma, T. X. et al. Flexural wave energy harvesting by the topological interface state
1252
+ of a phononic crystal beam. Extreme Mech Lett 50, 101578 (2022).
1253
+ 22.
1254
+ Zhou, W. et al. Actively controllable topological phase transition in homogeneous
1255
+ piezoelectric rod system. J Mech Phys Solids 137, 103824 (2020).
1256
+ 23.
1257
+ Zhang, Z. et al. Deep-subwavelength holey acoustic second-order topological
1258
+ insulators. Adv Mater 31, 1904682 (2019).
1259
+ 24.
1260
+ Chen, Y., Liu, X. & Hu, G. Topological phase transition in mechanical honeycomb
1261
+ lattice. J Mech Phys Solids 122, 54–68 (2019).
1262
+ 25.
1263
+ Xu, L. et al. Accidental degeneracy in photonic bands and topological phase
1264
+ transitions in two-dimensional core-shell dielectric photonic crystals. Opt Express
1265
+ 24, 18059 (2016).
1266
+ 26.
1267
+ Kang, Y. et al. Pseudo-spin–valley coupled edge states in a photonic topological
1268
+ insulator. Nat Commun 9, 3029 (2018).
1269
+ 27.
1270
+ Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic
1271
+ waves in phononic metamaterials. Nat Commun 6, 8682 (2015).
1272
+ 28.
1273
+ Zhang, Z. et al. Topological creation of acoustic pseudospin multipoles in a flow-
1274
+ free symmetry-broken metamaterial lattice. Phys Rev Lett 118, 84303 (2017).
1275
+ 29.
1276
+ Schindler, F. et al. Fractional corner charges in spin-orbit coupled crystals. Phys
1277
+ Rev Res 1, 33074 (2019).
1278
+ 30.
1279
+ Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge
1280
+ in Cn-symmetric higher-order topological crystalline insulators. Phys Rev B 99,
1281
+ 245151–13 (2019).
1282
+ 31.
1283
+ Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole
1284
+ insulators. Science (1979) 357, 61–66 (2017).
1285
+ 32.
1286
+ Yang, Z. Z. et al. Helical higher-order topological states in an acoustic crystalline
1287
+ insulator. Phys Rev Lett 125, 255502 (2020).
1288
+ 33.
1289
+ Liu, F., Deng, H. Y. & Wakabayashi, K. Helical topological edge states in a
1290
+ quadrupole phase. Phys Rev Lett 122, 86804 (2019).
1291
+
1292
+ 34.
1293
+ Zhang, X. et al. Second-order topology and multidimensional topological
1294
+ transitions in sonic crystals. Nat Phys 15, 582–588 (2019).
1295
+ 35.
1296
+ Fan, H. et al. Elastic higher-order topological insulator with topologically
1297
+ protected corner states. Phys Rev Lett 122, 204301 (2019).
1298
+ 36.
1299
+ Kim, M., Jacob, Z. & Rho, J. Recent advances in 2D, 3D and higher-order
1300
+ topological photonics. Light Sci Appl 9, 130 (2020).
1301
+ 37.
1302
+ Lu, Y. & Park, H. S. Double Dirac cones and topologically nontrivial phonons for
1303
+ continuous square symmetric C4(v) and C2(v) unit cells. Phys Rev B 103, 64308
1304
+ (2021).
1305
+ 38.
1306
+ Zhu, X. et al. Topological transitions in continuously deformed photonic crystals.
1307
+ Phys Rev B 97, 85148 (2018).
1308
+ 39.
1309
+ Chen, Y. et al.. Inverse design of higher-order photonic topological insulators.
1310
+ Phys Rev Res 2, 23115 (2020).
1311
+ 40.
1312
+ Du, Z., Chen, H. & Huang, G. Optimal quantum valley Hall insulators by
1313
+ rationally engineering Berry curvature and band structure. J Mech Phys Solids 135,
1314
+ 103784 (2020).
1315
+ 41.
1316
+ Dong, H. W. et al. Customizing acoustic Dirac cones and topological insulators in
1317
+ square lattices by topology optimization. J Sound Vib 493, 115687 (2021).
1318
+ 42.
1319
+ Luo, J. et al. Moving morphable components-based inverse design formulation for
1320
+ quantum valley/spin Hall insulators. Extreme Mech Lett 45, 101276 (2021).
1321
+ 43.
1322
+ Nanthakumar, S. S. et al. Inverse design of quantum spin Hall-based phononic
1323
+ topological insulators. J Mech Phys Solids 125, 550–571 (2019).
1324
+ 44.
1325
+ Christiansen, R. E., Wang, F., Sigmund, O. & Stobbe, S. Designing photonic
1326
+ topological insulators with quantum-spin-Hall edge states using topology
1327
+ optimization. Nanophotonics 8, 1363–1369 (2019).
1328
+ 45.
1329
+ Hoffmann, R. How chemistry and physics meet in the solid state. Angew Chem Int
1330
+ Ed Engl 26, 846–878 (1987).
1331
+ 46.
1332
+ Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).
1333
+ 47.
1334
+ Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band
1335
+ topology in the 230 space groups. Nat Commun 8, 50 (2017).
1336
+ 48.
1337
+ Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys Rev B
1338
+ 76, 45302 (2007).
1339
+ 49.
1340
+ Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band
1341
+ structures in the 1651 magnetic space groups. Sci Adv 4, eaat8685 (2018).
1342
+
1343
+ 50.
1344
+ Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Topological materials discovery by
1345
+ large-order symmetry indicators. Sci Adv 5, eaau8725 (2019).
1346
+ 51.
1347
+ Bendsøe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods, And
1348
+ Applications. (Springer Berlin Heidelberg, 2004).
1349
+ 52.
1350
+ Guo, X., Zhang, W. & Zhong, W. Doing topology optimization explicitly and
1351
+ geometrically-a new moving morphable components based framework. J Appl
1352
+ Mech 81, 81009 (2014).
1353
+ 53.
1354
+ Du, Z. et al. An efficient and easy-to-extend Matlab code of the moving morphable
1355
+ component (MMC) method for three-dimensional topology optimization. Struct
1356
+ Multidiscip Optim 65, 158 (2022).
1357
+ 54.
1358
+ J.D. Achenbach. Wave Propagation In Elastic Solids. (Elsevier Science Publishing
1359
+ Co Inc, 1973).
1360
+ 55.
1361
+ Strang, G. Introduction to Linear Algebra. (Wellesley Cambridge Press, 1993).
1362
+ 56.
1363
+ Luo, J. et al. Multi-class, multi-functional design of photonic topological insulators
1364
+ by rational symmetry-indicators engineering. Nanophotonics 10, 4523–4531
1365
+ (2021).
1366
+ 57.
1367
+ Kreisselmeier, G. & Steinhauser, R. Systematic control design by optimizing a
1368
+ vector performance index. Computer Aided Design of Control Systems 113–117
1369
+ (1980).
1370
+ 58.
1371
+ Po, H. C., Vishwanath, A. & Watanabe, H. Complete theory of symmetry-based
1372
+ indicators of band topology. Nat Commun 8, 50 (2017).
1373
+ 59.
1374
+ Watanabe, H. & Lu, L. Space group theory of photonic bands. Phys Rev Lett 121,
1375
+ 263903 (2018).
1376
+
1377
+
79E1T4oBgHgl3EQfnQTu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tAyT4oBgHgl3EQfpvj9/content/tmp_files/2301.00533v1.pdf.txt ADDED
@@ -0,0 +1,2582 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analytical comparison between X(3) and X(5) models of the Bohr
2
+ Hamiltonian
3
+ K.R. Ajulo1; K.J. Oyewumi2
4
+ 1,2University of Ilorin, Ilorin, Nigeria.
5
+ Abstract
6
+ Via the inverse square potential, the solutions of the X(3) model which is a γ-rigid form of
7
+ the X(5) critical point symmetry have been achieved. The paper presents X(3), through the
8
+ variational technique, as another “window” through which the “pictures” of X(5) −→ SU(3)
9
+ symmetry region can be seen. The analytical solutions of the X(3) are compared with the
10
+ solutions of the X(5) model. Some new and unique equations connecting the two models in
11
+ the: critical order, energy bands, spectra ratios, RL/2, and B(E2) transitional probabilities are
12
+ presented. These equations should hold in other potentials with one-parameter such as Kratzer
13
+ potential, Davidson potential etc. The spectra ratios and the B(E2) transitional probabilities
14
+ are optimized via the optimization procedure. The experimental data of some selected isotopes
15
+ are placed accordingly for the theoretical predictions. The deviations from the experiments are
16
+ found to be quite small.
17
+ Keywords:
18
+ Bohr Hamiltonian, X(3), X(5), variation technique, optimization procedure, β-
19
+ variable, γ-rigid.
20
+ 1
21
+ Introduction
22
+ X(3) which has been presented in [1-4] is said to be an exactly separable γ-rigid form of the X(5)
23
+ critical point symmetry [5]. The X(3) model is defined by the collective coordinate β and two
24
+ Euler angles since the γ is assumed to be zero unlike the case of X(5), where γ is varied around
25
+ γ0 = 0 value in the harmonic oscillator potential [5]. This implies that, only three variables: β and
26
+ θi are involved in the X(3) model. An exact separation of the β variable from the Euler angles is
27
+ quite easily achievable. In the Bohr Hamiltonian model [6-9], X(5) critical point symmetry is one
28
+ of the two critical point symmetries: it is a phase transition of the first order shape, which were
29
+ originally proposed in the works of Iachello [10], while E(5) is the phase transition of the second
30
+ order shape [10]. In the present work, the nuclei are taken to be γ-rigid, with the axially symmetric
31
+ prolate shape obtained at γ0 = 0. The work presents the usefulness of a one-sided bound inverse
32
+ square potential with one parameter. The one-parameter inverse square potential chosen is of the
33
+ form
34
+ V (β) =
35
+
36
+
37
+
38
+
39
+
40
+ β0
41
+ β2 , if 0 ≤ β ≤ β0,
42
+ ∞, if β > β0,
43
+ (1)
44
+ where β0 is a variation parameter that changes the signatures of the nuclei, as it changes. It
45
+ is expected that the solutions should shift forward as the β0 shifts forward and solutions should
46
+ shift backward as the β0 shifts backward. A typical inverse square potential is bound on the left
47
+ and unbound on the right, and it has a minimum at some positive values of β0 that forces the
48
+ particles to infinity as β0 → 0. As a result, the particle’s energy states is one-sided, with energies
49
+ escaping through the unbound side. The work is structured as follows: Section 2. presents the
50
+ methodology and the solutions of X(3) model via inverse square potential. These solutions are:
51
+ the wave functions, the normalization constants and the energy eigenvalues. The B(E2) transition
52
+ rates are presented in Section 3. The analytical results, the numerical results, their applications in
53
+ certain isotopes are presented and discussed in Section 4. The work is concluded and summarized
54
+ in the Section 5.
55
+ 1E-Mail: [email protected]
56
+ 2E-Mail: [email protected]
57
+ 1
58
+ arXiv:2301.00533v1 [nucl-th] 2 Jan 2023
59
+
60
+ 2
61
+ Methodology of X(3) model with the inverse square potential
62
+ In the X(3) model, the Bohr Hamiltonian operator is written as [1,2]
63
+ ˆH = − ℏ2
64
+ 2B
65
+
66
+ 1
67
+ β2
68
+
69
+ ∂β β2 ∂
70
+ ∂β +
71
+ 1
72
+ 3β2
73
+
74
+ 1
75
+ sin θ
76
+
77
+ ∂θ sin θ ∂
78
+ ∂θ +
79
+ 1
80
+ sin2 θ
81
+ ∂2
82
+ ∂φ2
83
+
84
+ − V (β)
85
+
86
+ ,
87
+ (2)
88
+ where the term,
89
+ 1
90
+ sin θ
91
+
92
+ ∂θ sin θ ∂
93
+ ∂θ +
94
+ 1
95
+ sin2 θ
96
+ ∂2
97
+ ∂φ2 ,
98
+ (3)
99
+ inside the bracket, represents the angular part of the Laplacian [1,2] . B, β and V (β) are respec-
100
+ tively the mass parameter, the collective coordinate and the β-dependent potential. The wave
101
+ equation of the Eq.(2) is
102
+ ˆHΨ(β, θ, φ) = EΨ(β, θ, φ).
103
+ (4)
104
+ By the usual method of separation of variable employed in some quantum texts,
105
+ Ψ(β, θ, φ) = χ(β)YL,M(θ, φ),
106
+ (5)
107
+ where YL,M(θ, φ) is the spherical harmonics and χ(β) is the radial part of Eq.(4). The separated
108
+ angular part obtained reads [1,2]
109
+
110
+
111
+ 1
112
+ sin θ
113
+
114
+ ∂θ sin θ ∂
115
+ ∂θ +
116
+ 1
117
+ sin2 θ
118
+ ∂2
119
+ ∂φ2
120
+
121
+ YL,M(θ, φ) = L(L + 1)YL,M(θ, φ),
122
+ (6)
123
+ where L is the angular momentum quantum number.
124
+ The simplified form of the radial part
125
+ equation [1,2] ,
126
+ � 1
127
+ β2
128
+ d
129
+ dβ β2 d
130
+ dβ − L(L + 1)
131
+ 3β2
132
+ + 2B
133
+ ℏ2 [E − V (β)]
134
+
135
+ χ(β) = 0
136
+ (7)
137
+ reads
138
+ d2
139
+ dβ2 χ(β) + 2
140
+ β
141
+ d
142
+ dβ χ(β) − L(L + 1)
143
+ 3β2
144
+ χ(β) − [v(β) − ϵ]χ(β) = 0,
145
+ (8)
146
+ where ϵ = 2B
147
+ ℏ2 E and v(β) = 2B
148
+ ℏ2 V (β) are the reduced energy and reduced potential respectively
149
+ [5].
150
+ 2.1
151
+ Determination of the wave functions
152
+ By substituting Eq.(1) for v(β) in Eq.(8) and solving the simplified equation using MAPLE soft-
153
+ ware, the eigenfunctions obtained read
154
+ χs,ν,L,(β) = β−1/2 �C1,LJν(√ϵβ) + C2,LYν(√ϵβ)
155
+ � ,
156
+ (9)
157
+ where C1,L and C2,L are the normalization constants associated with the Bessel functions of the first
158
+ kind, Jν, and second kind, Yν, respectively. In the domain of Eq.(1), the critical order associated
159
+ with the X(3) model in Eq.(9) is
160
+ νX(3) =
161
+
162
+ L
163
+ 3 (L + 1) + β0 + 1
164
+ 4.
165
+ (10)
166
+ If a boundary condition χs,ν,L(β0) = 0 is considered, then C2,L,nYν(√ϵβ) vanishes and the wave
167
+ functions become
168
+ χs,ν,L(β) = β−1/2 �C1,LJν(√ϵβ)
169
+ � .
170
+ (11)
171
+ 2
172
+
173
+ 2.2
174
+ Determination of the energy eigenvalues and the spectral ratio
175
+ The procedure for finding the eigenvalues is written in ref. [11]. If the first condition of the listed
176
+ procedure is considered, then the acceptable expression for the energy eigenvalues is written as:
177
+ Es,L,nβ = ℏ2
178
+ 2B k2
179
+ s,ν,nβ,
180
+ k2
181
+ s,ν,nβ = ϵs,ν,nβ,
182
+ k2
183
+ s,ν,nβ = xnβ,s,ν
184
+ β0
185
+ ,
186
+ (12)
187
+ where s = nβ +1, xs,ν,nβ is the s-th zeros of the Bessel function of order ν. The energy eigenvalues
188
+ of the β-part in ℏω = 1 unit reads:
189
+ ϵs,L,nβ = 2nβ + 1 + νX(3) = 2nβ + 1 +
190
+
191
+ L
192
+ 3 (L + 1) + β0 + 1
193
+ 4 :
194
+ nβ = 0, 1, 2, ...
195
+ (13)
196
+ For the X(3) model, the ground state energy levels are defined with s = 1, the quasi-β1 levels are
197
+ defined with s = 2 and the quasi-β2 levels are defined with s = 3. L = 0, 2, 4, 6... There exist no
198
+ γ-bands in the X(3) model because, γ0 = 0.
199
+ Eq.(13) is the similar to the energy eigenvalues obtained in the β-part of X(5) model [12], the
200
+ difference is observed in their critical orders where
201
+ νX(5) =
202
+
203
+ L
204
+ 3 (L + 1) + β0 + 9
205
+ 4.
206
+ (14)
207
+ Since s = nβ + 1, ϵs,L,nβ can be reduced to ϵs,L, then the spectra ratios can be written as
208
+ RL/2 = ϵs,L − ϵ1,0
209
+ ϵ1,2 − ϵ1,0
210
+ .
211
+ (15)
212
+ 2.3
213
+ Determination of the normalization constants and the complete wave func-
214
+ tions
215
+ The normalization condition for the Hamiltonian operator in Eq.(2) is written as [1,2]
216
+ � β0
217
+ 0
218
+ β2 | χs,ν,L,nβ(β) |2 dβ = 1,
219
+ (16)
220
+ such that
221
+ | χs,ν,L,nβ(β) |2→ 0
222
+ for
223
+ β → 0;
224
+ | χs,ν,L,nβ(β) |2 β2 → 0
225
+ for
226
+ β → ∞.
227
+ (17)
228
+ If these conditions are satisfied, then
229
+ � β0
230
+ 0
231
+ β2 | χs,ν,L,nβ(β) |2 dβ < β0.
232
+ Using the identity [13-14]
233
+ Jν(√ϵβ)Jν(√ϵβ) =
234
+
235
+
236
+ nβ=0
237
+ �1
238
+ 2
239
+ √ϵβ
240
+ �2ν+2nβ
241
+ (2ν + nβ + 1)nβ
242
+ nβ![Γ(ν + nβ + 1)]2
243
+ (18)
244
+ in Eq.(16), the simplified normalization constants read
245
+ C1,L,nβ =
246
+
247
+ ����
248
+
249
+ nβ=0,1,2,3...
250
+ (η)nβ
251
+ �ks,ν,nβ
252
+ 2
253
+ �ξ−2
254
+ β(ξ)
255
+ 0
256
+ nβ!
257
+ ξ
258
+
259
+ Γ
260
+ �ξ
261
+ 2
262
+ ��2
263
+
264
+ ����
265
+ −1/2
266
+ ,
267
+ (19)
268
+ where
269
+ ξ = 2ν + 2nβ + 2,
270
+ η = 2ν + nβ + 1
271
+ and
272
+ (η)nβ = η(η + 1)(η + 2)...(η + nβ − 1),
273
+ (20)
274
+ 3
275
+
276
+ with (η)0 = 1. Hence, Eq.(11) becomes
277
+ χs,ν,L,nβ(β) =
278
+
279
+ ����
280
+
281
+ nβ=0,1,2,3...
282
+ (η)nβ
283
+ �ks,ν,nβ
284
+ 2
285
+ �ξ−2
286
+ β(ξ)
287
+ 0
288
+ nβ!
289
+ ξ
290
+
291
+ Γ
292
+ �ξ
293
+ 2
294
+ ��2
295
+
296
+ ����
297
+ −1/2
298
+ β−1/2Jν(√ϵβ).
299
+ (21)
300
+ 3
301
+ B(E2) transition rates
302
+ The electric quadrupole operator is written as [1,2]
303
+ T E2
304
+ µ
305
+ = tβ
306
+
307
+ D(2)
308
+ µ,0(θi) cos γ + 1
309
+
310
+ 2
311
+
312
+ D(2)
313
+ µ,2(θi) + D(2)
314
+ µ,−2(θi)
315
+
316
+ sin γ
317
+
318
+ ,
319
+ (22)
320
+ where D(θi) are the Wigner functions of the Euler angle and t is known as a scale factor. For
321
+ γ0 = 0,
322
+ T E2
323
+ µ
324
+ = tβ
325
+ �4π
326
+ 5 Y2µ(θ, φ).
327
+ (23)
328
+ The B(E2) [1,2,5,15] is written as
329
+ B(E2; sL −→ s′L′) =
330
+ 1
331
+ 2sL + 1|
332
+
333
+ s′L′||T E2||sL
334
+
335
+ |2,
336
+ (24)
337
+ = 2s′L′ + 1
338
+ 2sL + 1 B(E2; s′L′ −→ sL).
339
+ (25)
340
+ Eq.(24) or Eq.(25) has been solved in ref. [1] as:
341
+ B(E2; sL −→ s′L′) = t2 �
342
+ CL′0
343
+ L0,20
344
+ �2 I2
345
+ sL;s′L′,
346
+ (26)
347
+ where the coefficients, CL′0
348
+ L0,20 are the Clebsch-Gordan coefficients, and
349
+ IsL;s′L′ =
350
+ � β0
351
+ 0
352
+ βχs,ν,L,nβ(β)χs′,ν′,L′,n′
353
+ β(β)β2dβ,
354
+ (27)
355
+ are the integrals over β.
356
+ 4
357
+ Numerical results, analytical results, applications and discus-
358
+ sion
359
+ Some important solutions for the collective model of Eq.(2) are the energy levels, the spectra ratios
360
+ and the B(E2) transitions. Their theoretical predictions are important when energy spectra are
361
+ assigned to the states for which experimental data are not available. The numerical calculations,
362
+ the analytical comparisons and how the search for the experimental realizations of the model was
363
+ achieved are discussed accordingly in this section.
364
+ Both the X(3) and the X(5) have their critical orders, ν(L, β0), from their Bessel functions which
365
+ describes their energy spectra. Firstly, in the comparison of the Eq.(10) and Eq.(14), it can be
366
+ deduced from the numerical computation of ν, shown in Table 1., that
367
+ νX(3)(β0 = c + 2) = νX(5)(β0 = c) :
368
+ c = 0, 1, 2, ...
369
+ (28)
370
+ In both cases, it increases with increase in the angular momentum, L, and with increase in the
371
+ variation parameter, β0. These effects of L and β0 in ν are also seen in the energy values of Eq.(13).
372
+ 4
373
+
374
+ Table 1: The comparison in the critical order, ν, of the X(5) [12], with the ν of Eq.(10).
375
+ ν(L)
376
+ L
377
+ β0 = 0
378
+ β0 = 2
379
+ β0 = 4
380
+ β0 = 6
381
+ β0 = 102
382
+ β0 = 100
383
+ X(3)
384
+ X(5)
385
+ X(3)
386
+ X(5)
387
+ X(3)
388
+ X(5)
389
+ X(3)
390
+ X(5)
391
+ X(3)
392
+ X(5)
393
+ 0
394
+ 0.500
395
+ 1.500
396
+ 1.500
397
+ 2.062
398
+ 2.062
399
+ 2.500
400
+ 2.500
401
+ 2.062
402
+ 10.112
403
+ 10.112
404
+ 2
405
+ 1.500
406
+ 2.062
407
+ 2.062
408
+ 2.500
409
+ 2.500
410
+ 2.872
411
+ 2.872
412
+ 2.500
413
+ 10.210
414
+ 10.210
415
+ 4
416
+ 2.630
417
+ 2.986
418
+ 2.986
419
+ 3.304
420
+ 3.304
421
+ 3.594
422
+ 3.594
423
+ 3.304
424
+ 10.436
425
+ 10.436
426
+ 6
427
+ 3.775
428
+ 4.031
429
+ 4.031
430
+ 4.272
431
+ 4.272
432
+ 4.500
433
+ 4.500
434
+ 4.272
435
+ 10.782
436
+ 10.782
437
+ 8
438
+ 4.924
439
+ 5.123
440
+ 5.123
441
+ 5.315
442
+ 5.315
443
+ 5.500
444
+ 5.500
445
+ 5.315
446
+ 11.236
447
+ 11.236
448
+ 10
449
+ 6.076
450
+ 6.238
451
+ 6.238
452
+ 6.397
453
+ 6.397
454
+ 6.551
455
+ 6.551
456
+ 6.397
457
+ 11.786
458
+ 11.786
459
+ β0 = 1
460
+ β0 = 3
461
+ β0 = 5
462
+ β0 = 7
463
+ β0 = 101
464
+ β0 = 103
465
+ 0
466
+ 1.118
467
+ 1.803
468
+ 1.803
469
+ 2.291
470
+ 2.291
471
+ 2.693
472
+ 2.693
473
+ 3.041
474
+ 10.062
475
+ 10.259
476
+ 2
477
+ 1.803
478
+ 2.291
479
+ 2.291
480
+ 2.693
481
+ 2.693
482
+ 3.041
483
+ 3.041
484
+ 3.354
485
+ 10.161
486
+ 10.356
487
+ 4
488
+ 2.814
489
+ 3.149
490
+ 3.149
491
+ 3.452
492
+ 3.452
493
+ 3.731
494
+ 3.731
495
+ 3.990
496
+ 10.388
497
+ 10.579
498
+ 6
499
+ 3.905
500
+ 4.153
501
+ 4.153
502
+ 4.387
503
+ 4.387
504
+ 4.610
505
+ 4.610
506
+ 4.823
507
+ 10.735
508
+ 10.920
509
+ 8
510
+ 5.025
511
+ 5.220
512
+ 5.220
513
+ 5.408
514
+ 5.408
515
+ 5.590
516
+ 5.590
517
+ 5.766
518
+ 11.191
519
+ 11.369
520
+ 10
521
+ 6.158
522
+ 6.318
523
+ 6.318
524
+ 6.474
525
+ 6.474
526
+ 6.627
527
+ 6.627
528
+ 6.776
529
+ 11.747
530
+ 11.913
531
+ Figure 1: (a) Comparison in the energy levels of the X(3) and X(5) models [15] at β0 = 2 from the gsb up
532
+ to the quasi-β2 band. (b): the variation of the critical order, ν, of the X(5) as a function of β0, is compared
533
+ with ν of the X(3) at constant angular momenta, L = 0, 2 and L = 4.
534
+ 5
535
+
536
+ 16
537
+ 5
538
+ βo= 2
539
+ 14
540
+ 4.5
541
+ 12
542
+ X(3)
543
+ B2
544
+ 4
545
+ L=4
546
+ 3.5
547
+ L=4
548
+ L=0
549
+ rgy
550
+ 10
551
+ X(3)
552
+ X(5)
553
+ L=2
554
+ 0X(5)
555
+ 3
556
+ 8
557
+ β2
558
+ X(3)
559
+ X(5)
560
+ X(5)
561
+ -β1
562
+ V 2.5
563
+ L=0
564
+ 6
565
+ X(5)
566
+ β1
567
+ gsb
568
+ 2
569
+ 4
570
+ X(5)
571
+ X(3)
572
+ gsb
573
+ 1.5
574
+ 2
575
+ X(3)
576
+ 0
577
+ 0.5
578
+ 0
579
+ 2
580
+ 4
581
+ 6
582
+ 8
583
+ 10
584
+ 12
585
+ 14
586
+ 0
587
+ (a)
588
+ 7
589
+ (b)
590
+ 0
591
+ 2
592
+ 4
593
+ 8
594
+ 10Table 2: Ground state energies, the energies of the quasi-β1 and the quasi-β2 denoted by nβ =
595
+ 0, s = 1; nβ = 1, s = 2; and nβ = 2, s = 3 respectively for the X(3) and X(5) symmetry [12] in
596
+ ℏω = 1 unit.
597
+ β0 = 2
598
+ β0 = 3
599
+ β0 = 4
600
+ β0 = 15
601
+ L
602
+ nβ = 0;
603
+ s = 1
604
+ X(3)
605
+ X(5)
606
+ X(3)
607
+ X(5)
608
+ X(3)
609
+ X(5)
610
+ X(3)
611
+ X(5)
612
+ 0
613
+ 2.500
614
+ 2.031
615
+ 2.803
616
+ 2.146
617
+ 3.062
618
+ 2.250
619
+ 4.905
620
+ 3.077
621
+ 2
622
+ 3.062
623
+ 2.250
624
+ 3.291
625
+ 2.346
626
+ 3.500
627
+ 2.436
628
+ 5.153
629
+ 3.194
630
+ 4
631
+ 3.986
632
+ 2.652
633
+ 4.149
634
+ 2.726
635
+ 4.304
636
+ 2.797
637
+ 5.682
638
+ 3.445
639
+ 6
640
+ 5.031
641
+ 3.136
642
+ 5.153
643
+ 3.194
644
+ 5.272
645
+ 3.250
646
+ 6.408
647
+ 3.795
648
+ 8
649
+ 6.123
650
+ 3.658
651
+ 6.220
652
+ 3.704
653
+ 6.315
654
+ 3.750
655
+ 7.265
656
+ 4.212
657
+ 10
658
+ 7.238
659
+ 4.198
660
+ 7.318
661
+ 4.237
662
+ 7.397
663
+ 4.276
664
+ 8.205
665
+ 4.671
666
+ 12
667
+ 8.365
668
+ 4.750
669
+ 8.433
670
+ 4.783
671
+ 8.500
672
+ 4.816
673
+ 9.201
674
+ 5.161
675
+ 14
676
+ 9.500
677
+ 5.308
678
+ 9.559
679
+ 5.337
680
+ 9.617
681
+ 5.366
682
+ 10.233
683
+ 5.670
684
+ nβ = 1;
685
+ s = 2
686
+ 0
687
+ 4.500
688
+ 4.031
689
+ 4.803
690
+ 4.146
691
+ 5.062
692
+ 4.250
693
+ 6.905
694
+ 5.077
695
+ 2
696
+ 5.062
697
+ 4.250
698
+ 5.291
699
+ 4.346
700
+ 5.500
701
+ 4.436
702
+ 7.153
703
+ 5.194
704
+ 4
705
+ 5.986
706
+ 4.652
707
+ 6.149
708
+ 4.726
709
+ 6.304
710
+ 4.797
711
+ 7.682
712
+ 5.445
713
+ 6
714
+ 7.031
715
+ 5.136
716
+ 7.153
717
+ 5.194
718
+ 7.272
719
+ 5.250
720
+ 8.408
721
+ 5.795
722
+ 8
723
+ 8.123
724
+ 5.658
725
+ 8.220
726
+ 5.704
727
+ 8.315
728
+ 5.750
729
+ 9.265
730
+ 6.211
731
+ 10
732
+ 9.238
733
+ 6.198
734
+ 9.318
735
+ 6.237
736
+ 9.397
737
+ 6.276
738
+ 10.205
739
+ 6.671
740
+ 12
741
+ 10.365
742
+ 6.750
743
+ 10.433
744
+ 6.783
745
+ 10.500
746
+ 6.816
747
+ 11.201
748
+ 7.161
749
+ 14
750
+ 11.500
751
+ 7.308
752
+ 11.559
753
+ 7.337
754
+ 11.617
755
+ 7.366
756
+ 12.233
757
+ 7.670
758
+ nβ = 2;
759
+ s = 3
760
+ 0
761
+ 6.500
762
+ 6.031
763
+ 6.803
764
+ 6.146
765
+ 7.062
766
+ 6.250
767
+ 8.905
768
+ 7.077
769
+ 2
770
+ 7.062
771
+ 6.250
772
+ 7.291
773
+ 6.346
774
+ 7.500
775
+ 6.436
776
+ 9.153
777
+ 7.194
778
+ 4
779
+ 7.986
780
+ 6.652
781
+ 8.149
782
+ 6.726
783
+ 8.304
784
+ 6.797
785
+ 9.682
786
+ 7.445
787
+ 6
788
+ 9.031
789
+ 7.136
790
+ 9.153
791
+ 7.194
792
+ 9.272
793
+ 7.250
794
+ 10.408
795
+ 7.795
796
+ 8
797
+ 10.123
798
+ 7.658
799
+ 10.220
800
+ 7.704
801
+ 10.315
802
+ 7.750
803
+ 11.265
804
+ 8.211
805
+ 10
806
+ 11.238
807
+ 8.198
808
+ 11.318
809
+ 8.237
810
+ 11.397
811
+ 8.276
812
+ 12.205
813
+ 8.671
814
+ 12
815
+ 12.365
816
+ 8.750
817
+ 12.433
818
+ 8.783
819
+ 12.500
820
+ 8.816
821
+ 13.201
822
+ 9.161
823
+ 14
824
+ 13.500
825
+ 9.308
826
+ 13.559
827
+ 9.337
828
+ 13.617
829
+ 9.366
830
+ 14.233
831
+ 9.670
832
+ 6
833
+
834
+ Figure 2: (a) The plots showing the values of β0 at which energies are minimum. (b) The rate of energy
835
+ with respect to β0, showing non stationary property of β0.
836
+ Table 3: Comparison of the ground state spectra ratios, defined in Eq.(15), of the inverse square
837
+ potential in the X(3) model at different values of the β0, compared with the X(5) [12]. It can be
838
+ seen that X(3)(β0 = ∞) ≈ X(5)(β0 = ∞).
839
+ Ls,nβ
840
+ β0 = 0
841
+ β0 = 0
842
+ β0 = 2
843
+ β0 = 2
844
+ β0 = 4
845
+ β0 = 4
846
+ β0 = ∞
847
+ β0 = ∞
848
+ X(3)
849
+ X(5)
850
+ X(3)
851
+ X(5)
852
+ X(3)
853
+ X(5)
854
+ X(3)
855
+ X(5)
856
+ gsb
857
+ 01,0
858
+ 0.000
859
+ 0.000
860
+ 0.000
861
+ 0.000
862
+ 0.000
863
+ 0.000
864
+ 0.000
865
+ 0.000
866
+ 21,0
867
+ 1.000
868
+ 1.000
869
+ 1.000
870
+ 1.000
871
+ 1.000
872
+ 1.000
873
+ 1.000
874
+ 1.000
875
+ 41,0
876
+ 2.130
877
+ 2.646
878
+ 2.646
879
+ 2.834
880
+ 2.834
881
+ 2.938
882
+ 3.296
883
+ 3.296
884
+ 61,0
885
+ 3.275
886
+ 4.507
887
+ 4.507
888
+ 5.042
889
+ 5.042
890
+ 5.372
891
+ 6.806
892
+ 6.808
893
+ 81,0
894
+ 4.424
895
+ 6.453
896
+ 6.453
897
+ 7.421
898
+ 7.421
899
+ 8.508
900
+ 11.413
901
+ 11.423
902
+ 101,0
903
+ 5.576
904
+ 8.438
905
+ 8.438
906
+ 9.887
907
+ 9.887
908
+ 11.881
909
+ 16.991
910
+ 17.013
911
+ 121,0
912
+ 6.728
913
+ 10.445
914
+ 10.445
915
+ 12.404
916
+ 12.404
917
+ 15.686
918
+ 23.409
919
+ 23.450
920
+ 141,0
921
+ 7.882
922
+ 12.465
923
+ 12.465
924
+ 14.951
925
+ 14.951
926
+ 19.740
927
+ 30.544
928
+ 30.611
929
+ β0 = 1
930
+ β0 = 1
931
+ β0 = 3
932
+ β0 = 3
933
+ β0 = 5
934
+ β0 = 5
935
+ β0 = 15
936
+ β0 = 15
937
+ 01,0
938
+ 0.000
939
+ 0.000
940
+ 0.000
941
+ 0.000
942
+ 0.000
943
+ 0.000
944
+ 0.000
945
+ 0.000
946
+ 21,0
947
+ 1.000
948
+ 1.000
949
+ 1.000
950
+ 1.000
951
+ 1.000
952
+ 1.000
953
+ 1.000
954
+ 1.000
955
+ 41,0
956
+ 2.476
957
+ 2.756
958
+ 2.756
959
+ 2.893
960
+ 2.893
961
+ 2.946
962
+ 3.128
963
+ 3.148
964
+ 61,0
965
+ 4.070
966
+ 4.812
967
+ 4.812
968
+ 5.224
969
+ 5.224
970
+ 5.529
971
+ 6.058
972
+ 6.136
973
+ 81,0
974
+ 5.706
975
+ 6.995
976
+ 6.995
977
+ 7.767
978
+ 7.767
979
+ 8.638
980
+ 9.508
981
+ 9.690
982
+ 101,0
983
+ 7.360
984
+ 9.243
985
+ 9.243
986
+ 10.424
987
+ 10.424
988
+ 11.915
989
+ 13.297
990
+ 13.620
991
+ 121,0
992
+ 9.024
993
+ 11.525
994
+ 11.525
995
+ 13.145
996
+ 13.145
997
+ 15.854
998
+ 17.307
999
+ 17.800
1000
+ 141,0
1001
+ 10.694
1002
+ 13.829
1003
+ 13.829
1004
+ 15.907
1005
+ 15.907
1006
+ 19.899
1007
+ 21.468
1008
+ 22.152
1009
+ 7
1010
+
1011
+ L=2
1012
+ L=4 :
1013
+ 6
1014
+ L=2
1015
+ L=4
1016
+ 6
1017
+ Po
1018
+ 10
1019
+ 15
1020
+ 0
1021
+ 5
1022
+ 10
1023
+ 15
1024
+ -0.005-
1025
+ -1.2 -
1026
+ -0.010-
1027
+ -1.4卡
1028
+ 8v
1029
+ 8v-1.6
1030
+ -0.015
1031
+ log
1032
+ SPo
1033
+ -1.8 -
1034
+ -0.020-
1035
+ -2 -
1036
+ -0.025
1037
+ (a)
1038
+ [b]
1039
+ -2.2-Table 4: RL/2 ratios, defined in Eq.(15), of the quasi-β1 and quasi-β2 bands of the inverse square
1040
+ potential in the X(3) model at different values of the β0.
1041
+ Ls,nβ
1042
+ β0 = 0
1043
+ β0 = 1
1044
+ β0 = 2
1045
+ β0 = 3
1046
+ β0 = 4
1047
+ β0 = 15
1048
+ β0 = ∞
1049
+ quasi-β1
1050
+ 02,1
1051
+ 2.000
1052
+ 2.921
1053
+ 3.562
1054
+ 4.094
1055
+ 4.562
1056
+ 8.058
1057
+ 20.124
1058
+ 22,1
1059
+ 3.000
1060
+ 3.921
1061
+ 4.562
1062
+ 5.094
1063
+ 5.562
1064
+ 9.058
1065
+ 21.124
1066
+ 42,1
1067
+ 4.130
1068
+ 5.397
1069
+ 6.208
1070
+ 6.850
1071
+ 7.395
1072
+ 11.187
1073
+ 23.420
1074
+ 62,1
1075
+ 5.275
1076
+ 6.991
1077
+ 8.069
1078
+ 8.906
1079
+ 9.603
1080
+ 14.115
1081
+ 26.929
1082
+ 82,1
1083
+ 6.424
1084
+ 8.626
1085
+ 10.014
1086
+ 11.090
1087
+ 11.982
1088
+ 17.567
1089
+ 31.537
1090
+ 102,1
1091
+ 7.576
1092
+ 10.281
1093
+ 11.999
1094
+ 13.337
1095
+ 14.449
1096
+ 21.356
1097
+ 37.116
1098
+ 122,1
1099
+ 8.728
1100
+ 11.945
1101
+ 14.007
1102
+ 15.619
1103
+ 16.965
1104
+ 25.366
1105
+ 43.534
1106
+ 142,1
1107
+ 9.882
1108
+ 13.615
1109
+ 16.027
1110
+ 17.923
1111
+ 19.513
1112
+ 29.526
1113
+ 50.668
1114
+ quasi-β2
1115
+ 03,2
1116
+ 4.000
1117
+ 5.842
1118
+ 7.123
1119
+ 8.188
1120
+ 9.123
1121
+ 16.117
1122
+ 40.249
1123
+ 23,2
1124
+ 5.000
1125
+ 6.842
1126
+ 8.123
1127
+ 9.188
1128
+ 10.123
1129
+ 17.117
1130
+ 41.249
1131
+ 43,2
1132
+ 6.130
1133
+ 8.318
1134
+ 9.769
1135
+ 10.944
1136
+ 11.957
1137
+ 19.245
1138
+ 43.545
1139
+ 63,2
1140
+ 7.275
1141
+ 9.912
1142
+ 11.630
1143
+ 13.000
1144
+ 14.165
1145
+ 22.174
1146
+ 47.054
1147
+ 83,2
1148
+ 8.424
1149
+ 11.547
1150
+ 13.576
1151
+ 15.184
1152
+ 16.544
1153
+ 25.625
1154
+ 51.662
1155
+ 103,2
1156
+ 9.576
1157
+ 13.201
1158
+ 15.561
1159
+ 17.431
1160
+ 19.010
1161
+ 29.414
1162
+ 57.240
1163
+ 123,2
1164
+ 10.728
1165
+ 14.866
1166
+ 17.568
1167
+ 19.713
1168
+ 21.527
1169
+ 33.424
1170
+ 63.658
1171
+ 143,2
1172
+ 11.882
1173
+ 16.536
1174
+ 19.589
1175
+ 22.018
1176
+ 24.074
1177
+ 37.584
1178
+ 70.792
1179
+ Figure 3: The ϵs,L
1180
+ ϵ1,2
1181
+ of the X(3). (b): the ϵs,L
1182
+ ϵ1,2
1183
+ of the X(5) both at constant angular momenta,
1184
+ L = 0...10 are plotted against the variation parameter, β0.
1185
+ 8
1186
+
1187
+ 1.8
1188
+ X(3)
1189
+ 1.20-
1190
+ x(5)
1191
+ 1.6
1192
+ L=10.
1193
+ 1.15-
1194
+ 1.4-
1195
+ L=8
1196
+ es,L1.10
1197
+ 8
1198
+ 1,2 1.2
1199
+ E1,2
1200
+ =4
1201
+ 1.05-
1202
+ 1.0 -
1203
+ L=2
1204
+ O
1205
+ 0.8-
1206
+ 1.00
1207
+ =2
1208
+ :0
1209
+ 6
1210
+ 10
1211
+ 2
1212
+ 3
1213
+ 6
1214
+ o
1215
+ 9
1216
+ (a)
1217
+ 10
1218
+ Po
1219
+ (b)
1220
+ PoFigure 4: (a) The comparison in the R4/2 of the X(3) and X(5) for β0 = ∞ and for different values of
1221
+ the β0,max labelled as X(3)−var and X(5)−var respectively, peculiar to each angular momentum. (b): the
1222
+ comparison in the R0/2 of the X(3) and X(5) for β0 = ∞ and for different values of the β0,max labelled as
1223
+ X(3)−var and X(5)−var respectively, peculiar to each angular momentum.
1224
+ Figure 5: (a) and (b) The visual plots of the potentials correspond to R4/2 and R0/2 respectively.
1225
+ The values of β0 used correspond to X(3)-var and X(5)-var in the gsb and quasi-β1 bands.
1226
+ 9
1227
+
1228
+ 70
1229
+ 35
1230
+ +X(3)-var
1231
+ 60
1232
+ 30
1233
+ X(5)-var
1234
+ x(3)-var
1235
+ 50
1236
+ 25
1237
+ (gsb)
1238
+ +x(5)-var
1239
+ X(3)- βo = 00
1240
+ 20
1241
+ 40
1242
+ X(3)-βo = 00
1243
+ R
1244
+ R
1245
+ 15
1246
+ →X(5)-Po = 00
1247
+ 30
1248
+ 10
1249
+ 20
1250
+ 5
1251
+ 10
1252
+ 0
1253
+ 0
1254
+ 0
1255
+ 4
1256
+ 8
1257
+ 10
1258
+ 12
1259
+ 14
1260
+ 16
1261
+ 0
1262
+ 2
1263
+ 4
1264
+ 6
1265
+ 8
1266
+ 10
1267
+ 12
1268
+ 14
1269
+ 2
1270
+ 6
1271
+ 16
1272
+ 7
1273
+ (b)
1274
+ (a)
1275
+ 7X (3)
1276
+ x(5)
1277
+ X (3)
1278
+ X (5)
1279
+ F00S
1280
+ gsb
1281
+ 1-005
1282
+ β1
1283
+ 250-
1284
+ 00
1285
+ 200
1286
+ 300-
1287
+ V(β) 150
1288
+ V(β)
1289
+ 200
1290
+ 100-
1291
+ 100-
1292
+ 50-
1293
+ (a)
1294
+ 0.2
1295
+ 03
1296
+ (q)
1297
+ 0.1
1298
+ to
1299
+ 0.5
1300
+ 0.1
1301
+ 0.2
1302
+ to
1303
+ 0.5
1304
+ β
1305
+ βFigure 6: (a) and (b) present the RL/2 ratios for the ground state and the quasi-β1 bands of the
1306
+ X(3) model of inverse square potential respectively, at different values of β0 compared with X(3)-
1307
+ IW and 162Dy. (c): the RL/2 ratios for the quasi-β2 bands of the X(3) model of inverse square
1308
+ potential at different values of β0 compared with X(3)-IW [1]. It appears that the gsb solutions of
1309
+ X(3) at β0 = ∞ lie on the experimental data of 162Dy, which is a typical SU(3) candidate. The
1310
+ available data on the first exited state lie very close to one another.
1311
+ Figure 7: (a) and (b) present the RL/2 ratios for the ground state and the quasi-β1 bands of the
1312
+ X(3) and the X(5) models of inverse square potentials respectively, obtained at different values of
1313
+ β0,max, labeled X(3)-var and X(5)-var, are compared with the 172−180Os chain.
1314
+ 10
1315
+
1316
+ 55
1317
+ 35
1318
+ 50
1319
+ O βo= 0
1320
+ ×βo = 2
1321
+ O-βo= 0
1322
+ 30
1323
+ X-βo= 2
1324
+ 45
1325
+ →βo = 3
1326
+ →βo = 15
1327
+ →βo= 3
1328
+ βo= 15
1329
+ 162 DY
1330
+ 40
1331
+ -X(3)-IW
1332
+ 10-βg=8
1333
+ 25
1334
+ _162 Dy
1335
+ 35
1336
+ X(3)-IW
1337
+ (qs)
1338
+ 30
1339
+ 20
1340
+ RL/2
1341
+ 25
1342
+ RL/2
1343
+ 15
1344
+ 20
1345
+ 15
1346
+ 10
1347
+ 10
1348
+ 5
1349
+ 5
1350
+ (b)
1351
+ 0
1352
+ (a) 0
1353
+ 0
1354
+ 2
1355
+ 4
1356
+ 6
1357
+ 8
1358
+ 10
1359
+ 12
1360
+ 14
1361
+ 0
1362
+ 2
1363
+ 4
1364
+ 8
1365
+ 10
1366
+ 12
1367
+ 14
1368
+ 6
1369
+ 75
1370
+ 70
1371
+ O-βo= 0
1372
+ *-βo= 2
1373
+ 65
1374
+ βo= 3
1375
+ 60
1376
+ -βo= 15
1377
+ 55
1378
+ βo= 8
1379
+ -X(3)-IW
1380
+ 45
1381
+ 40
1382
+ z/7
1383
+ 35
1384
+ R
1385
+ 30
1386
+ 25
1387
+ 20
1388
+ 15
1389
+ 10
1390
+ 5
1391
+ (c)
1392
+ 0
1393
+ 0
1394
+ 2
1395
+ 4
1396
+ 6
1397
+ 10
1398
+ 12
1399
+ 14
1400
+ 825
1401
+ 30
1402
+ 72
1403
+ 1760s
1404
+ 172
1405
+ 1760s
1406
+ 25
1407
+ 20
1408
+ 180
1409
+ Os
1410
+ 1780s
1411
+ b
1412
+ Os
1413
+ 20
1414
+ β
1415
+ ←x(3)-var
1416
+ O-X(5)-var
1417
+ L/2
1418
+ -x(3)-var
1419
+ -x(5)-var
1420
+ 10
1421
+ R
1422
+ R
1423
+ 10
1424
+ 5
1425
+ (a)
1426
+ (b) 0
1427
+ 0
1428
+ 6
1429
+ 8
1430
+ 10
1431
+ 12
1432
+ 14
1433
+ 0
1434
+ 2
1435
+ 6
1436
+ 8
1437
+ 10
1438
+ LFigure 8: The Neutron-β0 distribution is employed to show the relative positions of 104−108Ru,
1439
+ 120−126Xe, 184−188Pt and 172−180Os along their common chain.
1440
+ Figure 9: The B(E2) transition rates of the X(3) normalized to the B(E2 : 21,0 → 01,0) = 100
1441
+ units within: (a) the ground state bands at β0 = 0, 1, 2, ∞ and B(E2)-var compared with the
1442
+ X(3)-IW [1], X(5) experimental data [34] and 158Gd [35], which is a typical SU(3) candidate.
1443
+ (b): the β1 state bands at β0 = 0, 1, 2, ∞ and B(E2)-var compared with the X(3)-IW [1] and
1444
+ 158Gd. (c): the β2 state bands at β0 = 0, 1, 2, ∞ and B(E2)-var compared with the X(3)-IW [1].
1445
+ [Note:-IW denotes infinite well potential.]
1446
+ 11
1447
+
1448
+ 120
1449
+ 188Pt
1450
+ 110
1451
+ 186 Pt
1452
+ 184Pt
1453
+ 100
1454
+ 180Os
1455
+ 178 0s
1456
+ 1760s
1457
+ 90
1458
+ N
1459
+ 126
1460
+ 80
1461
+ Xe
1462
+ 124 Xe
1463
+ 122 Xe
1464
+ 70
1465
+ 108Ru
1466
+ 120
1467
+ Xe
1468
+ 60
1469
+ 104Ru
1470
+ 106Ru
1471
+ 50
1472
+ 0
1473
+ 2
1474
+ 4
1475
+ 6
1476
+ 8
1477
+ 10
1478
+ 12
1479
+ 14
1480
+ βo1200
1481
+ 1200
1482
+ -βo= 0
1483
+ →βo = 1
1484
+ -βo= 0
1485
+ →βo= 1
1486
+ →βo = 2
1487
+ ×βo=8
1488
+ 1000
1489
+ 1000
1490
+ →βo = 2
1491
+ ¥β=8
1492
+ -* B(E2)-var
1493
+ X(3)-IW
1494
+ 米一
1495
+ B(E2)-var
1496
+ - X(3)-IW
1497
+ 800
1498
+ 800
1499
+ X(5)-Exp
1500
+ 600
1501
+ 600
1502
+ 400
1503
+ 2
1504
+ 2
1505
+ 400
1506
+ E
1507
+ E
1508
+ 200
1509
+ B
1510
+ 200
1511
+ (b)
1512
+ (a)
1513
+ 0
1514
+ 2
1515
+ 4
1516
+ 6
1517
+ 8
1518
+ 10
1519
+ 12
1520
+ 0
1521
+ 0
1522
+ 2
1523
+ 4
1524
+ 6
1525
+ 8
1526
+ 10
1527
+ 12
1528
+ 1400
1529
+ βo= 0
1530
+ ←βo= 1
1531
+ 1200
1532
+ → β = 2
1533
+ ¥β= 8
1534
+ 1000
1535
+ * B(E2)-var
1536
+ -0-. X(3)-IW
1537
+ 800
1538
+ 600
1539
+ 2
1540
+ 400
1541
+ 200
1542
+ B
1543
+ (c)
1544
+ 0
1545
+ 0
1546
+ 2
1547
+ 4
1548
+ 6
1549
+ 8
1550
+ 10
1551
+ 12Table 5: The RL/2 ratios, defined in Eq.(15), for the X(3) version of inverse square potential,
1552
+ labelled X(3)-var, calculated at different values of β0,max, are compared with the X(3)-IW [1].
1553
+ [Note: IW denotes infinite well potential].
1554
+ Ls,nβ
1555
+ β0,max
1556
+ X(3)-var
1557
+ X(3)-IW
1558
+ gsb
1559
+ 01,0
1560
+ β0
1561
+ 0.000
1562
+ 0.000
1563
+ 21,0
1564
+ β0
1565
+ 1.000
1566
+ 1.000
1567
+ 41,0
1568
+ 0.844
1569
+ 2.440
1570
+ 2.440
1571
+ 61,0
1572
+ 1.576
1573
+ 4.244
1574
+ 4.230
1575
+ 81,0
1576
+ 2.033
1577
+ 6.383
1578
+ 6.350
1579
+ 101,0
1580
+ 2.143
1581
+ 8.666
1582
+ 8.780
1583
+ 121,0
1584
+ 2.695
1585
+ 11.421
1586
+ 11.520
1587
+ 141,0
1588
+ 3.643
1589
+ 14.573
1590
+ 14.570
1591
+ quasi-β1
1592
+ 02,1
1593
+ 0.815
1594
+ 2.703
1595
+ 2.870
1596
+ 22,1
1597
+ 2.101
1598
+ 4.619
1599
+ 4.830
1600
+ 42,1
1601
+ 3.729
1602
+ 7.255
1603
+ 7.370
1604
+ 62,1
1605
+ 5.213
1606
+ 10.327
1607
+ 10.290
1608
+ 82,1
1609
+ 6.098
1610
+ 13.493
1611
+ 13.570
1612
+ 102,1
1613
+ 6.855
1614
+ 16.908
1615
+ 17.180
1616
+ 122,1
1617
+ 8.106
1618
+ 21.009
1619
+ 21.140
1620
+ quasi-β2
1621
+ 03,2
1622
+ 2.524
1623
+ 7.701
1624
+ 7.650
1625
+ 23,2
1626
+ 4.497
1627
+ 10.553
1628
+ 10.560
1629
+ 43,2
1630
+ 6.523
1631
+ 14.088
1632
+ 14.190
1633
+ 63,2
1634
+ 8.567
1635
+ 18.172
1636
+ 18.220
1637
+ 83,2
1638
+ 10.438
1639
+ 22.613
1640
+ 22.620
1641
+ 103,2
1642
+ 11.932
1643
+ 25.999
1644
+ -
1645
+ 123,2
1646
+ 13.011
1647
+ 28.928
1648
+ -
1649
+ 12
1650
+
1651
+ Table 6: The spectra ratios for the X(3) version of inverse square potential are compared with
1652
+ the experimental data. The values of the β0 and the quality factor, σ, used during the fittings are
1653
+ recorded.
1654
+ Ls,nβ
1655
+ 102Mo
1656
+ 102Mo
1657
+ 104Ru
1658
+ 104Ru
1659
+ 106Ru
1660
+ 106Ru
1661
+ 108Ru
1662
+ 108Ru
1663
+ 120Xe
1664
+ 120Xe
1665
+ 122Xe
1666
+ 122Xe
1667
+ Exp
1668
+ Theor
1669
+ Exp
1670
+ Theor
1671
+ Exp
1672
+ Theor
1673
+ Exp
1674
+ Theor
1675
+ Exp
1676
+ Theor
1677
+ Exp
1678
+ gsb
1679
+ 41,0
1680
+ 2.510
1681
+ 2.566
1682
+ 2.480
1683
+ 2.468
1684
+ 2.660
1685
+ 2.662
1686
+ 2.750
1687
+ 2.623
1688
+ 2.470
1689
+ 2.522
1690
+ 2.500
1691
+ 2.571
1692
+ 61,0
1693
+ 4.480
1694
+ 4.483
1695
+ 4.350
1696
+ 4.299
1697
+ 4.800
1698
+ 4.805
1699
+ 5.120
1700
+ 5.102
1701
+ 4.330
1702
+ 4.263
1703
+ 4.430
1704
+ 4.500
1705
+ 81,0
1706
+ 6.810
1707
+ 6.703
1708
+ 6.480
1709
+ 6.488
1710
+ 7.310
1711
+ 7.199
1712
+ 8.020
1713
+ 7.999
1714
+ 6.510
1715
+ 6.361
1716
+ 6.690
1717
+ 6.759
1718
+ 101,0
1719
+ 9.410
1720
+ 8.989
1721
+ 8.690
1722
+ 8.702
1723
+ 10.020
1724
+ 9.920
1725
+ 11.310
1726
+ 11.495
1727
+ 8.900
1728
+ 8.497
1729
+ 9.180
1730
+ 9.216
1731
+ 121,0
1732
+ -
1733
+ 11.498
1734
+ -
1735
+ 11.878
1736
+ -
1737
+ 12.334
1738
+ -
1739
+ 12.879
1740
+ -
1741
+ 10.362
1742
+ -
1743
+ 11.985
1744
+ 141,0
1745
+ -
1746
+ 13.302
1747
+ -
1748
+ 14.522
1749
+ -
1750
+ 15.073
1751
+ -
1752
+ 15.591
1753
+ -
1754
+ 12.640
1755
+ -
1756
+ 14.759
1757
+ β1
1758
+ 02,1
1759
+ 2.350
1760
+ 3.009
1761
+ -
1762
+ 2.569
1763
+ 3.670
1764
+ 3.678
1765
+ -
1766
+ 4.462
1767
+ 2.820
1768
+ 3.000
1769
+ 3.470
1770
+ 3.492
1771
+ 22,1
1772
+ 3.860
1773
+ 4.301
1774
+ 4.230
1775
+ 4.233
1776
+ -
1777
+ 5.127
1778
+ -
1779
+ 5.902
1780
+ 3.950
1781
+ 4.203
1782
+ 4.510
1783
+ 4.608
1784
+ 42,1
1785
+ -
1786
+ 6.289
1787
+ 5.810
1788
+ 5.921
1789
+ -
1790
+ 7.443
1791
+ -
1792
+ 8.285
1793
+ 5.310
1794
+ 5.899
1795
+ -
1796
+ 6.792
1797
+ 62,1
1798
+ -
1799
+ 8.691
1800
+ -
1801
+ 8.009
1802
+ -
1803
+ 10.001
1804
+ -
1805
+ 11.099
1806
+ -
1807
+ 7.958
1808
+ -
1809
+ 9.172
1810
+ 82,1
1811
+ -
1812
+ 11.319
1813
+ -
1814
+ 11.101
1815
+ -
1816
+ 12.519
1817
+ -
1818
+ 14.532
1819
+ -
1820
+ 10.739
1821
+ -
1822
+ 11.829
1823
+ β2
1824
+ 03,2
1825
+ -
1826
+ 7.437
1827
+ -
1828
+ 6.589
1829
+ -
1830
+ 8.388
1831
+ -
1832
+ 10.099
1833
+ -
1834
+ 6.664
1835
+ -
1836
+ 7.722
1837
+ 23,2
1838
+ -
1839
+ 9.000
1840
+ -
1841
+ 8.202
1842
+ -
1843
+ 10.200
1844
+ -
1845
+ 11.811
1846
+ -
1847
+ 8.007
1848
+ -
1849
+ 9.402
1850
+ 43,2
1851
+ -
1852
+ 11.009
1853
+ -
1854
+ 10.341
1855
+ -
1856
+ 12.049
1857
+ -
1858
+ 12.972
1859
+ -
1860
+ 10.229
1861
+ -
1862
+ 11.538
1863
+ β0
1864
+ 1.464
1865
+ 0.963
1866
+ -
1867
+ 2.121
1868
+ 1.830
1869
+ 1.221
1870
+ 1.494
1871
+ σ
1872
+ 0.569
1873
+ 0.310
1874
+ -
1875
+ 0.422
1876
+ 0.276
1877
+ 0.481
1878
+ 0.295
1879
+ 124Xe
1880
+ 124Xe
1881
+ 126Xe
1882
+ 126Xe
1883
+ 148Nd
1884
+ 148Nd
1885
+ 184Pt
1886
+ 184Pt
1887
+ 186Pt
1888
+ 186Pt
1889
+ 188Pt
1890
+ 188Pt
1891
+ Exp
1892
+ Theor
1893
+ Exp
1894
+ Theor
1895
+ Exp
1896
+ Theor
1897
+ Exp
1898
+ Theor
1899
+ Exp
1900
+ Theor
1901
+ Exp
1902
+ Theor
1903
+ gsb
1904
+ 41,0
1905
+ 2.480
1906
+ 2.498
1907
+ 2.420
1908
+ 2.463
1909
+ 2.490
1910
+ 2.500
1911
+ 2.670
1912
+ 2.721
1913
+ 2.560
1914
+ 2.567
1915
+ 2.530
1916
+ 2.890
1917
+ 61,0
1918
+ 4.370
1919
+ 4.418
1920
+ 4.210
1921
+ 4.291
1922
+ 4.240
1923
+ 4.187
1924
+ 4.900
1925
+ 5.001
1926
+ 4.580
1927
+ 4.399
1928
+ 4.460
1929
+ 4.503
1930
+ 81,0
1931
+ 6.580
1932
+ 6.596
1933
+ 6.270
1934
+ 6.325
1935
+ 6.150
1936
+ 6.007
1937
+ 7.550
1938
+ 7.679
1939
+ 7.010
1940
+ 6.768
1941
+ 6.710
1942
+ 6.666
1943
+ 101,0
1944
+ 8.960
1945
+ 8.726
1946
+ 8.640
1947
+ 8.382
1948
+ 8.190
1949
+ 7.986
1950
+ 10.470
1951
+ 10.585
1952
+ 9.700
1953
+ 8.863
1954
+ 9.180
1955
+ 8.969
1956
+ 121,0
1957
+ -
1958
+ 11.998
1959
+ -
1960
+ 10.479
1961
+ -
1962
+ 9.769
1963
+ -
1964
+ 12.807
1965
+ -
1966
+ 11.999
1967
+ -
1968
+ 11.378
1969
+ 141,0
1970
+ -
1971
+ 15.079
1972
+ -
1973
+ 12.681
1974
+ -
1975
+ 11.246
1976
+ -
1977
+ 15.367
1978
+ -
1979
+ 14.875
1980
+ -
1981
+ 14.242
1982
+ β1
1983
+ 02,1
1984
+ 3.580
1985
+ 3.402
1986
+ 3.380
1987
+ 3.201
1988
+ 3.040
1989
+ 3.082
1990
+ 3.020
1991
+ 3.546
1992
+ 2.460
1993
+ 2.798
1994
+ 3.010
1995
+ 3.209
1996
+ 22,1
1997
+ 4.600
1998
+ 4.498
1999
+ 4.320
2000
+ 4.241
2001
+ 3.880
2002
+ 4.006
2003
+ 5.180
2004
+ 5.452
2005
+ 4.170
2006
+ 4.381
2007
+ 4.200
2008
+ 4.397
2009
+ 42,1
2010
+ 5.690
2011
+ 6.289
2012
+ 5.250
2013
+ 5.862
2014
+ 5.320
2015
+ 5.589
2016
+ 7.570
2017
+ 7.943
2018
+ 6.380
2019
+ 6.599
2020
+ -
2021
+ 6.583
2022
+ 62,1
2023
+ -
2024
+ 8.564
2025
+ -
2026
+ 7.828
2027
+ 7.120
2028
+ 7.411
2029
+ 11.040
2030
+ 11.157
2031
+ 8.360
2032
+ 8.581
2033
+ -
2034
+ 8.603
2035
+ 82,1
2036
+ -
2037
+ 11.900
2038
+ -
2039
+ 10.062
2040
+ -
2041
+ 9.752
2042
+ -
2043
+ 14.601
2044
+ -
2045
+ 12.007
2046
+ -
2047
+ 12.100
2048
+ β2
2049
+ 03,2
2050
+ -
2051
+ 7.334
2052
+ -
2053
+ 6.759
2054
+ -
2055
+ 6.249
2056
+ -
2057
+ 10.122
2058
+ -
2059
+ 7.389
2060
+ -
2061
+ 7.603
2062
+ 23,2
2063
+ -
2064
+ 8.888
2065
+ -
2066
+ 8.009
2067
+ -
2068
+ 7.442
2069
+ -
2070
+ 11.900
2071
+ -
2072
+ 8.942
2073
+ -
2074
+ 9.162
2075
+ 43,2
2076
+ -
2077
+ 10.022
2078
+ -
2079
+ 9.287
2080
+ -
2081
+ 9.051
2082
+ -
2083
+ 12.998
2084
+ -
2085
+ 10.208
2086
+ -
2087
+ 10.441
2088
+ β0
2089
+ 1.101
2090
+ -
2091
+ 0.949
2092
+ 1.111
2093
+ 2.639
2094
+ 1.469
2095
+ 4.950
2096
+ σ
2097
+ 0.279
2098
+ -
2099
+ 0.299
2100
+ 0.347
2101
+ 0.475
2102
+ 0.600
2103
+ 0.729
2104
+ 13
2105
+
2106
+ Table 7: The B(E2) transition rates of the X(3) model at β0 = 0, 1, 2, ∞ and its values obtained
2107
+ at β0,max peculiar to each angular momentum, normalized to the B(E2; 21,0 → 01,0) = 100 units
2108
+ are compared with the X(3)-IW model [1] and with the experimental data of X(5) [34]. [Note:
2109
+ -IW denotes infinite well potential.]
2110
+ L(i)
2111
+ s,nβ
2112
+ L(f)
2113
+ s,nβ
2114
+ β0 = 0
2115
+ β0 = 1
2116
+ β0 = 2
2117
+ β0 = ∞
2118
+ β(i)
2119
+ 0,max → β(f)
2120
+ 0,max
2121
+ B(E2) − var
2122
+ X(3)-IW
2123
+ 176Os-Exp
2124
+ 21,0
2125
+ 01,0
2126
+ 100.000
2127
+ 100.000
2128
+ 100.000
2129
+ 100.000
2130
+ β0 → β0
2131
+ 100.000
2132
+ 100.00
2133
+ 100.00
2134
+ 41,0
2135
+ 21,0
2136
+ 237.513
2137
+ 190.935
2138
+ 178.005
2139
+ 143.992
2140
+ 0.844 → β0
2141
+ 189.495
2142
+ 189.90
2143
+ 193.00
2144
+ 61,0
2145
+ 41,0
2146
+ 380.702
2147
+ 286.006
2148
+ 270.996
2149
+ 167.292
2150
+ 1.576 → 0.844
2151
+ 250.995
2152
+ 248.90
2153
+ 267.00
2154
+ 81,0
2155
+ 61,0
2156
+ 523.695
2157
+ 384.599
2158
+ 369.090
2159
+ 185.328
2160
+ 2.033 → 1.576
2161
+ 293.038
2162
+ 291.40
2163
+ 297.00
2164
+ 101,0
2165
+ 81,0
2166
+ 667.003
2167
+ 486.036
2168
+ 469.991
2169
+ 202.099
2170
+ 2.143 → 2.033
2171
+ 324.599
2172
+ 323.80
2173
+ 352.50
2174
+ 121,0
2175
+ 101,0
2176
+ 810.954
2177
+ 587.658
2178
+ 559.744
2179
+ 229.986
2180
+ 2.695 → 2.143
2181
+ 350.710
2182
+ 349.50
2183
+ -
2184
+ 141,0
2185
+ 121,0
2186
+ 954.746
2187
+ 690.364
2188
+ 671.484
2189
+ 253.007
2190
+ 3.643 → 2.695
2191
+ 371.992
2192
+ 370.70
2193
+ -
2194
+ 22,1
2195
+ 02,1
2196
+ 166.813
2197
+ 160.292
2198
+ 152.428
2199
+ 69.929
2200
+ 2.011 → 0.815
2201
+ 78.922
2202
+ 80.60
2203
+ -
2204
+ 42,1
2205
+ 22,1
2206
+ 320.619
2207
+ 260.000
2208
+ 243.186
2209
+ 123.888
2210
+ 3.729 → 2.101
2211
+ 139.471
2212
+ 140.10
2213
+ -
2214
+ 62,1
2215
+ 42,1
2216
+ 470.001
2217
+ 355.240
2218
+ 343.376
2219
+ 156.031
2220
+ 5.213 → 3.729
2221
+ 181.730
2222
+ 182.40
2223
+ -
2224
+ 82,1
2225
+ 62,1
2226
+ 617.075
2227
+ 456.792
2228
+ 439.962
2229
+ 189.542
2230
+ 6.098 → 5.213
2231
+ 213.899
2232
+ 215.50
2233
+ -
2234
+ 102,1
2235
+ 82,1
2236
+ 763.927
2237
+ 557.317
2238
+ 542.129
2239
+ 215.763
2240
+ 6.855 → 6.098
2241
+ 242.026
2242
+ 242.40
2243
+ -
2244
+ 122,1
2245
+ 102,1
2246
+ 899.983
2247
+ 656.999
2248
+ 639.677
2249
+ 233.499
2250
+ 8.106 → 6.855
2251
+ 268.543
2252
+ 265.10
2253
+ -
2254
+ 142,1
2255
+ 122,1
2256
+ 1009.079
2257
+ 759.642
2258
+ 736.660
2259
+ 251.643
2260
+ 9.441 → 8.106
2261
+ 281.320
2262
+ -
2263
+ -
2264
+ 23,2
2265
+ 03,2
2266
+ 233.504
2267
+ 221.942
2268
+ 209.888
2269
+ 56.684
2270
+ 4.497 → 2.524
2271
+ 72.090
2272
+ 73.50
2273
+ -
2274
+ 43,2
2275
+ 23,2
2276
+ 401.982
2277
+ 327.461
2278
+ 311.072
2279
+ 82.831
2280
+ 6.523 → 4.497
2281
+ 118.990
2282
+ 120.50
2283
+ -
2284
+ 63,2
2285
+ 43,2
2286
+ 559.801
2287
+ 422.880
2288
+ 408.564
2289
+ 116.085
2290
+ 8.567 → 6.523
2291
+ 154.892
2292
+ 154.20
2293
+ -
2294
+ 83,2
2295
+ 63,2
2296
+ 708.989
2297
+ 523.436
2298
+ 512.997
2299
+ 139.859
2300
+ 10.438 → 8.567
2301
+ 183.019
2302
+ 181.20
2303
+ -
2304
+ 103,2
2305
+ 83,2
2306
+ 858.095
2307
+ 624.555
2308
+ 609.096
2309
+ 166.646
2310
+ 11.932 → 10.438
2311
+ 202.222
2312
+ -
2313
+ -
2314
+ 123,2
2315
+ 103,2
2316
+ 1003.933
2317
+ 727.909
2318
+ 715.990
2319
+ 182.910
2320
+ 13.011 → 11.932
2321
+ 218.753
2322
+ -
2323
+ -
2324
+ 143,2
2325
+ 123,2
2326
+ 1151.239
2327
+ 832.003
2328
+ 819.115
2329
+ 202.421
2330
+ 14.629 → 13.011
2331
+ 229.986
2332
+ -
2333
+ -
2334
+ 14
2335
+
2336
+ Secondly, the exact relationship between the νX(3) and the νX(5) stated in Eq.(28) does not reflect
2337
+ in the exact comparison of their energy levels. That is, it can be inferred from the results that
2338
+ ϵX(3)(β0 = c + 2) ̸= ϵX(5)(β0 = c),
2339
+ (29)
2340
+ because the total energy of the X(5) contains the γ-part solutions. However, the relation
2341
+ ϵgs,L = 2 + ϵβ1,L = 4 + ϵβ2,L,
2342
+ (30)
2343
+ holds in all the levels for both X(3) and the β-part of X(5): this third remark is shown in the
2344
+ Table 2.
2345
+ Another significant remark is such that, the values of ν, for the case of X(5) at L = 2, correspond
2346
+ to those of X(3), at L = 0. This is shown in Table 1. and the visual comparison is shown with
2347
+ the lines in Figure 1(b). Analytically, the behaviour of the energies of the X(5) and the X(3)
2348
+ at constant value of variation parameter, β0, is shown in the Figure 1(a). The critical orders,
2349
+ ν(L, β0), of the X(5) and that of the X(3), which define their energy levels, are plotted against the
2350
+ variation parameter, β0, at constant angular momenta and shown in the Figure 1(b): it is shown,
2351
+ with the numerical values of ν, in the Table 1., that
2352
+ νX(5)(L = 0) = νX(3)(L = 2)
2353
+
2354
+ β0.
2355
+ (31)
2356
+ The derivatives of ν with respect to the β0 are shown in Figures 2(a) and 2(b). The first and the
2357
+ second derivatives are carried out in order to show the stationary properties of β0 and the values
2358
+ of β0 at which the energy is minimum.
2359
+ The variation of the ratio ϵs,L
2360
+ ϵ1,2
2361
+ with respect to the variation parameter, β0, for both X(3) and
2362
+ X(5) are respectively shown in the Figures 3(a) and 3(b). For all values of β0, its values increase
2363
+ at L = 0, are constant at L = 2, that is ϵs,L
2364
+ ϵ1,2
2365
+ =1 and decrease at L > 2 .
2366
+ The ground state bands (gsb) are defined with s = 1;
2367
+ nβ = 0. The quasi-β1 bands and the
2368
+ quasi-β2 bands are defined by s = 2;
2369
+ nβ = 1 and s = 3;
2370
+ nβ = 2 respectively. The γ bands do
2371
+ not exist for X(3) model because, γ0 = 0. The increase in the angular momentum, L, at constant
2372
+ value of β0, increases the energies, in all energy levels. Also, at constant values of the angular
2373
+ momentum, the increase in the β0 increases the energy levels. The Table 2. shows the numerical
2374
+ solutions of Eq.(13) obtained for the ground states and the β-bands at β0 = 2, 3, 4 and at β0 = 15.
2375
+ The Figure 4(a) shows the comparison, in the R4/2, of the X(3) with X(5) at β0 = ∞ and at
2376
+ β0,max unique to each angular momentum, labelled as X(3)−var and X(5)−var respectively. The
2377
+ comparison in the R0/2 of the X(3) with X(5), at β0 = ∞ and at different values of the β0,max
2378
+ peculiar to each angular momentum, labelled as X(3)−var and X(5)−var respectively is shown in
2379
+ Figure 4(b).
2380
+ The ‘nature’ of critical point symmetry transitions for different isotopes, constrained to one-
2381
+ parameter potentials, can be investigated using a variational technique. This technique was used
2382
+ in ref. [11] to retrieve the U(5) and O(6) ground state bands from the E(5) within the domain
2383
+ of the one-parameter inverse square potential. The technique has also been used in ref. [12] and
2384
+ employed in ref. [16] to construct ‘image’ of the X(5) critical symmetry and to construct the Z(5)
2385
+ critical symmetry respectively. The forward variation of the ‘control parameter’, β0, causes the
2386
+ nuclei transition from X(5) to SU(3) (i.e. X(5) −→ SU(3) transition symmetry). The nature of
2387
+ the critical symmetry or the nuclear shape phase region under investigation predicts the directions
2388
+ of the variation: whether forward variation or backward variation, and also depends on the poten-
2389
+ tial’s boundary conditions. The rate of change of RL/2(β0) is maximized for each L by using this
2390
+ approach. As shown in Table 3., each angular momentum is considered and treated separately in
2391
+ terms of the variation parameter, β0, as the critical values of RL/2 are distinct. Each value of β0
2392
+ implies a distinct potential with which the energy is maximized. The method is comparable to
2393
+ the “normal” variational principle used in some quantum books, in which trial wave functions are
2394
+ chosen and energy is minimized.
2395
+ 15
2396
+
2397
+ The comparisons of the ground state spectra ratios, defined in Eq.(15) with the X(5) model [11],
2398
+ at different values of β0 corresponds to the potentials are displayed in Figures 5(a) and 5(b) and
2399
+ also shown in Table 3: the visual comparison is shown in Figures 6(a), 6(b) and 6(c). It can
2400
+ be observed that the solutions of X(3)(β0 = ∞) ≈ X(5)(β0 = ∞). The forward variation of β0
2401
+ shifts the solutions to X(3). The solutions leave X(3) and approach SU(3) as β0 tends to ∞.
2402
+ The available experimental data of 162Dy [17], which is a typical SU(3) candidate are placed for
2403
+ comparison in Figure 6(a) and Figure 6(b). This is another remark that isotopes which have X(3)
2404
+ signatures must lie between U(5) −→ SU(3) symmetrical plane.
2405
+ The two other important relations that can be deduced from the comparison are:
2406
+ RL/2(gsb) = 2 + RL/2(β1) = 4 + RL/2(β2),
2407
+ (32)
2408
+ at β0 = 0 as shown numerically in the Table 3. and Table 4. This is an observable effect or a
2409
+ signature from Eq.(30) while the effect of Eq.(28) is observed in the spectral ratios of X(3) and
2410
+ X(5) such that
2411
+ RX(3)
2412
+ L/2 (β0 = c + 2) = RX(5)
2413
+ L/2 (β0 = c) :
2414
+ c = 0, 1, 2, ...
2415
+ (33)
2416
+ In order to obtained the exact solutions of RL/2 ratios rather than vary β0, the technique of
2417
+ optimizing β0 employed in refs. [11,12,15,16] and others has been used to obtained the solutions
2418
+ of RL/2 at certain values of the β0 peculiar to the angular momenta. These special values of β0 are
2419
+ labelled β0,max and they produce exact solutions labelled X(3)-var, shown in Table 5. The values
2420
+ obtained at different values of β0,max, are compared with X(3)-IW solutions. For all β0,max, 00,0
2421
+ and 20,0 levels yield 0.000 and 1.000 respectively. β0,max increases with increase in the angular
2422
+ momentum and its values are obtained at the points where the increases in β0 become steep.
2423
+ d
2424
+ dβ0
2425
+ RL/2|β0=max is achieved via a numerical procedure as
2426
+ d2
2427
+ dβ2
2428
+ 0
2429
+ RL/2 vanished. The RL/2 ratios
2430
+ for the ground state and the quasi-β1 bands of the X(3) and the X(5) models of inverse square
2431
+ potentials obtained at different values of β0,max, labeled X(3)-var and X(5)-var, are compared with
2432
+ the experimental data of 172,176,178,180Os [18-21] chain, as shown in Figures 7(a) and 7(b). The
2433
+ ground state solutions of the X(3) for L = 0 up to L = 10 are in good agreement with 172Os while
2434
+ those of X(5) are seen lying closer to 176Os than 178Os and 180Os: the generalized comparison is
2435
+ moderate in the first excited state. This suggests that 172Os is a good candidate for X(3) model
2436
+ while 176Os shows a signature of X(5) model.
2437
+ The RL/2 theoretical predictions of the X(3) model are compared with the experimental data of
2438
+ some selected isotopes: 102Mo [22], 104−108Ru [23-25], 120−126Xe [26-29], 148Nd [30] and 184−188Pt
2439
+ [31-33] as shown in Table 6. Each energy level is normalized to the particular 20,0 state. The energy
2440
+ obtained in Eq.(13) is fitted with the experimental energy of each of the isotopes considered. The
2441
+ equivalent values of the β0 for the isotopes are recorded. The quality factor, σ, used is obtained
2442
+ from
2443
+ σ =
2444
+ ��m
2445
+ i [(Rs,L)Exp
2446
+ i
2447
+ − (Rs,L)Theor
2448
+ i
2449
+ ]2
2450
+ m − 1
2451
+ ,
2452
+ (34)
2453
+ where m is the number of available experimental states, (Rs,L)Exp
2454
+ i
2455
+ and (Rs,L)Theor
2456
+ i
2457
+ represent the
2458
+ experimental and the theoretical spectral ratios of the ith levels normalized to the ground state
2459
+ with L = 2, s = 1 and nβ = 0 respectively.
2460
+ Against the neutron numbers, N, of the chains of the isotopes: 104−108Ru, 120−126Xe, 184−188Pt,
2461
+ 172−180Os, considered for the comparison, the neutron-β0 distribution, showing the relative posi-
2462
+ tions of the isotopes, is shown in the Figure 8.
2463
+ The comparison in the ground state, the quasi-β1 bands and the quasi-β2 bands of the B(E2)
2464
+ transition probabilities at β0 = 0, 1, 2 and β0 = ∞, normalized to the B(E2 : 21,0 → 01,0) = 100
2465
+ units with the X(3)-IW [1] and experimental data on X(5) [34] are presented in the Table 7. The
2466
+ values of β0,max peculiar to each angular momentum, obtained from the optimization of β0, in
2467
+ 16
2468
+
2469
+ Table 5., are employed to compute the optimized B(E2) transition probabilities, labelled B(E2)-
2470
+ var. The visuals of these comparisons are shown in the Figures 9(a), 9(b) and 9(c). In order to
2471
+ show the nature of the solutions along the X(5) −→ SU(3) symmetry region, the experimental
2472
+ data on the 158Gd [35], which is a typical SU(3) candidate, are placed for comparison in Figures
2473
+ 9(a) and 9(b): the solutions at β0 → ∞ are seen lying close to the 158Gd [35]. The values of the
2474
+ B(E2) transition probabilities decrease as the variation parameter, β0, increases: they increase as
2475
+ the angular momentum increases. The forward variation, as the β0 increases, pushes the solutions
2476
+ to X(5) and the solutions tend to the SU(3) as β0 tends to ∞.
2477
+ 5
2478
+ Conclusion
2479
+ The X(3) solutions of the Bohr Hamiltonian are obtained by solving the radial function of the
2480
+ Hamiltonian with an inverse square potential with the aid of MAPLE software. Analytically, an
2481
+ expression for the energy levels is determined from the zeros of the Bessel functions. Through the
2482
+ use of the variational approach and the optimization procedure, the spectra ratios and the B(E2)
2483
+ transition probabilities are computed. The analytical solutions of the X(3) model are compared
2484
+ with the X(5) model of the inverse square potentials. It is worth noting that, X(3) model is
2485
+ another “window” through which X(5) and SU(3) “pictures” can be seen: X(3) lies between U(5)
2486
+ and SU(3), hence, X(5) lies between X(3) and SU(3). It has been shown via variational procedure,
2487
+ that the solutions shift to X(5) from X(3) and approach SU(3) as the variation parameter shifts
2488
+ forward.
2489
+ The theoretical predictions on RL/2 and B(E2) with the experimental data for some selected
2490
+ isotopes are found to be proficient in the gsb and moderate in other levels. This is shown as the
2491
+ theoretical deviations from the experiments are quite small.
2492
+ The same manner in which the Davidson potential is employed in ref. [4], the employment of the
2493
+ one parameter-dependent inverse square potential in the form of Eq.(1), its properties, is efficient
2494
+ in the variational procedure. Eq.(1) is also a good choice of potential which can be employed for
2495
+ the description of the nuclei transition at the critical points. For the comparison of X(3) and
2496
+ X(5) models of Bohr Hamiltonian, with the same formalism employed in this work, it is expected
2497
+ that Equations (28), (29), (30), (31), (32) and (33) should hold in any one-parameter-dependent
2498
+ potential domain such as Kratzer potential, Davidson potential and others.
2499
+ Data availability statement
2500
+ All the sources of data included in this article for comparison purpose, are cited and referenced
2501
+ accordingly, in the article.
2502
+ Funding Information
2503
+ No funding of any form is received for the course of this work.
2504
+ References
2505
+ [1] Bonatsos, D., Lenis, D., Petrellis, D. and Terziev, P.A. and Yigitoglu, I. (2006).
2506
+ Physics
2507
+ Letters B, 632, 238-242. doi: http://dx.doi.org/10.1016/j.physletb.2005.10.060
2508
+ [2] Budaca, R. (2014). Physics Letters B, 739, 56-61.
2509
+ doi: http://dx.doi.org/10.1016/j.physletb.2014.10.031
2510
+ [3] Alimohammadi, M. and Hassanabadi, H. (2017). International Journal of Modern Physics E.
2511
+ 26(9), 1750054. doi: http://dx.doi.org/10.1142/S0218301317500549
2512
+ 17
2513
+
2514
+ [4] Yigitoglu, I. and Gokbulut, M. (2017). Eur. Phys. J. Plus, 132, 345.
2515
+ doi: http://dx.doi.org/10.1140/epjp/i2017-11609-3
2516
+ [5] Iachello, F. (2001). Phys. Rev. Lett., 87(5), 052502.
2517
+ doi: http://dx.doi.org/10.1103/PhysRevLett.87.052502
2518
+ [6] Bohr, A. (1952). The Coupling of Nuclear Surface Oscillations to the motion of individual
2519
+ Nucleons. Dan. Mat . Fys. Medd . 26(14).
2520
+ url: http://www.xuantianlinyu.com.cn/Jabref/RefPdf/Bohr1952pp.pdf
2521
+ [7] Bohr, A. and and Mottelson, B. (1953). Phys. Rev. 90(4), 717.
2522
+ doi: https://doi.org/10.1103/PhysRev.90.717.2
2523
+ [8] Bohr, A. and Mottelson, B. (1953). Collective and individual-particle aspects of nuclear struc-
2524
+ ture. Mat-Fys. Medd. 27(16). 1-174.
2525
+ url: https://cds.cern.ch/record/213298/files/p1.pdf
2526
+ [9] Bohr, A. and Mottelson, B. (1975). Nuclear Structure and Nuclear Deformations. W. A.
2527
+ Benjamin, Inc., Reading, Massachusetts, 748, 37-50.
2528
+ [10] Iachello, F. (2000). Phys. Rev. Lett., 85(17), 3580. doi: https://doi.org/10.1103/PhysRevLett.85.3580
2529
+ [11] Ajulo, K.R., Oyewumi, K.J., Oyun, O.S. and Ajibade, S.O. (2021). Eur. Phys. J. Plus,
2530
+ 136(500). doi: https://doi.org/10.1140/epjp/s13360-021-01451-7
2531
+ [12] Ajulo, K.R., Oyewumi, K.J., Oyun, O.S. and Ajibade, S.O. (2022). Eur. Phys. J. Plus
2532
+ 137(90). doi: https://doi.org/10.1140/epjp/s13360-021-02276-0
2533
+ [13] Abramowitz, M. and Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover, New
2534
+ York.
2535
+ [14] Gradshteyn, I.S. and Ryzhik, I.M. (1980). Table of Integral Series and Products. Academic,
2536
+ New York.
2537
+ [15] Bonatsos, D., Lenis, D., Minkov, N., Raychev, P.P. and Terziev, P.A. (2003). Physics Letter
2538
+ B, 584, 1-2. doi: https://doi.org/10.1016/j.physletb.2004.01.018
2539
+ [16] Ajulo, K.R. and Oyewumi, K.J. (2022). Physica Scripta, 137(90). doi: https://doi.org/10.1088/1402-
2540
+ 4896/ac76ed
2541
+ [17] Helmer, R.G. (1985). Nucl. Data Sheets, 44(4), 661-781. doi: https://doi.org/10.1016/S0090-
2542
+ 3752(85)80054-5
2543
+ [18] Greenwood, L.R. (1975). Nucl. Data Sheets, 15, 497. doi: https://doi.org/10.1016/S0090-
2544
+ 3752(87)80023-6
2545
+ [19] Horen, D.J. and B. Harmatz, B. (1976). Nucl. Data Sheets, 19, 383. doi: https://doi.org/10.1016/S0090-
2546
+ 3752(76)80067-1
2547
+ [20] Browne, E. (1988).
2548
+ Nucl.
2549
+ Data Sheets, 54, 199.
2550
+ doi:
2551
+ https://doi.org/10.1016/S0090-
2552
+ 3752(88)80132-7
2553
+ [21] Wu, S.C. and Niu, H. (2003). Nucl. Data Sheets, 100(4), 483-705.
2554
+ doi: https://doi.org/10.1006/ndsh.2003.0018
2555
+ [22] DE Frenne, D. (2009). Nucl. Data Sheets, 110(8), 1745-1915.
2556
+ doi: https://doi.org/10.1016/j.nds.2009.06.002
2557
+ 18
2558
+
2559
+ [23] Blachot, J. (2007). Nucl. Data Sheets, 108(10), 2035-2172.
2560
+ doi: https://doi.org/10.1016/j.nds.2007.09.001
2561
+ [24] DE Frenne, D. and Negret, A. (2008). Nucl. Data Sheets, 109(4), 943-1102.
2562
+ doi: https://doi.org/10.1016/j.nds.2008.03.002
2563
+ [25] Blachot, J. (2000). Nucl. Data Sheets, 91(2), 135-296. doi: https://doi.org/10.1006/ndsh.2000.0017
2564
+ [26] Kitao, K., Tendow, Y. and Hashizume, A. (2002). Nucl. Data Sheets, 96(2), 241-390. doi:
2565
+ https://doi.org/10.1006/ndsh.2002.0012
2566
+ [27] Tamura, T. (2007). Nucl. Data Sheets, 108(3), 455-632. doi: https://doi.org/10.1016/j.nds.2007.02.001
2567
+ [28] Katakura, J. and Wu, Z.D. (2008). Nucl. Data Sheets, 109(7), 1655-1877.
2568
+ doi: https://doi.org/10.1016/j.nds.2008.06.001
2569
+ [29] Limura, H., Katakura, J. and Ohya, S. (2022).
2570
+ Nucl.
2571
+ Data Sheets, 180, 1-413.
2572
+ doi:
2573
+ https://doi.org/10.1016/j.nds.2022.02.001
2574
+ [30] Nica, N. (2014). Nucl. Data Sheets 117, 1-229. doi: https://doi.org/10.1016/j.nds.2014.02.001
2575
+ [31] Baglin, C.M. (2010). Nucl. Data Sheets, 111(2), 275-523. doi: https://doi.org/10.1016/j.nds.2010.01.001
2576
+ [32] Baglin, C.M. (2003). Nucl. Data Sheets, 99(9), 1-196. doi: https://doi.org/10.1006/ndsh.2003.0007
2577
+ [33] Singh, B. (2002). Nucl. Data Sheets, 95(2), 387-541. doi: https://doi.org/10.1006/ndsh.2002.0005
2578
+ [34] Melon, B. (2011). Investigation of the X(5)-Structure in 176Os Using Absolute Transition
2579
+ Probabilities. PhD thesis, Universit¨at zu K¨oln. URL: http://kups.ub.uni-koeln.de/id/eprint/4370
2580
+ [35] Helmer, R.G. (2004). Nucl. Data Sheets, 101(3), 325-519. doi: https://doi.org/10.1016/j.nds.2004.02.001
2581
+ 19
2582
+
7tAyT4oBgHgl3EQfpvj9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE2T4oBgHgl3EQflQeg/content/tmp_files/2301.03987v1.pdf.txt ADDED
@@ -0,0 +1,1376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ API Entity and Relation Joint Extraction from Text via
2
+ Dynamic Prompt-tuned Language Model
3
+ QING HUANG, Jiangxi Normal University, School of Computer Information Engineering, China
4
+ YANBANG SUN∗, Jiangxi Normal University, School of Computer Information Engineering, China
5
+ ZHENCHANG XING, CSIRO’s Data61 & Australian National University, College of Engineering and
6
+ Computer Science, Australia
7
+ MIN YU†, Jiangxi Normal University, School of Computer Information Engineering, China
8
+ XIWEI XU, CSIRO’s Data61, Australia
9
+ QINGHUA LU, CSIRO’s Data61, Australia
10
+ Extraction of Application Programming Interfaces (APIs) and their semantic relations from unstructured
11
+ text (e.g., Stack Overflow) is a fundamental work for software engineering tasks (e.g., API recommendation).
12
+ However, existing approaches are rule-based and sequence-labeling based. They must manually enumerate the
13
+ rules or label data for a wide range of sentence patterns, which involves a significant amount of labor overhead
14
+ and is exacerbated by morphological and common-word ambiguity. In contrast to matching or labeling API
15
+ entities and relations, this paper formulates heterogeneous API extraction and API relation extraction task as
16
+ a sequence-to-sequence generation task, and proposes AERJE, an API entity-relation joint extraction model
17
+ based on the large pre-trained language model. After training on a small number of ambiguous but correctly
18
+ labeled data, AERJE builds a multi-task architecture that extracts API entities and relations from unstructured
19
+ text using dynamic prompts. We systematically evaluate AERJE on a set of long and ambiguous sentences
20
+ from Stack Overflow. The experimental results show that AERJE achieves high accuracy and discrimination
21
+ ability in API entity-relation joint extraction, even with zero or few-shot fine-tuning.
22
+ Additional Key Words and Phrases: API Entity, API Relation, Joint Extraction, Dynamic Prompt
23
+ ACM Reference Format:
24
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu. 2023. API Entity and
25
+ Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model. 1, 1 (January 2023), 20 pages.
26
+ https://doi.org/10.1145/nnnnnnn.nnnnnnn
27
+ 1
28
+ INTRODUCTION
29
+ Application Programming Interfaces (APIs) are important software engineering artifacts that can
30
+ be frequently found in a wide range of natural language texts, from official API references and
31
+ tutorials to informal online forums. Meanwhile, API relations are also embedded in these texts.
32
+ For example, the text “To manipulate data you actually need executeUpdate() rather than execute-
33
+ Query()” in the Stack Overflow (SO) post 1 describes the Function-Replace relation [1] between
34
+ executeUpdate() and executeQuery(). This API relation reveals that we should replace executeQuery()
35
+ with executeUpdate() to solve the question in the post, i.e., “why cannot issue data manipulation
36
+ statements with executeQuery()”. API entity and relation extraction from unstructured texts is
37
+ ∗Y. Sun and Q. Huang are co-first authors.
38
+ †M. Yu is the corresponding author.
39
+ 1https://stackoverflow.com/questions/1905607
40
+ Authors’ addresses: Qing Huang, Jiangxi Normal University, School of Computer Information Engineering, Nanchang,
41
+ Jiangxi, China, [email protected]; Yanbang Sun, Jiangxi Normal University, School of Computer Information Engineering,
42
+ Nanchang, Jiangxi, China, [email protected]; Zhenchang Xing, CSIRO’s Data61 & Australian National University, College
43
+ of Engineering and Computer Science, Canberra, Australia, [email protected]; Min Yu, Jiangxi Normal
44
+ University, School of Computer Information Engineering, Nanchang, Jiangxi, China, [email protected]; Xiwei Xu, CSIRO’s
45
+ Data61, Sydney, Australia, [email protected]; Qinghua Lu, CSIRO’s Data61, Sydney, Australia, qinghua.lu@data61.
46
+ csiro.au.
47
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
48
+ arXiv:2301.03987v1 [cs.SE] 10 Jan 2023
49
+
50
+ 2
51
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
52
+ Table 1. Three types of ambiguities for API entities and relations.
53
+ PostID
54
+ Sentence
55
+ #47871272
56
+ You need to override remove() in your iterator.
57
+ #14200489
58
+ This code is invalid since l.remove() is called during iteration over l.
59
+ #60017952
60
+ You may be calling iterator.remove more than once.
61
+ #34682267
62
+ By default, printWriter calls flush in println, whereas it doesn’t do this in print.
63
+ #703396
64
+ If the idea is to ::::
65
+ print integer stored as doubles...
66
+ #322715
67
+ linkedlist and arraylist are two different implementations of the list interface.
68
+ #33405095
69
+ nextline() will read the entire line, but next() will only read the next word.
70
+ #355089
71
+ StringBuffer is synchronized, StringBuilder is not.
72
+ Note: API mention is tagged with an underline; common word is tagged with a wavy line.
73
+ fundamental for efficiently accessing and applying API knowledge to various software engineering
74
+ tasks. Once extracted, these entities and relations can be organized into structured knowledge
75
+ (particularly in the form of knowledge graphs) to support a variety of software engineering tasks
76
+ such as API linking [2, 3], API recommendation [4, 5], and API comparison [6].
77
+ There are currently two main types of approaches for extracting API entities from unstructured
78
+ text. The first is a rule-based approach such as language-convention based regular expressions [7, 8],
79
+ island parsing [9, 10] and heuristic rule matching [1, 6, 11]. Because it is impossible to manually
80
+ enumerate the rules that adapt to all sentence patterns, it suffers from rule design overhead. The
81
+ second is a sequence labeling based approach such as CRF [2, 12] and Bi-LSTM-CRF [13]. Because
82
+ it is impossible to manually label entities for a large amount of sentences, it suffers from data
83
+ labeling overhead. Compared with API entity extraction, relation extraction from software text is
84
+ rather primitive, which relies on either API syntax (e.g., a class declares a method) [6], special-tag
85
+ annotated relations (e.g., “see also” keyword and hyperlink-based method) [14], or some ad-hoc
86
+ relation phrases (e.g., “differ in” and “be similar to”) [1]. Same as rule-based entity extraction, these
87
+ relation extraction methods suffer from rule-design overhead. We refer to rule design overhead
88
+ and data labeling overhead as labor overhead in this work.
89
+ This labor overhead is exacerbated by three types of ambiguities, which necessitate the manual
90
+ design of more rules or the labeling of more data to distinguish ambiguous sentences. Morphological
91
+ ambiguity, which includes abbreviations, synonyms, and misspellings, is one type of ambiguity [12].
92
+ It is common in informal discussions, because people rarely write full API names that exactly match
93
+ the API names in the library [15]. Three sentences in the first row of Table 1, for example, shows
94
+ three morphological variations of API java.util.iterator.remove(), that either omit some prefixes
95
+ and special symbols (e.g., package names, class names, and “()”), or are preceded by user-defined
96
+ variable names. The second type is common-word ambiguity between common words and API
97
+ mentions [12], which occurs because people frequently write API method names without proper
98
+ punctuation, parentheses, and uppercase letters. For example, as shown in the second row of Table 1,
99
+ even though the word print appears in two sentences, print in the first sentence refers to the API
100
+ java.io.printwriter.print(), whereas print in the second one is only a verb. The final type is expression
101
+ ambiguity of API semantic relations, which is caused by changes in sentence patterns. In general,
102
+ the same API relation can be expressed in multiple sentence patterns. For example, as shown in the
103
+ third raw of Table 1, three sentence patterns are used in the three sentences, all of which express
104
+ the Behavioral-Difference relation between API entities. They are “API1 and API2 are different”,
105
+ “API1 does one thing, but API2 does the other thing”, and “API1 is (adjective), API2 is not”.
106
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
107
+
108
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
109
+ 3
110
+ To alleviate the labor overhead, we devise a novel idea of extracting API entities and relations
111
+ using a large pre-trained language model (LLM). LLM stores a large amount of prior knowledge
112
+ and can serve as a neural knowledge base of real-world entities and relations [16]. In addition, LLM
113
+ can provide better model initialization [17] and strong learning capbility. By fine-tuning a LLM
114
+ with a small set of domain-specific training data, we can prompote the LLM to identify as many
115
+ API entities and relations as possible. In order to make LLM be more discriminative, the training
116
+ data should contain sufficient morphological and common-word ambiguity, and the API entities
117
+ and relations should be labeled correctly. To reduce manual labeling, we devise morphology and
118
+ verb-based data augmentation strategies to generate more ambiguous data but correctly labeled
119
+ sentences for the LLM fine-tuning.
120
+ Existing work [18] separates API entity extraction and relation extraction as two tasks, leaving
121
+ relation extraction heavily reliant on entity extraction results, which leads to error propagation [19].
122
+ Instead, we consider API entity extraction and relation extraction as correlated tasks and adopt
123
+ a unified model for joint entity and relation extraction, inspired by the recent work on universal
124
+ information extraction (UIE [20]). However, the LLM (i.e., T5 [21]) in UIE often fails with complex
125
+ sentences, particularly long and ambiguous sentences containing API entities and various relations,
126
+ because it only uses one static prompt to recognize all types of API relations. To tackle this issue, we
127
+ design a dynamic prompt generator, inspired by the input-dependent prompt tuning method [22],
128
+ that generates dynamic prompts for a small number of potentially relevant relations at inference
129
+ time based on the actual input sentences, rather than relying on the same static prompt for all
130
+ inputs. When confronted with complex sentences, the more relation types to recognize, the more
131
+ noise it suffers from, the more difficult it is for LLM to understand to what extent a complex
132
+ sentence contains certain relations. As our dynamic prompt reduces the number of relation types
133
+ to recognize and mitigate noise interference, it improves the extraction accuracy of API relations.
134
+ In this paper, we propose a API Entity-Relation Joint Extraction framework, called AERJE. It
135
+ consists of a dynamic prompt generator and a joint entity-relation extractor. The kernel of the
136
+ prompt generator is a BERT-based text classifier that is used to classify the input text. Each class
137
+ represents an API relation and the prompt generator generates dynamic prompts based on the
138
+ top-N possible API relations. The generated dynamic prompt and the input sentence are fed into
139
+ the joint entity-relation extractor to extract the API entities and relations contained in the text. In
140
+ our current implementation, the joint entity-relation extractor is Transformer-base LLM (T5). The
141
+ prompt generator and the entity-relation extractor are fine-tuned in an end-to-end manner.
142
+ No model, to the best of our knowledge, can simultaneously extract both API entities and
143
+ relations. AERJE, on the other hand, achieves an F1 score of 96.51% for API entity extraction, which
144
+ is approximately 6% higher than the state-of-the-art API entity recognition model ARCLIN [13]
145
+ and 7% higher than APIReal [2], and an F1 score of 81.20% for API relation extraction. Then, we
146
+ evaluate the impact of intrinsic factors (two data augmentation strategies and the number of API
147
+ relations in the dynamic prompts) on performance. Our experiments find that data augmentation
148
+ helps to improve AERJE’s discriminative capability for API entities and relations, and the dynamic
149
+ prompts with four API relations can significantly improve AERJE’s extraction accuracy. Finally,
150
+ we assess AERJE’s generalization and ability to extract API entities and relations in low-resource
151
+ scenarios (i.e., less than 0.8% fine-tuning data) and find that, even under low resource conditions,
152
+ our AERJE still has strong extraction ability, outperforming APIReal [2] and ARCLIN [13].
153
+ The main contributions of this paper are as follows:
154
+ • Conceptually, we are the first to formulate heterogeneous API extraction and API relation
155
+ extraction tasks as a uniform sequence-to-sequence generation task, and propose AERJE, an
156
+ API entity-relation joint extraction framework based on pre-trained LLMs.
157
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
158
+
159
+ 4
160
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
161
+ In fact, collections.sort() has
162
+ already been migrated to
163
+ list.sort().
164
+ You better using getint()
165
+ instead of get().
166
+ You can use
167
+ double.parsedouble() to
168
+ convert a string to a double.
169
+ Input Sentences
170
+ Bert
171
+ Dynamic
172
+ prompt
173
+
174
+
175
+ (
176
+ ( API: getint()
177
+ ( function replace: get() )
178
+ )
179
+ ( API: get() )
180
+ )
181
+ (
182
+ ( API: collection.sort() )
183
+ ( API: list.sort() )
184
+ )
185
+ [spot] API [asso] function replace [asso] efficiency comparison [asso] type conversion
186
+ [text] You better using getint() instead of get().
187
+ [spot] API [asso] function similarity [asso] logic constraint [asso] type conversion
188
+ [text] In fact, collections.sort() has already been migrated to list.sort().
189
+ [spot] API [asso] logic constraint [asso] type conversion [asso] function similarity
190
+ [text] You can use double.parsedouble() to convert a string to a double.
191
+ Joint Entity-Relation Extractor
192
+ Linear
193
+ P(Relation)
194
+ top-3 Relations
195
+ a
196
+ b
197
+ c
198
+
199
+
200
+ CLS
201
+ E
202
+ ...
203
+ E
204
+ E
205
+ D
206
+ ...
207
+ D
208
+ D
209
+ Latent Vector
210
+ ...
211
+ b
212
+ c
213
+ a
214
+ b
215
+ c
216
+ a
217
+
218
+ Dynamic Prompt Generator
219
+ T5
220
+
221
+ (
222
+ ( API: string
223
+ ( type conversion: double )
224
+ )
225
+ ( API: double )
226
+ ( API: double.parsedouble() )
227
+ )
228
+ Structured Extraction Language
229
+ ......
230
+ ......
231
+ ......
232
+ Fig. 1. Overall Framework of AERJE. The Dynamic prompt’s bold font represents the semantic relation to be
233
+ extracted from the input sentence. II.b lacks a bold font because I.b contains no semantic relation.
234
+ • We devise two data augmentation strategies in order to obtain more ambiguous but correctly
235
+ labeled sentences. Learning such sentences enables AERJE to be more discriminative for API
236
+ entities and relations.
237
+ • Unlike the single task model, we build a multi-task architecture that encodes the structures
238
+ of entity and relation extraction into a unified structure language for extracting API entities
239
+ and relations simultaneously.
240
+ • Instead of using a single static prompt with all types of API relations for all sentences, we
241
+ design a dynamic prompt based on relation classification, which reduces the number of
242
+ relation types to recognize, eliminates noise interference, and lowers the difficulty of relation
243
+ extraction.
244
+ • We systematically evaluate the AERJE’s intrinsic factors, performance, generalization, and
245
+ few-shot learning capabilities. It is the first approach to extract API entities and relations
246
+ simultaneously, and it achieves superior performance than independent API extraction and
247
+ API relation extraction. Our data package can be found here2, the code will be released after
248
+ the paper is accepted.
249
+ 2
250
+ APPROACH
251
+ We formulate heterogeneous API extraction and API relation extraction tasks as a uniform sequence-
252
+ to-sequence generation task, and propose a novel model AERJE to accomplish it. As shown in
253
+ Fig. 1, AERJE consists of a dynamic prompt generator and a joint entity-relation extractor. The
254
+ dynamic prompt generator generates dynamic prompts based on the input texts (one at a time).
255
+ The input text is then appended to the prompt to form a whole input that is fed into the joint
256
+ entity-relation extractor, which generates a structured extraction language sequence with API
257
+ entities and relations.
258
+ 2.1
259
+ Dynamic Prompt Generator
260
+ This section describes how to build a prompt that unifies heterogeneous API extraction and API
261
+ relation extraction tasks, followed by a discussion of how to design dynamic prompt to improve
262
+ AERJE’s API relation extraction performance.
263
+ 2.1.1
264
+ Prompt Construction for Multi-tasking. In order to extract both API entities and API relations
265
+ from an input text, the prompt consists of API entity type, API relation type, and the input text,
266
+ which are labeled by [spot], [asso] and [text], respectively. For example, “[spot] API [asso] function
267
+ 2https://anonymous.4open.science/r/AERJE-6DBF/README.md
268
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
269
+
270
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
271
+ 5
272
+ replace [asso] efficiency comparison [text] You better using getint() instead of get()” represents
273
+ an API entity type “API”, two relation types “function replace” and “efficiency comparison”, and
274
+ an input text “You better using getint() instead of get()”. In this work, we consider a generic API
275
+ entity type “API” and seven relation types defined in [1], including “function similarity”, “behavior
276
+ difference”, “logic constraint”, “type conversion”, “function collaboration”, “efficiency comparison”,
277
+ “function replace”. Note that more fine-grained API entity types can be used, such as “class”,
278
+ “method”, “field” [23], but we leave it as our future work.
279
+ 2.1.2
280
+ Dynamic Prompt Generation. As stated in Section 1, the more relation types there are, the
281
+ harder it is for T5 to determine which types of relation the API entities in the input text belong to,
282
+ especially when the sentence is long and ambiguous. If we adopt the static prompt that includes
283
+ all seven relation types, the relation extraction performance of the model will decrease (cf. RQ3).
284
+ As a result, we design a dynamic prompt generation method to make the content of the prompt
285
+ more accurate and instructive for the complex input text. The dynamic prompts, as shown in II.a of
286
+ Fig.1, contain only the top-N relations and provide better guidance to the subsequent T5-supported
287
+ joint entity-relation extractor. Here, the prompt generator is implemented as a text classifier which
288
+ predicts the API relations present in the input text. We use a BERT-based classifier because the
289
+ pre-training task (i.e., Next Sentence Prediction) of BERT [24] is consistent with our task, both
290
+ of which are classification tasks. Given a sentence containing API entities (see I.a of Fig. 1), the
291
+ BERT-based classifier outputs the probability that the sentence belongs to each semantic relation;
292
+ the top-3 relations are then chosen as candidate relations. Finally, entity type, candidate relations,
293
+ and input sentence are connected by labels (i.e., [spot], [asso], [text]) to generate the dynamic
294
+ prompt (see II.a of Fig. 1).
295
+ Note that the BERT-based classifier in our current implementation aims to narrow the scope and
296
+ provide candidate relations, and it cannot replace the API relations extractor. When the candidate
297
+ relations classified by the classifier do not fit these entities in the sentence, the extractor does not
298
+ force a relation to be selected from the incorrect candidate relations, but instead assumes that no
299
+ relation exists between these entities. For example, given a sentence with no relations between API
300
+ entities (see I.b of Fig.1), the dynamic prompt generator generates a dynamic prompt (see II.b of
301
+ Fig.1). Based on such a dynamic prompt, the subsequent extractor will not extract relations from
302
+ the sentence as none of the candidate relation types is applicable to the input sentence.
303
+ To summarize, too many candidate relations may reduce the extractor’s ability to recognize
304
+ them, while too few candidate relations may cause the extractor to miss the correct relations. As a
305
+ result, we should investigate the appropriate number of candidate relations (cf. RQ3).
306
+ 2.2
307
+ API Joint Entity-Relation Extractor
308
+ We adopt a structured extraction language (SEL) [20] to encode the structures of entity extraction
309
+ and relation extraction into a unified representation, so that heterogeneous API extraction and
310
+ API relation extraction tasks can be modeled uniformly within a sequence-to-sequence generation
311
+ framework. The first sequence refers to the dynamic prompt, while the second sequence refers to
312
+ the SEL sequence.
313
+ 2.2.1
314
+ Structured Extraction Language. SEL sequence is proposed to encode different information
315
+ extraction structures via the hierarchical spotting-associating structure. Fig. 2.a shows its universal
316
+ format. “Spot Name: Info Span” denotes various entity type and the object of a specific entity type;
317
+ “Asso Name: Info Span” denotes various relation types and the associated object of a specific relation
318
+ type. Fig. 2.b shows the concrete SEL sequence in our work. “API: getint()” represents that “getint()”
319
+ is an API entity; “function replace: get()” represents that the relation between “getint()” and “get()”
320
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
321
+
322
+ 6
323
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
324
+ (
325
+ ( Spot Name: Info Span
326
+ ( Asso Name: Info Span )
327
+ )
328
+ ( Spot Name: Info Span )
329
+ )
330
+ (
331
+ ( API: getint()
332
+ ( function replace: get() )
333
+ )
334
+ ( API: get() )
335
+ )
336
+ a
337
+ b
338
+ Fig. 2. Specialization of Universal Structured Extraction Language.
339
+ is “function replace”. From this concrete SEL sequence, we can extract API entities and relations
340
+ simultaneously as it unifies the structure of API entities and relations.
341
+ 2.2.2
342
+ SEL Sequence Generation. We implement our API joint entity-relation extractor as the
343
+ sequence-to-sequence generation framework:
344
+
345
+ 𝑦1, . . . ,𝑦|𝑦|
346
+
347
+ = JE(
348
+
349
+ 𝑝1, . . . , 𝑝 |𝑝 |
350
+
351
+ )
352
+ (1)
353
+ where JE is a Transformer-based LLM,
354
+
355
+ 𝑝1, . . . , 𝑝 |𝑝 |
356
+ � is the dynamic prompt,
357
+
358
+ 𝑦1, . . . ,𝑦|𝑦|
359
+ � is the
360
+ linearized SEL sequence that contains the API entities and relations to be extracted. In this frame-
361
+ work, we feed the dynamic prompt into the LLM (as shown in Fig. 1.II), and the LLM generates the
362
+ SEL sequence (as shown in Fig. 1.III), from which we can obtain API entities and relations. The
363
+ dynamic prompt to the JE can also be written in the format described in Section 2.1.1:
364
+
365
+ 𝑝1, . . . , 𝑝 |𝑝 |
366
+
367
+ =[[ spot ], . . . [ spot ] . . . ,
368
+ [ asso ], . . . , [ asso ] . . . ,
369
+ [ text ],𝑥1,𝑥2, . . . ,𝑥 |𝑥 |
370
+
371
+ (2)
372
+ where 𝑥 =
373
+
374
+ 𝑥1, . . . ,𝑥 |𝑥 |
375
+
376
+ denotes the input text.
377
+ To better illustrate the framework’s internal mechanics, an encoder-decoder-style architecture is
378
+ introduced. Given the dynamic prompt 𝑝, JE computes the hidden representation H =
379
+
380
+ p1, . . . , p|𝑝 |
381
+
382
+ of each token:
383
+ H = Encoder �𝑝1, . . . , 𝑝 |𝑝 |
384
+
385
+ (3)
386
+ where Encoder(·) is a Transformer encoder. Then JE decodes the prompt into a SEL sequence in an
387
+ auto-regressive style. At the step 𝑖 of decoding, JE generates the 𝑖-th token 𝑦𝑖 in the SEL sequence
388
+ and the decoder state h𝑑
389
+ 𝑖 as following:
390
+ 𝑦𝑖, h𝑑
391
+ 𝑖 = Decoder
392
+ ��
393
+ H; h𝑑
394
+ 1, . . . , h𝑑
395
+ 𝑖−1
396
+ ��
397
+ (4)
398
+ Decoder(·) is a Transformer decoder that predicts the conditional probability 𝑝 (𝑦𝑖 | 𝑦 <𝑖, 𝑝) of
399
+ token 𝑦𝑖 until the end symbol <eos> is output.
400
+ 2.3
401
+ Model Training
402
+ This section describes data collection and augmentation, model training, which includes training a
403
+ BERT-based classifier and fine-tuning a Transformer-based LLM.
404
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
405
+
406
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
407
+ 7
408
+ 2.3.1
409
+ Data Collection. Given that the relation types we consider are all from a knowledge graph
410
+ of Java APIs [1], we randomly chose 5,000 Java-tagged posts from the Stack Overflow data dump 3.
411
+ Each post is accompanied by its answers and post tags (such as “java”, “arrays”, “java.lang”). We
412
+ choose the most voted answers from the posts to ensure the quality of the training data, but we
413
+ exclude code snippets and all HTML tags because the focus of our study is informal text. All the
414
+ answers are then splitted into sentences using spaCy 4, yielding 28,140 sentences. Every sentence is
415
+ accompanied by multiple category tags from the post to which it belongs. Then, for each sentence,
416
+ we parse it into tokens using the software-specific tokenizer [12] which preserves the integrity of
417
+ an API mention. iterator.remove(), for example, is treated as a single token. Finally, we crawl all
418
+ APIs in JDK 1.8 5, and use these APIs to filter out the sentences containing API entities, as inspired
419
+ by a previous study [13], based on the following criteria:
420
+ • Because of the large number of morphological ambiguities, a token may be an API entity if it
421
+ partially matches any of the crawled APIs (e.g., remove() and java.util.Iterator.remove()).
422
+ • Since API mentions usually end with “()”, the token is treated as an API entity if it contains
423
+ “()”.
424
+ • API mentions typically include “.” to indicate a function call (e.g., iterator.remove(), or l.remove());
425
+ thus, if token contains “.”, we consider it to be an API entity .
426
+ After filtering, we obtain 9,111 sentences that may contain API entities. However, this is rough
427
+ sentence filtering. In order to do accurate sentence filtering, We invite 12 master students (all
428
+ with more than five years Java experience) to examine the API entities and annotate the semantic
429
+ relations between APIs in order to further verify whether these sentences contain API entities and
430
+ the seven types of API relations we aim to extract. We train the annotators prior to annotation to
431
+ ensure that they can recognize these API relations in the text. After training, the annotators were
432
+ divided into six groups, with two students from each group annotating the same content. After the
433
+ annotation, we assign two authors to deal with the annotation results’ conflicts, and the Cohen’s
434
+ Kappa [25] coefficient is 0.859 (i.e., almost perfect agreement). As a result, we get a total of 2917
435
+ sentences, with 2471 containing only entities and 446 containing both entities and relations.
436
+ 2.3.2
437
+ Data Augmentation. To improve the AERJE’s ability to recognize API entities and relations
438
+ from long and ambiguous sentences, we devise two data augmentation strategies to obtain more
439
+ ambiguous sentences for model training.
440
+ Morphology based Mutation. Inspired by [13], we change the form of each API entity in the
441
+ sentence. Specifically, we replace the API entity itself with the final piece of its fully qualified name.
442
+ For example, iterator.remove() is replaced with remove() or remove.
443
+ Verb based Mutation. We use spaCy to locate the verbs on which each API entity relies, and
444
+ then replace those verbs with synonyms, as Liu et al. [26] do to obtain similar question titles. As
445
+ shown in the seventh sentence of Table 1, we replace “read” with “load”. However, because spaCy
446
+ may not obtain the correct API entity, we must identify the dependency between the API entity’s
447
+ subtoken and the verb to ensure the mutation quality. For example, there is a dependency between
448
+ “nextline” and “read”, so we can reliably mutate “read” with synonyms.
449
+ Our data augmentation strategy does not include sentence pattern mutation [26], which uses
450
+ different sentence patterns to present the same API relation between the same API entities. Unlike
451
+ the morphology-based and verb-based mutation, this mutation is not reliable in software text
452
+ which demands stricter semantics than general text. The sentence pattern mutation could result in
453
+ sentence structure reconstruction, which would likely change the sentence semantics, contaminate
454
+ 3Retrieved June 6, 2022 from https://archive.org/download/stackexchange/
455
+ 4https://spacy.io
456
+ 5https://docs.oracle.com/javase/8/docs/api
457
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
458
+
459
+ 8
460
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
461
+ the training data, and compromise AERJE training. For example, the original sentence “StringBuffer
462
+ is synchronized, StringBuilder is not” may be mutated into “StringBuffer and StringBuilder differ in
463
+ synchronized”. The original sentence indicates that StringBuffer is synchronized and StringBuilder
464
+ is asynchronous, but the mutated sentence does not specify who is synchronous or asynchronous.
465
+ We obtain 2,334 sentences as the initial training set and 583 sentences as the initial test set in an
466
+ 8:2 ratio from the 2,917 sentences collected. The number of sentences after applying the two data
467
+ augmentation strategies to the initial training and test sets is 10,678 and 2,686, referred to as the
468
+ final training set and the final test set, respectively. This final training set is used to fine-tune the
469
+ LLM-based extractor, and the final test set is used to test the fine-tuned extractor. Here, we split
470
+ the sentences into training and testing sets and then mutated them. This ensures that the sentence
471
+ before and after the mutation is in the same set, preventing the leaking of training data into the test
472
+ set (e.g., one sentence in the training set and its mutation in the test set). Furthermore, we obtain
473
+ 1,639 sentences with both entities and relations as the classifier training set from the final training
474
+ set. Similarly, we obtain 387 sentences with both entities and relations as the classifier test set from
475
+ the final test set.
476
+ 2.3.3
477
+ BERT-based Relation Classifier Training. We choose BERT [24] as a relation classifier because
478
+ its pre-training task (i.e., Next Sentence Prediction) is consistent with our task, both of which are
479
+ classification tasks. However, the implementation of relation classifier is not limited to BERT, we
480
+ can also use TextCNN [27] and FastText [28]. In our current implementation, we use the BERT-base
481
+ classifier to classify each input sentence into N relation types. Based on the N relation types,
482
+ dynamic prompt generator generates the corresponding dynamic prompt.
483
+ A mask language model (BERT) [24] and a linear layer comprise the classifier. Due to the seven
484
+ API relation types, the linear layer’s output dimension is set to 7. We obtain the latent vector from
485
+ the CLS token when we enter the sentence into BERT. The latent vector obtained from the CLS token
486
+ characterizes the sentence features better than other positions, resulting in better classification
487
+ performance. The latent vector is then fed into the linear layer, which produces a vector with seven
488
+ dimensions, each corresponding to a relation type. Finally, the classifier is trained on the classifier
489
+ training set. In back propagation, we use the cross-loss entropy to calculate the classifier’s loss and
490
+ adjust the BERT and linear layer parameters. The loss function is formulated as follows, where
491
+ 𝑧 = [𝑧0, . . . ,𝑧𝐶−1] represents the linear layer’s output result, and C represents the sentence’s label.
492
+ Loss(𝑧,𝑐) = −𝑧[𝑐] + log
493
+ �𝐶−1
494
+ ∑︁
495
+ 𝑗=0
496
+ exp(𝑧[𝑗])
497
+
498
+ (5)
499
+ 2.3.4
500
+ LLM-based Extractor Fine-tuning. We use the pre-trained T5-v1.1-large model [21] as the
501
+ LLM in our current implementation because T5’s training objective aligns perfectly with our
502
+ formulation of the API entity and relation extraction task as a sequence to sequence generation
503
+ task. Furthermore, studies [29, 30] confirm that T5 is capable of capturing rich text information and
504
+ demonstrate its effectiveness in a variety of downstream NLP tasks. Our approach is not limited to
505
+ T5, but can use any Transformer-based LLM.
506
+ In order to fine-tune T5, we convert each labeled sentence in the final training set into a SEL
507
+ sequence (y), then feed it into the dynamic prompt generator to obtain its dynamic prompt (p), and
508
+ finally construct the labeled corpus: De = {(𝑝,𝑦)}. On the labeled corpus, we fine-tune T5 for 50
509
+ epoch with batch size 10 using the Adam optimizer with a learning rate of 1e-4, linear scheduling
510
+ with a warming up proportion of 6%, and the teacher-forcing cross-entropy loss:
511
+ LFT =
512
+ ∑︁
513
+ (𝑝,𝑦) ∈De
514
+ − log 𝑃 (𝑦 | 𝑝;𝜃𝑒,𝜃𝑑)
515
+ (6)
516
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
517
+
518
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
519
+ 9
520
+ where 𝜃𝑒 and 𝜃𝑑 are the parameter of encoder and decoder, respectively.
521
+ 3
522
+ EXPERIMENTAL SETUP
523
+ This section starts with five questions about AERJE’s performance, followed by a description of the
524
+ experimental setup, which includes the dataset, baseline, and evaluation metrics.
525
+ 3.1
526
+ Rearch question
527
+ • RQ1: Effectiveness of Data Augmentation
528
+ • RQ2: Optimal Num. of Relation Types for Dynamic Prompt
529
+ • RQ3: Joint Extraction Performance of AERJE
530
+ • RQ4: Generalization Ability of AERJE
531
+ • RQ5: AERJE’s Performance in Low-Resource Scenario
532
+ 3.2
533
+ Dataset
534
+ As described in section 2.3.2, there are three groups of data sets. The first group refers to the
535
+ sentences collected initially, some of which contain only entities and others contain both entities
536
+ and relations.
537
+ • The initial training set consists 2,334 sentences, of which 362 contain both entities and
538
+ relations.
539
+ • The initial test set consists 583 sentences, of which 84 contain both entities and relations.
540
+ The second group refers to the sentences after applying the two data augmentation strategies,
541
+ some of which contain only entities and others contain both entities and relations.
542
+ • The final training set with a total of 10,678 sentences, 1639 of which contain both entities
543
+ and relations.
544
+ • The final test set with a total of 2,686 sentences,387 of which contain both entities and
545
+ relations.
546
+ The third group refers to the sentences containing both entities and relations in the final training
547
+ and testing sets.
548
+ • The classifier training set with a total of 1,639 sentences.
549
+ • The classifier test set with a total of 387 sentences.
550
+ 3.3
551
+ Baselines
552
+ Our AERJE is capable of API entity-relation joint extraction. However, to the best of our knowledge,
553
+ no previous work has focused on extracting both API entities and relations from unstructured texts
554
+ at the same time. As a result, we can only compare AERJE with the existing work in the respective
555
+ fields of API entity extraction and API relation extraction.
556
+ For API entity extraction, there are rule-based methods (such as regular Expressions [7, 8]),
557
+ heuristic rule matching methods [1, 6, 11], and sequence-labeling based methods (such as AR-
558
+ CLIN [13] using BI-LSTM as encoder and CRF as decoder, APIReal [2] using only CRF). Since the
559
+ performance of the first two classes of methods is not as good as that of the last class of methods [13],
560
+ we choose ARCLIN, APIReal as baselines. We obtain them source code from Github 6 7, and label
561
+ the API entities and non-entities in the sentences with the “BIO” tag (i.e., “B”: the beginning of
562
+ API entity segment, “I”: the inside of API entity segment, “O”: non-entity). Then we create pairs
563
+ of original sentences and labeled sentences to train these two baselines. Finally, we the trained
564
+ models on the final test set, from which we obtain API entities based on the “BIO” tag.
565
+ 6https://github.com/YintongHuo/ARCLIN
566
+ 7https://github.com/baolingfeng/APIExing
567
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
568
+
569
+ 10
570
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
571
+ For API relation extraction, there are only rule matching methods that rely on API syntax [6],
572
+ special-tag annotated relations [14], or some ad-hoc relation phrases [1]. It is very difficult to
573
+ re-implement these methods due to the rule-design overhead. Furthermore, it is impractical to apply
574
+ these methods as we assume plain texts without any special annotations. Instead, we implement a
575
+ variant 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺 (𝐷𝑃𝐺 means the dynamic prompt generator), which uses a static prompt
576
+ with all 7 relation types to evaluate the performance of the full-version of AERJE.
577
+ In addition, we also implement two other variants of AERJE as our baseline. One is 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒,
578
+ which separate API entity and relation extraction into two independent tasks. For API entity
579
+ extraction, the prompt contains only “[spot] API”. For API relation extraction, the prompt contains
580
+ only “[asso] relation type”. 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒 still uses dynamic prompt in relation extraction. After
581
+ relation extraction, we merge the extracted entities and relations as the final results of 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒.
582
+ e.g., the extracted entities getint(), get() and relation function replace are merged as (API: getint()
583
+ (function replace: get())). We compare 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒 with AERJE to understand the effectiveness of
584
+ joint entity-relation extraction. Meanwhile, the entity extraction results of 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒 is equivalent
585
+ to fine-tuning pre-trained model for entity extraction, and its final results is equivalent to fine-
586
+ tuning pre-trained model for relation extraction. Therefore, 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒 also reflects the capability
587
+ of fine-tuning pre-trained model for entity and relation extraction separately. Another variant is
588
+ 𝐴𝐸𝑅𝐽𝐸𝑏𝑎𝑠𝑒, which replace T5-v.1.1-large in AERJE with a smaller model backbone, i.e., T5-v1.1-base.
589
+ We use it to explore the impact of large pre-trained language models on AERJE performance.
590
+ All variants use the same hyper-parameters as AERJE and remain constant across experimental
591
+ scenarios. Note that SEL used in AERJE has been demonstrated to be effective in the extraction
592
+ task [20]. As such, we do not to verify the effectiveness of SEL in AERJE.
593
+ 3.4
594
+ Evaluation Metrics
595
+ We use Precision, Recall, and F1 score as metrics to evaluate the performance of AERJE and baseline
596
+ models on our test set. Precision means what percentage of API entities and relations extracted
597
+ are correct, recall means what percentage of the real API entities and relations are extracted, and
598
+ F1 score is the harmonic mean of precision and recall. It is important to note that the relation
599
+ is only correct if the relation type and corresponding entities are both correct. In context of our
600
+ work, we are not concerned with the top-N relation classification accuracy. As long as the top-N
601
+ includes relevant relation types, the extractor does not care about the order of these relation types.
602
+ Furthermore, a sentence may have 2 or more relations, which renders the top-1 accuracy irrelevant.
603
+ Finally, as the extractor has the capability of ruling out irrelevant relation types in the prompt, it is
604
+ also not necessary to evaluate the classification precision and recall at N.
605
+ 4
606
+ EXPERIMENTAL RESULTS
607
+ This section delves into five research questions to evaluate and discuss the AERJE’s performance.
608
+ 4.1
609
+ RQ1: Effectiveness of Data Augmentation
610
+ 4.1.1
611
+ Motivation. To reduce manual labeling effort and improve model training, we devise two data
612
+ augmentation strategies. We want to investigate if ambiguous but correctly annotated sentences
613
+ obtained through two data augmentation strategies could improve AERJE’s discriminative capability
614
+ for extracting API entities and relations, in order to demonstrate the effectiveness of two data
615
+ augmentation strategies.
616
+ 4.1.2
617
+ Methodology. We set up two scenarios 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 and 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 (𝐷𝐴 means the data
618
+ augmentation). 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 is trained on the initial training set, while 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 is trained on
619
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
620
+
621
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
622
+ 11
623
+ Table 2. Impact of data augmentation strategy on AERJE
624
+ Strategy
625
+ Entity
626
+ Relation
627
+ P
628
+ R
629
+ F1
630
+ P
631
+ R
632
+ F1
633
+ 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴
634
+ 97.57
635
+ 95.48
636
+ 96.51
637
+ 86.54
638
+ 76.48
639
+ 81.20
640
+ 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴
641
+ 95.11
642
+ 92.19
643
+ 93.63
644
+ 77.71
645
+ 75.66
646
+ 76.67
647
+ the final training set. Both 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 and 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴are tested on the same final test set. This
648
+ setting allows us to compare the effectiveness of data augmentation.
649
+ 4.1.3
650
+ Result. Table 2 shows the experimental results. In terms of API entity extraction, 𝐴𝐸𝑅𝐽���𝑤𝐷𝐴
651
+ has precision, recall, and F1-scores of 97.57%, 95.48%, and 96.51%, while 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 has precision,
652
+ recall, and F1-scores of 95.11%, 92.19%, and 93.63%. 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴’s precision, recall, and F1-score are
653
+ all higher than 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴’s, with 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴’s recall and F1-score being about 3% higher.
654
+ In terms of API relation extraction,𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 has precision, recall, and F1-score of 86.54%, 76.48%,
655
+ and 81.20%, while 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 has precision, recall, and F1-score of 77.71%, 75.66%, and 76.67%.
656
+ 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴’s precision, recall, and F1-score are all higher than 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴’s. The precision of
657
+ 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 is 8.83% higher than that of 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴, and the F1-score of 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 is 4.53% higher
658
+ than that of 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴. This demonstrates that fine-tuning 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 using a large number
659
+ of ambiguous sentences with API relations benefits 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 to distinguish between relations
660
+ and non-relations, as well as between correct and incorrect relations. In contrast, 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 has
661
+ not been fine-tuned on ambiguous sentences and thus does not perform as well as 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴. For
662
+ example, an ambiguous sentence “you want to read up on processbuilder to launch the exe file
663
+ and then waitfor() to wait until the process is complete”. 𝐴𝐸𝑅𝐽𝐸𝑤𝐷𝐴 correctly extracts two API
664
+ entities, ProcBuilder and waitfor(), as well as the “logic constraint” relation between them, from the
665
+ sentence. In contrast, 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝐴 only extracts one API waitfor() from the sentence. This shows
666
+ AERJE’s capability to extract API entities and relations from ambiguous sentences can be improved
667
+ by fine-tuning with the augmentated data.
668
+ AERJE’s discriminative capability for API entities and relations can be improved by fine-tuning
669
+ it with ambiguous but correctly labeled sentences obtained through the data augmentation
670
+ strategies.
671
+ 4.2
672
+ RQ2: Optimal Num. of Relation Types for Dynamic Prompt
673
+ 4.2.1
674
+ Motivation. As described in section 2.1.2, given an input sentence, the dynamic prompt
675
+ generator employs the BERT-based classifier to predict a set of candidate relation types, which are
676
+ then included in the dynamic prompt to guide the subsequent joint entity-relation extractor. In this
677
+ RQ, we would like to investigate how many candidate relation types (i.e., top-N classifier results)
678
+ can provide the most effective guidance to the extractor.
679
+ 4.2.2
680
+ Methodology. We exhaust all cases of N values (from 1 to 6) in the dynamic prompt generator,
681
+ then fine-tune AERJE on the same final training set and test it on the same final test set to select the
682
+ most appropriate N value based on experimental results. We do not test N=7 because it is essentially
683
+ the static prompt with all seven relation types (i.e., 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺 studied in RQ3).
684
+ 4.2.3
685
+ Result. As shown in Table 3, changing the N value has small effect on entity extraction
686
+ because N represents the number of relation types in the dynamic prompt which does not directly
687
+ affect entity extraction. At N=3, AERJE achieves the marginally best F1-score 96.51% for API entity
688
+ extraction.
689
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
690
+
691
+ 12
692
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
693
+ Table 3. Model results for different values of N
694
+ top-N
695
+ Entity
696
+ Relation
697
+ P
698
+ R
699
+ F1
700
+ P
701
+ R
702
+ F1
703
+ 1
704
+ 96.88
705
+ 94.23
706
+ 95.54
707
+ 75.92
708
+ 71.92
709
+ 73.87
710
+ 2
711
+ 97.04
712
+ 95.18
713
+ 96.10
714
+ 77.75
715
+ 73.80
716
+ 75.72
717
+ 3
718
+ 97.57
719
+ 95.48
720
+ 96.51
721
+ 86.54
722
+ 76.48
723
+ 81.20
724
+ 4
725
+ 97.84
726
+ 94.39
727
+ 96.08
728
+ 83.51
729
+ 73.22
730
+ 78.03
731
+ 5
732
+ 96.72
733
+ 94.39
734
+ 95.54
735
+ 77.90
736
+ 73.30
737
+ 75.53
738
+ 6
739
+ 96.44
740
+ 94.75
741
+ 95.59
742
+ 75.35
743
+ 72.61
744
+ 73.95
745
+ For relation extraction, changing the N value has larger effect on both precision and recall. As
746
+ N increases, both precision and recall improve until N=3. When N=3, the precision, recall and
747
+ F1-score of AERJE reaches the highest 86.54%, 76.48% and 81.20%, respectively. This means that
748
+ the correct API relation type is most likely covered in the top-3 candidate relations predicted
749
+ by the classifier. When N is less than 3, however, the F1-score of AERJE in relation extraction
750
+ decreases because the top-N candidate relations may miss the correct relation type. Here is an
751
+ example: “A TreeMap has the same limitation (as does a HashMap, which also breaks when the
752
+ hashcode of its elements changes after insertion)”. When N=2, classifier predicts two relations
753
+ between TreeMap and Hashmap, including “behavior difference” and “logic constraint” , but ignores
754
+ the “function similarity” relation. This ignored relation is at the third relation predicted by the
755
+ classifier. However, when N is greater than 3, the F1-score of AERJE in relation extraction decreases
756
+ because the dynamic prompt may contain some incorrect relation types, which may mislead the
757
+ extractor. This misleading effect has bigger impact on precision than on recall.
758
+ The optimal number of relation types for dynamic prompt should be set to 3. This not only
759
+ ensures that the majority of the correct relation types appear in the dynamic prompts, but it
760
+ also prevents the dynamic prompts from containing too many noise relation types which may
761
+ make the model sacrifice precision for recall.
762
+ 4.3
763
+ RQ3: Joint Extraction Performance of AERJE
764
+ 4.3.1
765
+ Motivation. We would like to evaluate AERJE’s performance in API entity and relation joint
766
+ extraction, compared with the state-of-the-art methods for API entity extraction and API relation
767
+ extraction. Note that only our AERJE can achieve joint API entity and relation extraction.
768
+ 4.3.2
769
+ Methodology. AERJE is compared to APIReal and ARCLIN for API entity extraction, and
770
+ three variant models (i.e., 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺, 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒, and 𝐴𝐸𝑅𝐽𝐸𝑏𝑎𝑠𝑒) for both API entity and
771
+ relation extraction. Note that the entity and relation extraction results by 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒 represents
772
+ the capability of fine-tuning the pre-trained model for the two tasks separately. All models are
773
+ trained and tested on the same final training and test sets. Details on configuration can be found in
774
+ Section 3.3.
775
+ 4.3.3
776
+ Result. Table 4 shows the evaluation result of AERJE and five baselines on final test sets. We
777
+ see that AERJE’s F1-score is higher 7.5% than APIReal’s F1-score and 5.7% than ARCLIN’s F1-score
778
+ on API entity extraction. Compared with the three variant models, AERJE’s F1-score for API entity
779
+ extraction is only slightly lower (0.18%) than the best performer (i.e., 96.69% by 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒), but
780
+ AERJE’s F1-score for relation extraction is 6.83% higher than that of the second best performer
781
+ (74.37% by 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒).
782
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
783
+
784
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
785
+ 13
786
+ Table 4. Comparison of Overall Performance
787
+ Model
788
+ Entity
789
+ Relation
790
+ P
791
+ R
792
+ F1
793
+ P
794
+ R
795
+ F1
796
+ APIReal
797
+ 89.13
798
+ 88.90
799
+ 89.01
800
+ -
801
+ -
802
+ -
803
+ ARCLIN
804
+ 94.76
805
+ 87.17
806
+ 90.81
807
+ -
808
+ -
809
+ -
810
+ AERJE
811
+ 97.57
812
+ 95.48
813
+ 96.51
814
+ 86.54
815
+ 76.48
816
+ 81.20
817
+ 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒
818
+ 98.03
819
+ 95.38
820
+ 96.69
821
+ 82.83
822
+ 67.47
823
+ 74.37
824
+ 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺
825
+ 97.52
826
+ 95.78
827
+ 96.64
828
+ 75.38
829
+ 70.62
830
+ 72.92
831
+ 𝐴𝐸𝑅𝐽𝐸𝑏𝑎𝑠𝑒
832
+ 96.39
833
+ 95.15
834
+ 95.77
835
+ 75.97
836
+ 70.28
837
+ 73.01
838
+ For APIReal and ARCLIN performance on API entity extraction, both AERJE and it variant
839
+ models outperform them largely. This superior performance is due to the backbone large pre-
840
+ trained language models (T5) in AERJE. During the pre-training, T5 learns linguistic and semantic
841
+ knowledge in text and has powerful abilities in word and sentence representations. Through fine-
842
+ tuning, the semantic knowledge packed in the T5 can be transferred to the downstream tasks and
843
+ benefit API entity extraction.
844
+ The amount of knowledge in the T5 also affects the AERJE’s performance on API entity and
845
+ relation extraction. Compared with AERJE, the F1-score of 𝐴𝐸𝑅𝐽𝐸𝑏𝑎𝑠𝑒 is reduced by 0.74% and 8.19%
846
+ in API entity extraction and API relation extraction, respectively. The decrease of 𝐴𝐸𝑅𝐽𝐸𝑏𝑎𝑠𝑒’s F1
847
+ score on API entity extraction is very small compared with the decrease on API relation extraction.
848
+ It is because the number of sentences containing API entities in the final training set is 6 times
849
+ more than the number of sentences containing both API entity and relation (i.e., 10,678 vs 1,639).
850
+ Sufficient fine-tuning data for API entity extraction allows the basic T5 model to achieve the
851
+ equivalent performance on API entity extraction as the large T5. In contrast, the relation extraction
852
+ is more complex than the entity extraction, and the amount of fine-tuning data is smaller. In such
853
+ case, the basic T5 cannot compete with the large T5.
854
+ For 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒 and AERJE, they achieve almost the same entity extraction performance. How-
855
+ ever, in terms of API relation extraction, AERJE’s F1-score (81.20%), precision (86.54%) and recall
856
+ (76.48%) are much higher than 𝐴𝐸𝑅𝐽𝐸𝑠𝑖𝑛𝑔𝑙𝑒’s F1-score (74.37%), precision (82.83%) and recall (67.47%),
857
+ respectively. This suggests that fine-tuning pre-trained model for API entity extraction individually
858
+ or jointly with API relation extraction does not affect the quality of API entity extraction. But
859
+ joint entity and relation extraction is much more effective for the relation extraction task than
860
+ fine-tuning the model just for the relation extraction.
861
+ For 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺 and AERJE, they also achieve almost the same entity extraction performance.
862
+ This is due to the fact that dynamic prompt only affects the relation type, not the entity type. In
863
+ terms of API relation extraction, AERJE’s precision (86.54%), recall (76.48%) and F1-score (81.20%) are
864
+ higher than 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺’s precision (75.38%), recall (70.62%) and F1-score (72.92%), respectively.
865
+ This is because 𝐴𝐸𝑅𝐽𝐸𝑤/𝑜𝐷𝑃𝐺 uses the same static prompt that includes all seven relation types
866
+ for all input sentences. The more types of relations there are in the prompt, the more noise the
867
+ prompt is, and the more difficult it is for AERJE to identify and extract the correct relations in the
868
+ input sentence. In contrast, AERJE’s use of dynamic prompt reduces the number of relation types
869
+ to recognize, improving its ability to extract API relations.
870
+ Standing on the shoulder of large pre-trained language model (T5), AERJE outperforms traditional
871
+ sequence labeling models for API entity extraction. Dynamic prompt has no impact on API
872
+ entity extraction, but can largely boost the performance of API relation extraction. Fine-tuning
873
+ the pre-trained model jointly is much more effective than fine-tuning the model just for one
874
+ task, which makes joint entity-relation extraction more accurate on both tasks than separate
875
+ entity and relation extraction.
876
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
877
+
878
+ 14
879
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
880
+ 4.4
881
+ RQ4: Generalization Ability of AERJE
882
+ 4.4.1
883
+ Motivation. Each API comes with its own API package, which often have different forms.
884
+ Furthermore, as APIs from different packages support diverse functionalities, the texts in which
885
+ they appear may be different in content and linguistic properties. It is impossible for AERJE to see
886
+ all API packages during fine-tuning. In this RQ, we want to investigate if AERJE can recognize
887
+ APIs and their relations from the API packages that it does not see during fine-tuning.
888
+ 4.4.2
889
+ Methodology. In order to collect as much data from different packages as possible, we
890
+ combine the final training set and the final test set into a new data set with a total of 13,364
891
+ sentences. Every sentence, as stated in Section 2.3.1, is accompanied by multiple post tags, some of
892
+ which show the relationship between the sentence and the API package. For example, the tag “io” is
893
+ associated with the package name “java.io”. Therefore, we filter out sentences with package names
894
+ by matching each tag of a sentence to any JDK 1.8 package name. Here is a partial match, which
895
+ means it matches a portion of the package name, for example, “swing” can match “javax.swing”.
896
+ And then we pool the package names that appear with the sentences and select the three package
897
+ names that appear the most frequently (i.e., javax.swing, java.io, and java.util). Finally, we gather
898
+ 1651 sentences whose tags match these three package names.
899
+ To ensure the correctness of the sentences obtained through approximate match, we invite six
900
+ students (who have previously participated in annotation) and divide them into three groups to
901
+ annotate sentences from three different packages. Two students in each group annotate the same
902
+ sentences. They independently determine whether the API entities in each sentence are from the
903
+ specific package (i.e., java.io, java.util, javax.swing). Here is an example “you can use lines() method
904
+ in BufferedRead” for java.io package. The sentence is annotated as True, since the API entities
905
+ line() and BufferedRead only correspond to java.io. Instead, if any API entity in the sentence do
906
+ not belong to specific package, the sentence is annotated as False. Then we assign an author to
907
+ handle conflicts between the group members. Finally, we obtain 999 sentences that strictly matched
908
+ these packages names. Cohen’s Kappa [25] coefficient is 0.795 (i.e., substantial agreement). The
909
+ data details for each package are as follows:
910
+ • The java.io dataset has 235 sentences, 51 of which contain both entities and relations. 12 of
911
+ the 51 sentences are non-augmented sentences.
912
+ • The javax.swing dataset has 435 sentences, 76 of which contain both entities and relations.
913
+ 14 of the 76 sentences are non-augmented sentences.
914
+ • The java.util dataset has 329 sentences, 68 of which contain both entities and relations. 18 of
915
+ the 68 sentences are non-augmented sentences.
916
+ Our AERJE and baseline models are all trained on one of the three datasets and tested on the
917
+ two others. As AERJE outperforms its variants. We don’t consider these variants here.
918
+ 4.4.3
919
+ Result. Table 5 shows the results that reflect each model’s generalization ability. For API
920
+ entity extraction, AERJE’s F1-score achieves 95.05%, when trained on the java.util dataset, far
921
+ exceeding APIReal’s F1-score (61.27%) and ARCLIN’s F1-score (58.50%). We attribute this to the
922
+ underlying LLM on which AERJE is built. As Qiu et al. [17] show, LLM provides better model
923
+ initialization, which usually leads to better generalization performance on the target tasks. Similar
924
+ observations can be made for training the models on the java.io dataset and the javax.swing dataset.
925
+ Generally, ARCLIN and APIReal may perform well on either precision or recall, but not both and
926
+ thus poor F1-score. In contrast, AERJE is very stable with much better precision and recall and
927
+ with only small fluctuations in F1-scores across the experiments.
928
+ For API relation extraction, AERJE’s F1-score is 40.98%, 79.99% and 68.48% when trained on
929
+ the java.io, java.util and javax.swing datasets, respectively. In the across-package training-testing
930
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
931
+
932
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
933
+ 15
934
+ Table 5. Comparison of Generalization Ability
935
+ Model
936
+ java.io
937
+ java.util
938
+ javax.swing
939
+ Entity
940
+ Relation
941
+ Entity
942
+ Relation
943
+ Entity
944
+ Relation
945
+ P
946
+ R
947
+ F1
948
+ P
949
+ R
950
+ F1
951
+ P
952
+ R
953
+ F1
954
+ P
955
+ R
956
+ F1
957
+ P
958
+ R
959
+ F1
960
+ P
961
+ R
962
+ F1
963
+ APIReal
964
+ 85.02
965
+ 36.97
966
+ 51.53
967
+ -
968
+ -
969
+ -
970
+ 98.11
971
+ 44.54
972
+ 61.27
973
+ -
974
+ -
975
+ -
976
+ 98.99
977
+ 25.62
978
+ 40.70
979
+ -
980
+ -
981
+ -
982
+ ARCLIN
983
+ 95.93
984
+ 70.84
985
+ 81.50
986
+ -
987
+ -
988
+ -
989
+ 98.55
990
+ 41.60
991
+ 58.50
992
+ -
993
+ -
994
+ -
995
+ 98.64
996
+ 56.57
997
+ 71.90
998
+ -
999
+ -
1000
+ -
1001
+ AERJE
1002
+ 92.00
1003
+ 89.35
1004
+ 90.66
1005
+ 45.87
1006
+ 37.03
1007
+ 40.98
1008
+ 95.17
1009
+ 94.93
1010
+ 95.05
1011
+ 78.68
1012
+ 81.35
1013
+ 79.99
1014
+ 93.89
1015
+ 89.91
1016
+ 91.86
1017
+ 96.92
1018
+ 52.94
1019
+ 68.48
1020
+ Table 6. Experimental results in a low-resource scenario
1021
+ Model
1022
+ 1-Shot
1023
+ 5-Shot
1024
+ 10-Shot
1025
+ Entity
1026
+ Relation
1027
+ Entity
1028
+ Relation
1029
+ Entity
1030
+ Relation
1031
+ P
1032
+ R
1033
+ F1
1034
+ P
1035
+ R
1036
+ F1
1037
+ P
1038
+ R
1039
+ F1
1040
+ P
1041
+ R
1042
+ F1
1043
+ P
1044
+ R
1045
+ F1
1046
+ P
1047
+ R
1048
+ F1
1049
+ APIReal
1050
+ 80.30
1051
+ 15.92
1052
+ 26.57
1053
+ -
1054
+ -
1055
+ -
1056
+ 86.17
1057
+ 60.67
1058
+ 71.20
1059
+ -
1060
+ -
1061
+ -
1062
+ 83.94
1063
+ 68.59
1064
+ 75.49
1065
+ -
1066
+ -
1067
+ -
1068
+ ARCLIN
1069
+ 55.07
1070
+ 62.38
1071
+ 58.50
1072
+ -
1073
+ -
1074
+ -
1075
+ 74.64
1076
+ 72.91
1077
+ 73.76
1078
+ -
1079
+ -
1080
+ -
1081
+ 83.58
1082
+ 75.52
1083
+ 79.34
1084
+ -
1085
+ -
1086
+ -
1087
+ AERJE
1088
+ 72.76
1089
+ 85.06
1090
+ 78.43
1091
+ 9.34
1092
+ 44.49
1093
+ 15.44
1094
+ 79.09
1095
+ 91.62
1096
+ 84.90
1097
+ 31.68
1098
+ 65.96
1099
+ 42.80
1100
+ 82.47
1101
+ 93.74
1102
+ 87.74
1103
+ 35.00
1104
+ 72.94
1105
+ 47.30
1106
+ setting, the performance of AERJE degrades, compared with the non-across-package setting (see
1107
+ Table 4). However, when trained on the java.util dataset, AERJE’s F1-score (79.99%) is only about
1108
+ 1% less than non-across-package setting (81.20%). This suggests that AERJE is capable of dealing
1109
+ with the data drift across different packages. In addition, different across-package training-testing
1110
+ settings also bring different results. When using java.util for training AERJE, its F1-score is about
1111
+ 39% higher than the F1-score of AERJE trained on java.io. First, due to java.io having fewer sentences
1112
+ with relations than java.util (51 vs 68). Second, java.io data has fewer non-augmented sentences
1113
+ with relations than java.util (12 vs 18), which makes java.io data less diverse than java.util.
1114
+ Our AERJE has a strong generalization ability in face of the data drift across different API
1115
+ packages. This ability comes from the generalization ability of the underlying LLM.
1116
+ 4.5
1117
+ RQ5: AERJE’s Performance in Low-Resource Scenario
1118
+ 4.5.1
1119
+ Motivation. Labor overhead means that the data available for training is limited. In this RQ,
1120
+ we want to investigate how well AERJE perform when trained with the extremely small amount of
1121
+ training data.
1122
+ 4.5.2
1123
+ Methodology. We conduct a K-shot experiment, where K can be 1, 5, or 10. To begin the
1124
+ K-shot experiment, we randomly select K sentences from the final training set for each relation
1125
+ type. Then we choose K sentences at random from the final training set that contain only entities
1126
+ but no relations. This yields a training set containing 8*k sentences. Finally, we train our AERJE
1127
+ and baseline models on this training set and test them on the final test set. Note that, to avoid the
1128
+ influence of random sampling, we repeat each K-shot experiment ten times with different samples.
1129
+ 4.5.3
1130
+ Result. For API entity extraction, Table 6 shows the performance of each model in three
1131
+ low-resource scenarios (i.e., 1-shot, 5-shot, and 10-shot) where AERJE significantly outperforms
1132
+ APIReal and ARCLIN. Especially, in the 1-shot scenario, AERJE’s F1-score is 78.43%, which is
1133
+ significantly higher than APIReal’s (26.57%) and ARCLIN’s (58.50%). Compared to APIReal and
1134
+ ARCLIN, the LLM-based AERJE has a large amount of prior knowledge from the LLM pre-training.
1135
+ As the fine-tuning shot increases, the accuracy of AERJE improves fast, especially on F1-score,
1136
+ reaching the F1-score 84.90% at 5-shot and 87.74% at 10-shot.
1137
+ For API relation extraction, in the 1-shot scenario, AERJE does not perform well, but it still
1138
+ magically achieves the recall 44.49%. However, with only 4 more examples (at 5-shot), the F1-score
1139
+ of AERJE significantly increases from below 16% at 1-shot to about 43% at 5-shot. This suggests
1140
+ that the underlying LLM can quickly adapt to the API relation extraction task that it does not see
1141
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
1142
+
1143
+ 16
1144
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
1145
+ during pre-training with only a few examples. In the few-shot setting, we see that precision is
1146
+ much more difficult to improve than recall. It could be due to the ambiguities of relations, i.e. the
1147
+ same type of relation can be expressed in very different forms (as shown in table 1), while different
1148
+ types of relations may be expressed in the similar forms (e.g., “API1 be ADJ to API2��� represents
1149
+ function similarity or function opposite relation). With only a few examples of each type of relation,
1150
+ it makes learning to distinguish between them more difficult. Furthermore, AERJE’s F1-score for
1151
+ entity extraction is 78.43% at one-shot, while its F1-score for relation extraction is only 15.44%. The
1152
+ primary cause for this is that the training set of one-shot contains almost all API entity ambiguity
1153
+ types but only a few API relation ambiguity types. As a result, relation extraction is more difficult
1154
+ than entity extraction.
1155
+ AERJE can quickly adapt the underlying LLM to the API entity and relation extraction tasks with
1156
+ only a small number of fine-tuning data. Prior knowledge in LLM enables this quick adaptation.
1157
+ Relation extraction is much harder than entity extraction in the few-shot setting.
1158
+ 5
1159
+ DISCUSSION
1160
+ The major threat to internal validity is the manual labeling of training and testing datasets. Incorrect
1161
+ human labels could harm modeling training and testing. To mitigate this threat, we invited two
1162
+ students to annotate the same content and assigned an author to resolve disagreements in the
1163
+ labeling results. However, even humans can’t always tell if a token references an API, especially
1164
+ when it comes to common nouns that reference basic computing concepts, such as policy and time,
1165
+ which can be either basic noun concepts or APIs (java.security.policy class, java.time package). We
1166
+ take a conservative strategy, i.e., common nouns as API entities, unless both annotators agree.
1167
+ The threat to external validity is three-fold. The first external threat is that we only collect data
1168
+ on Stack Overflow. Although our model performed well on the SO data set, we intend further to
1169
+ validate its generalization performance in the other data sources (e.g., Java Tutorial8, SitePoint9,
1170
+ and Reddit10). The second external threat is that AERJE has only been tested on Java packages. We
1171
+ chose Java because previous work [1, 6, 11] has demonstrated how difficult it is to extract these
1172
+ API entities and relations from it. In the future, we plan to expand AERJE to other programming
1173
+ languages (such as Python and C#). The third external threat stems from two AERJE components:
1174
+ the BERT-based classifier and the T5-based extractor. There are numerous alternative models for
1175
+ both components of the model. TextCNN [27] and FastText [28] can be used to build the classifier.
1176
+ It is possible to use BART [31] and GPT-3 [32] to implement the extractor. In the future, we will
1177
+ compare two AERJE components with alternative models to determine the best performing model.
1178
+ 6
1179
+ RELATED WORK
1180
+ API entity and relation extraction is a fundamental work in software engineering. It is useful
1181
+ in the construction of knowledge graphs; extracted structured API knowledge can help with
1182
+ many software engineering tasks such as API linking [2, 3, 8, 33], API misuse detection [11], API
1183
+ recommendation [4, 5], and API comparison [6]. This section describes the methods for extracting
1184
+ API entities and relations from unstructured text.
1185
+ Bacchelli [7, 34] and Dagenais [3] detect class and method mentions in developer emails, docu-
1186
+ mentation and forum posts using regular expressions of distinct orthographic features. Ren [11],
1187
+ Huang [1], and Liu [6] extract entities from SO posts using the HTML <code> tag. Bacchelli et
1188
+ al. [10] extract coarse-grained structured code fragments from natural language text with island
1189
+ 8http://www.java2s.com
1190
+ 9https://www.sitepoint.com/
1191
+ 10https://www.reddit.com
1192
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
1193
+
1194
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
1195
+ 17
1196
+ parsing. Huang [1], and Liu [6] extract semantic relations between entities based on syntactic
1197
+ patterns. However, their API entity and relation extraction method from natural language text
1198
+ relies on unique orthographic features of APIs, and suffer from the rule design overhead.
1199
+ To mitigate the overhead of rule design, researchers extract API entities using machine learning
1200
+ methods. Ye et al. [2] propose APIReal, which uses CRF to identify API entities. They label the
1201
+ API entities and non-entities in the sentence with the “BIO” tag and form the pair of the labeled
1202
+ sequence and the sequence. They then train CRF on these pairs, and use the trained CRF to label
1203
+ the input text, from which they obtain API entities with the “BI” or “B” tag. Huo et al. [13], on
1204
+ the other hand, propose ARCLIN, which uses BI-LSTM as encoder and CRF as decoder to identify
1205
+ API entities, rather than just CRF. However, these methods suffer from data labeling overhead
1206
+ because preparing a large number of high-quality training data for these sequence labeling models
1207
+ is unrealistic.
1208
+ To solve the two overhead issues mentioned above, researchers use LLM to extract entities. Li
1209
+ et al. [35] use BERT and Yan et al. [36] use XLNet [37] to extract entities in the natural language
1210
+ domain. These models, however, are limited to a single natural language processing task, i.e., the
1211
+ entity extraction only. In order to realize joint extraction of multiple tasks, researchers propose LLM-
1212
+ based unified architectural models, such as UIE [20] and OpenUE [38]. In particular, UIE proposes
1213
+ SEL to encode different information extraction structures via the hierarchical spotting-associating
1214
+ structure. Motivated by this, we consider adapting UIE to the joint API entity-relation extraction.
1215
+ However, UIE is not good at dealing with complex sentences, particularly long and ambiguous
1216
+ sentences containing API entities and various relations, because UIE has only one static prompt to
1217
+ identify all types of API relations. As a result, when confronted with ambiguous sentences, the
1218
+ more relation types to recognize, the more noise interference, and the lower the UIE recognition
1219
+ rate. In contrast, we propose LLM-based AERJE, which extracts API entities and relations from
1220
+ unstructured complex sentences at the same time. Different from UIE, our dynamic prompt design
1221
+ could generate a small number of potentially relevant relations for input text to eliminate noise
1222
+ interference and lessens the difficulty of API relation extraction.
1223
+ 7
1224
+ CONCLUSION AND FUTURE WORK
1225
+ In this paper, we are the first to formulate heterogeneous API extraction and API relation extraction
1226
+ task as a sequence-to-sequence task, and proposes AERJE to extract API entities and relations
1227
+ from unstructured text simultaneously using pre-trained LLM and dynamic prompt learning. The
1228
+ systematic evaluation of AERJE is conducted on a set of long and ambiguous sentences from Stack
1229
+ Overflow. The experimental results show that AERJE’s ability to extract API entities and relations
1230
+ can be activated with a small amount of data, allowing it to accurately identify API entities and
1231
+ relations from complex text that the model has never seen during fine-tuning. In the future, we
1232
+ will carry out the plans mentioned in the discussion and apply AERJE to any software engineering
1233
+ task supported by API entity and relation extraction, such as API linking, API search, and API
1234
+ recommendation.
1235
+ ACKNOWLEDGMENTS
1236
+ The work is partly supported by the National Nature Science Foundation of China under Grant
1237
+ (Nos.62262031, 61902162), the Nature Science Foundation of Jiangxi Province (20202BAB202015),
1238
+ the Central Guided Local Science and Technology Development Special Project (20222ZDH04090),
1239
+ the Graduate Innovative Special Fund Projects of Jiangxi Province (YC2021-S308, YC2022-S258).
1240
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
1241
+
1242
+ 18
1243
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
1244
+ REFERENCES
1245
+ [1] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Zhengkang Zuo, Changjing Wang, and Xin Xia. 1+1>2: Programming
1246
+ know-what and know-how knowledge fusion, semantic enrichment and coherent application. IEEE Transactions on
1247
+ Services Computing, pages 1–14, 2022.
1248
+ [2] Deheng Ye, Lingfeng Bao, Zhenchang Xing, and Shang-Wei Lin. Apireal: an api recognition and linking approach for
1249
+ online developer forums. Empirical Software Engineering, 23(6):3129–3160, 2018.
1250
+ [3] Barthélémy Dagenais and Martin P. Robillard. Recovering traceability links between an api and its learning resources.
1251
+ 2012 34th International Conference on Software Engineering (ICSE), pages 47–57, 2012.
1252
+ [4] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. Api method recommendation without worrying
1253
+ about the task-api knowledge gap. In 2018 33rd IEEE/ACM International Conference on Automated Software Engineering
1254
+ (ASE), pages 293–304. IEEE, 2018.
1255
+ [5] Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao. Api
1256
+ method recommendation via explicit matching of functionality verb phrases. Proceedings of the 28th ACM Joint Meeting
1257
+ on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020.
1258
+ [6] Yang Liu, Mingwei Liu, Xin Peng, Christoph Treude, Zhenchang Xing, and Xiaoxin Zhang. Generating concept based
1259
+ api element comparison using a knowledge graph. In Proceedings of the 35th IEEE/ACM International Conference on
1260
+ Automated Software Engineering, pages 834–845, 2020.
1261
+ [7] Alberto Bacchelli, Michele Lanza, and Romain Robbes. Linking e-mails and source code artifacts. In Proceedings of the
1262
+ 32nd ACM/IEEE International Conference on Software Engineering-Volume 1, pages 375–384, 2010.
1263
+ [8] Christoph Treude and Martin P. Robillard. Augmenting api documentation with insights from stack overflow. 2016
1264
+ IEEE/ACM 38th International Conference on Software Engineering (ICSE), pages 392–403, 2016.
1265
+ [9] Peter C. Rigby and Martin P. Robillard. Discovering essential code elements in informal documentation. 2013 35th
1266
+ International Conference on Software Engineering (ICSE), pages 832–841, 2013.
1267
+ [10] Alberto Bacchelli, Anthony Cleve, Michele Lanza, and Andrea Mocci. Extracting structured data from natural language
1268
+ documents with island parsing. 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE
1269
+ 2011), pages 476–479, 2011.
1270
+ [11] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun. Api-misuse detection
1271
+ driven by fine-grained api-constraint knowledge graph. 2020 35th IEEE/ACM International Conference on Automated
1272
+ Software Engineering (ASE), pages 461–472, 2020.
1273
+ [12] Deheng Ye, Zhenchang Xing, Chee Yong Foo, J. Li, and Nachiket Kapre. Learning to extract api mentions from informal
1274
+ natural language discussions. 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages
1275
+ 389–399, 2016.
1276
+ [13] Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu. Arclin: Automated api mention resolution for
1277
+ unformatted texts. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE), pages 138–149, 2022.
1278
+ [14] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and Xuejiao Zhao. Improving api caveats
1279
+ accessibility by mining api caveats knowledge graph. 2018 IEEE International Conference on Software Maintenance and
1280
+ Evolution (ICSME), pages 183–193, 2018.
1281
+ [15] Chunyang Chen, Zhenchang Xing, and Ximing Wang. Unsupervised software-specific morphological forms inference
1282
+ from informal discussions. 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages 450–461,
1283
+ 2017.
1284
+ [16] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, and Sebastian Riedel.
1285
+ Language models as knowledge bases? ArXiv, abs/1909.01066, 2019.
1286
+ [17] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained models for natural
1287
+ language processing: A survey. ArXiv, abs/2003.08271, 2020.
1288
+ [18] Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, and Guoqiang Li. Easy-to-deploy api extraction
1289
+ by multi-level feature embedding and transfer learning. IEEE Transactions on Software Engineering, 47(10):2296–2311,
1290
+ 2019.
1291
+ [19] Zexuan Zhong and Danqi Chen. A frustratingly easy approach for entity and relation extraction. ArXiv, abs/2010.12812,
1292
+ 2021.
1293
+ [20] Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, and Hua Wu. Unified structure generation
1294
+ for universal information extraction. In ACL, 2022.
1295
+ [21] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
1296
+ and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. ArXiv, abs/1910.10683,
1297
+ 2020.
1298
+ [22] Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes, Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher Lieber, Barak Lenz,
1299
+ Shai Shalev-Shwartz, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Standing on the shoulders of giant
1300
+ frozen language models. ArXiv, abs/2204.10019, 2022.
1301
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
1302
+
1303
+ API Entity and Relation Joint Extraction from Text via Dynamic Prompt-tuned Language Model
1304
+ 19
1305
+ [23] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket Kapre. Software-specific named entity
1306
+ recognition in software engineering social content. In 2016 IEEE 23rd international conference on software analysis,
1307
+ evolution, and reengineering (SANER), volume 1, pages 90–101. IEEE, 2016.
1308
+ [24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional trans-
1309
+ formers for language understanding. ArXiv, abs/1810.04805, 2019.
1310
+ [25] J. R. Landis and G. Koch. An application of hierarchical kappa-type statistics in the assessment of majority agreement
1311
+ among multiple observers. Biometrics, 33 2:363–74, 1977.
1312
+ [26] Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Jiazhan Xie, Huanjun Xu, and Yanjun Yang. How to
1313
+ formulate specific how-to questions in software development? In FSE, 2022.
1314
+ [27] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.
1315
+ [28] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. In
1316
+ EACL, 2017.
1317
+ [29] Kelvin Jiang, Ronak Pradeep, Jimmy J. Lin, and David R. Cheriton. Exploring listwise evidence reasoning with t5 for
1318
+ fact verification. In ACL, 2021.
1319
+ [30] Diedre Carmo, Marcos Piau, Israel Campiotti, Rodrigo Nogueira, and Roberto de Alencar Lotufo. Ptt5: Pretraining and
1320
+ validating the t5 model on brazilian portuguese data. ArXiv, abs/2008.09144, 2020.
1321
+ [31] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
1322
+ and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation,
1323
+ and comprehension. In ACL, 2020.
1324
+ [32] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
1325
+ Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan,
1326
+ Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
1327
+ Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
1328
+ Sutskever, and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.
1329
+ [33] Hang Yin, Yuanhao Zheng, Yanchun Sun, and Gang Huang. An api learning service for inexperienced developers based
1330
+ on api knowledge graph. In 2021 IEEE International Conference on Web Services (ICWS), pages 251–261. IEEE, 2021.
1331
+ [34] Alberto Bacchelli, Marco D’Ambros, Michele Lanza, and Romain Robbes. Benchmarking lightweight techniques to
1332
+ link e-mails and source code. 2009 16th Working Conference on Reverse Engineering, pages 205–214, 2009.
1333
+ [35] Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li. A unified mrc framework for named
1334
+ entity recognition. ArXiv, abs/1910.11476, 2020.
1335
+ [36] Rongen Yan, Xue Jiang, and Depeng Dang. Named entity recognition by using xlnet-bilstm-crf. Neural Process. Lett.,
1336
+ 53:3339–3356, 2021.
1337
+ [37] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. Xlnet: Generalized
1338
+ autoregressive pretraining for language understanding. In NeurIPS, 2019.
1339
+ [38] Ningyu Zhang, Shumin Deng, Zhen Bi, Haiyang Yu, Jiacheng Yang, Mosha Chen, Fei Huang, Wei Zhang, and Huajun
1340
+ Chen. Openue: An open toolkit of universal extraction from text. In EMNLP, 2020.
1341
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
1342
+
1343
+ 20
1344
+ Qing Huang, Yanbang Sun, Zhenchang Xing, Min Yu, Xiwei Xu, and Qinghua Lu
1345
+ QING HUANG received the M.S degree in computer application and
1346
+ technology from Nanchang University, in 2009, and the PH.D. degree in
1347
+ computer software and theory from Wuhan University, in 2018. He is
1348
+ currently an Assistant Professor with the School of Computer and Informa-
1349
+ tion Engineering, Jiangxi Normal University, China. His research interests
1350
+ include information security, software engineering and knowledge graph.
1351
+ Yanbang Sun is a second-year master student at the School of Computer
1352
+ and Information Engineering, Jiangxi Normal University, China. His re-
1353
+ search interests include software engineering and knowledge graph.
1354
+ Zhenchang Xing is a Senior Research Scientist with Data61, CSIRO,
1355
+ Eveleigh, NSW, Australia. In addition, he is an Associate Professor in
1356
+ the Research School of Computer Science, Australian National University.
1357
+ Previously, he was an Assistant Professor in the School of Computer Sci-
1358
+ ence and Engineering, Nanyang Technological University, Singapore, from
1359
+ 2012-2016. His main research areas are software engineering, applied data
1360
+ analytics, and human-computer interaction.
1361
+ MIN YU is a Professor in Communication, Electronic Engineering, and
1362
+ Computer Science at Jiangxi Normal University, was a visiting scholar at
1363
+ the University of California, Irvine, the USA, and interested in Distributed
1364
+ computing, Wireless Sensor Network, and Indoor Positioning.
1365
+ Xiwei Xu is a Senior Research Scientist with Architecture& Analytics
1366
+ Platforms Team, Data61, CSIRO. She is also a Conjoint Lecturer with UNSW.
1367
+ She started working on blockchain since 2015. Her main research interest
1368
+ is software architecture. She also does research in the areas of service
1369
+ computing, business process, and cloud computing and dependability.
1370
+ Qinghua Lu is a Senior Research Scientist with Data61, CSIRO, Eveleigh,
1371
+ NSW, Australia. She has published more than 100 academic papers in
1372
+ international journals and conferences. Her research interests include the
1373
+ software architecture, blockchain, software engineering for AI, and AI
1374
+ ethics.
1375
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
1376
+
8NE2T4oBgHgl3EQflQeg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE1T4oBgHgl3EQfVwTa/content/tmp_files/2301.03107v1.pdf.txt ADDED
@@ -0,0 +1,2976 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The q-neighbor Ising model on multiplex networks with partial overlap of nodes
2
+ A. Krawiecki and T. Gradowski
3
+ Faculty of Physics, Warsaw University of Technology,
4
+ Koszykowa 75, PL-00-662 Warsaw, Poland
5
+ The q-neighbor Ising model for the opinion formation on multiplex networks with two layers in
6
+ the form of random graphs (duplex networks), the partial overlap of nodes, and LOCAL&AND spin
7
+ update rule was investigated by means of the pair approximation and approximate Master equations
8
+ as well as Monte Carlo simulations. Both analytic and numerical results show that for different fixed
9
+ sizes of the q-neighborhood and finite mean degrees of nodes within the layers the model exhibits
10
+ qualitatively similar critical behavior as the analogous model on multiplex networks with layers in
11
+ the form of complete graphs. However, as the mean degree of nodes is decreased the discontinuous
12
+ ferromagnetic transition, the tricritical point separating it from the continuous transition and the
13
+ possible coexistence of the paramagnetic and ferromagnetic phases at zero temperature occur for
14
+ smaller relative sizes of the overlap. Predictions of the simple homogeneous pair approximation
15
+ concerning the critical behavior of the model under study show good qualitative agreement with
16
+ numerical results; predictions based on the approximate Master equations are usually quantitatively
17
+ more accurate, but yet not exact. Two versions of the heterogeneous pair approximation are also
18
+ derived for the model under study, which, surprisingly, yield predictions only marginally different
19
+ or even identical to those of the simple homogeneous pair approximation. In general, predictions of
20
+ all approximations show better agreement with the results of Monte Carlo simulations in the case
21
+ of continuous than discontinuous ferromagnetic transition.
22
+ I.
23
+ INTRODUCTION
24
+ Investigation of the opinion formation process by means of nonequilibrium models has become a firmly established
25
+ research field in statistical physics in the last decades [1]. Many results in this area were obtained using models with
26
+ agents’ opinions represented by spins with discrete (in most cases two) states obeying stochastic dynamics described
27
+ by various rates at which agents change (e.g., flip) their opinions, e.g., the majority-vote model [2–7], the noisy voter
28
+ model [8–10], different versions of the noisy nonlinear and q-voter model [11–20] and the q-neighbor Ising model [21–
29
+ 24]. In particular, much effort was devoted to determining conditions under which the above-mentioned models exhibit
30
+ phase transition from a disordered paramagnetic (PM) state in which each opinion appears with the same probability
31
+ to an ordered ferromagnetic (FM) state with one dominant opinion as the parameter controlling the level of stochastic
32
+ noise in the model is varied, measuring the agents’ uncertainty in decision making. In this context the presence of
33
+ the first-order FM transition, or even transition to a frozen FM phase is of prime importance, with abrupt occurrence
34
+ of a dominant opinion as well as possible hysteresis and bistability of the PM and FM phases [4, 5, 12–21, 24].
35
+ Following the growing interest in the dynamical processes on complex networks [25] agents in the models for the
36
+ opinion formation are often located in the nodes and interact via edges of complex networks reflecting a complicated
37
+ structure of social interactions [3–7, 9, 13–16, 18–20, 23, 24]. In this case analytic predictions concerning the critical
38
+ behavior of the models based on the mean-field approximation (MFA) need not exhibit quantitative agreement with
39
+ results of Monte Carlo (MC) simulations, hence, more accurate approaches based on the pair approximation (PA)
40
+ [26–30] and approximate Master equations (AMEs) [28–30] were applied to describe theoretically the observed phase
41
+ transitions [10, 14–16, 18–20, 24].
42
+ Recently much attention has been devoted to combining complex networks in order to create even more complicated
43
+ and heterogeneous structures known in general as ”networks of networks” [31]. An important class of such structures
44
+ is formed by multiplex networks (MNs) which consist of a fixed set of nodes connected by various sets of edges called
45
+ layers [31–33]. In the simplest case, the layers are independently generated random networks with a full overlap of
46
+ nodes, i.e., with each node belonging to all layers, which means it has at least one attached edge from each layer.
47
+ In turn, in MNs with partial overlap of nodes, there are nodes belonging only to some rather than all layers. In
48
+ particular, in the case of MNs with two layers (duplex networks) and partial overlap of nodes, the nodes are divided
49
+ into a class of nodes belonging to both layers and forming the overlap, and two other classes, each consisting of nodes
50
+ belonging only to one of the two layers [34–36] (the node overlap should not be confused with the link overlap [37–39]
51
+ which is negligible in the case of independently generated layers). FM phase transition in equilibrium models on MNs
52
+ was studied, e.g., in the Ising model [40, 41] and a related Ashkin-Teller model [42]. Analogously, FM transition in
53
+ nonequilibrium models for the opinion formation on MNs was studied, e.g., in the majority vote model [44, 45], the
54
+ q-voter model [46–48] and the q-neighbor Ising model [49]. As expected, the critical properties of the nonequilibrium
55
+ models, in particular the extension or confinement of the range of parameters for which the first-order transition occurs,
56
+ strongly depend on the way in which the multiplexity affects the spin-flip rate. In this respect, very interesting seems
57
+ arXiv:2301.03107v1 [cond-mat.stat-mech] 8 Jan 2023
58
+
59
+ 2
60
+ the q-neighbor Ising model with LOCAL&AND spin update rule [50], which so far has been studied by MC simulations
61
+ and in the MF approximation on duplex networks with full and partial overlap of nodes and with layers in the form of
62
+ fully connected graphs [49]. In this model, the flip probability per unit time for the spins in nodes belonging to only
63
+ one layer (i.e., outside the overlap) is given by a Metropolis-like rate, but with a local field produced only by a subset
64
+ of q randomly chosen neighboring spins (q-neighborhood), and for the spins in nodes belonging to both layers (i.e.,
65
+ within the overlap) it is given by a product of two above-mentioned rates evaluated separately for each layer. With
66
+ the increase of the relative size of the overlap, and depending on the size of the q-neighborhood, suppression of the
67
+ first-order transition, appearance of a tricritical point separating first- and second-order FM transition, and possible
68
+ coexistence of the PM and FM phases even in zero temperature were observed in the model [49].
69
+ In this paper, the q-neighbor Ising model on MNs with partial overlap of nodes, with layers in the form of complex
70
+ networks and with the LOCAL&AND spin update rule is studied by means of MC simulations and theoretically in
71
+ the framework of the PA and AMEs. It should be noted that the q-neighbor Ising model is used here as a convenient
72
+ example since the results can be readily compared with the above-mentioned ones for the limiting case of the model
73
+ on MNs with layers in the form of complete graphs [49], and the PA and AMEs used here can be easily generalized
74
+ to other models for the opinion formation with similar structure of interactions. In order to make large systems of
75
+ AMEs numerically tractable in this paper only the case of duplex networks with layers in the form of homogeneous
76
+ random networks is considered; nevertheless, such MNs exhibit certain overlap-induced inhomogeneity since the nodes
77
+ within and outside the overlap form distinct classes characterized by different degrees within the individual layers
78
+ (both non-zero or one zero and one non-zero). Thus also the flip rates for the spins located in nodes belonging to
79
+ distinct classes are different; a related q-voter model with quenched disorder, with agents divided into subpopulations
80
+ according to different rates of the opinion change, has been recently considered [15].
81
+ The aim of this paper is first to provide a general formulation of the PA and AMEs, which take into account to
82
+ a different extent the above-mentioned inhomogeneity of nodes, for models on MNs with partial overlap of nodes.
83
+ For this purpose, first, the homogeneous PA for models on MNs with a full overlap of nodes [47] is extended to the
84
+ case with partial overlap. For nodes belonging to different classes this simplest form of the PA takes into account the
85
+ inhomogeneity of the average directions of spins (opinions) but neglects possible inhomogeneity of the distributions
86
+ of directions of neighboring spins within each layer. For the q-neighbor Ising model predictions of this approximation
87
+ concerning the FM phase transition show surprisingly good agreement with results of MC simulations for a wide
88
+ range of the size of the q-neighborhood, the mean degrees of nodes within layers and the size of the overlap. Then,
89
+ the most advanced approximation based on the AMEs for models on MNs with the full overlap of nodes [45] and
90
+ weighted networks [51] is extended to the case of models on MNs with partial overlap of nodes. Finally, two kinds
91
+ of heterogeneous PA, the fully heterogeneous PA [15] and the AMEs-based heterogeneous PA [28–30] are applied
92
+ to models on MNs with partial overlap of nodes. Both versions of the PA take into account, to a different extent,
93
+ the above-mentioned inhomogeneity of distributions of directions of neighboring spins within each layer and are in
94
+ general intermediate with respect to the accuracy of predictions between the homogeneous PA and the AMEs. For
95
+ the q-neighbor Ising model under study, it turns out that their predictions are only marginally different or even
96
+ identical with these of the homogeneous PA. On the other hand, predictions based on the AMEs show slightly better
97
+ quantitative agreement with the results of MC simulations, in particular for smaller mean degrees of nodes within
98
+ layers. In general, predictions of all approximations concerning the first-order FM transition (e.g., location and width
99
+ of the hysteresis loop) are quantitatively worse than those concerning the second-order transition (e.g., location of
100
+ the critical point). Besides, the aim of this paper is also to study in detail the phase diagram for the q-neighbor Ising
101
+ model on MNs with partial overlap of nodes and with layers with a finite mean degree of nodes. It is shown that the
102
+ critical behavior of this model resembles qualitatively that of the analogous model on MNs with layers in the form
103
+ of fully connected graphs [49]. However, as the mean degree of nodes is decreased, the first-order FM transition, the
104
+ tricritical point separating it from the second-order transition, and the possible coexistence of the PM and FM phases
105
+ occur for smaller relative sizes of the overlap, while the range of the occurrence of the second-order FM transition is
106
+ broadened correspondingly.
107
+ II.
108
+ THE MODEL
109
+ A.
110
+ Multiplex networks with partial overlap of nodes
111
+ MNs consist of a fixed set of nodes connected by several sets of edges; the set of nodes with each set of edges
112
+ forms a network which is called a layer of a MN [32, 33]. Henceforth, the nodes are indexed by i, i = 1, 2, . . . N,
113
+ and the subsequent layers are denoted as G(L), L = A, B, . . . Lmax. In the case of MNs with a full overlap of nodes
114
+ each node belongs to all layers, i.e., each node has at least one edge from each layer attached to it. In general, MNs
115
+ with partial overlap of nodes are defined as MNs in which nodes may belong to (i.e., may have attached edges from)
116
+
117
+ 3
118
+ some rather than all layers, given that each node belongs to at least one layer. Henceforth, the number of nodes
119
+ belonging to the layer G(L) is denoted as N (L). In this paper, it is assumed that the sets of edges for the subsequent
120
+ layers G(L) are generated independently and form complex random networks with N (L) nodes. As a result, multiple
121
+ connections between nodes are not allowed within the same layer, but the same nodes belonging to several layers can
122
+ be accidentally connected by multiple edges belonging to different layers. A simple example of the MN with partial
123
+ overlap of nodes is that with only two layers G(A), G(B), called a duplex network, and with n nodes belonging to
124
+ both layers which form the overlap (0 ≤ n ≤ N); then, N = N (A) + N (B) − n. Furthermore, if both layers contain
125
+ the same number of nodes N (A) = N (B) = ˜N it is possible to introduce a single parameter r = n/ ˜N, also called the
126
+ overlap. Then, the nodes are divided into three subsets: ˜N − n = N(1 − r)/(2 − r) nodes belonging only to the layer
127
+ G(A), N(1 − r)/(2 − r) nodes belonging only to the layer G(B) and n = Nr/(2 − r) nodes belonging both to G(A) and
128
+ G(B).
129
+ The numbers of edges attached to the node i (degrees) within the individual layers G(L) are denoted as k(L)
130
+ i
131
+ ; if the
132
+ node i does not belong to the layer G(L) then k(L)
133
+ i
134
+ = 0. In the case of MNs with independently generated layers the
135
+ degrees of nodes belonging to the individual layers G(L), i.e., these with k(L)
136
+ i
137
+ > 0, are drawn from probability distri-
138
+ butions P
139
+
140
+ k(L)�
141
+ which characterize the layers as complex networks. For a given node i a vector of its degrees within
142
+ the individual layers ki =
143
+
144
+ k(A)
145
+ i
146
+ , k(B)
147
+ i
148
+ , . . . k(Lmax)
149
+ i
150
+
151
+ , with possible zero components in the case of MNs with partial
152
+ overlap of nodes, is called a multidegree of the node. The multidegree distribution P(k) = P
153
+
154
+ k(A)
155
+ i
156
+ , k(B)
157
+ i
158
+ , . . . k(Lmax)
159
+ i
160
+
161
+ characterizes the MN as a complex ”network of networks”; in the case of MNs with the full overlap of nodes and
162
+ independently generated layers, it is obviously P(k) = �Lmax
163
+ L=A P(k(L)). In the formulas below, averages are evaluated
164
+ over the multidegree distribution, e.g., ⟨k(L)⟩ = N −1 �N
165
+ i=1 k(L)
166
+ i
167
+ = �
168
+ k P(k)k(L) is the mean degree of nodes within
169
+ the layer G(L) (note that the average is over all N nodes rather than N (L) nodes belonging to the layer G(L)). As a
170
+ simple example, in this paper the q-neighbor Ising model is considered on a duplex network with partial overlap of
171
+ nodes and with the two independently generated layers in the form of random regular graphs (RRGs) with K edges
172
+ attached to each node belonging to the layer, the same numbers of nodes N (A) = N (B) = ˜N and the overlap r, for
173
+ which the multidegree distribution is
174
+ P (k) = P
175
+
176
+ k(A), k(B)�
177
+ = 1 − r
178
+ 2 − rδk(A),Kδk(B),0 +
179
+ r
180
+ 2 − rδk(A),Kδk(B),K + 1 − r
181
+ 2 − rδk(A),0δk(B),K,
182
+ (1)
183
+ and ⟨k(A)⟩ = ⟨k(B)⟩ = ˜NK/N = K/(2 − r).
184
+ B.
185
+ The q-neighbor Ising model on multiplex networks with partial overlap of nodes
186
+ The q-neighbor Ising model [21–24, 49] is a nonequilibrium variant of the Ising model used to investigate the process
187
+ of opinion formation. In this paper the above-mentioned model is considered on MNs with partial overlap of nodes
188
+ and layers in the form of complex networks; the MF version of this model, on MNs with layers in the form of fully
189
+ connected graphs, was studied in Ref. [49]. The main interest is in the FM transition which can occur in the q-neighbor
190
+ Ising model with decreasing effective temperature T, which measures the level of internal noise (uncertainty in agents’
191
+ decision making).
192
+ In order to introduce the model under study, it is convenient to start with the q-neighbor Ising model on (monoplex)
193
+ networks which can be regular, complex, or fully connected graphs [21–24, 49]. In this model agents with two possible
194
+ opinions on a given subject are represented by two-state spins σi = ±1, i = 1, 2, . . . N placed in the nodes and
195
+ interacting via edges of the network. It is assumed that these interactions prefer identical orientations of spins in the
196
+ connected nodes, which is reflected in the spin-flip rate. Thus, interactions between spins with opposite directions in
197
+ general increase the probability that one of the spins flips, i.e., the corresponding agent changes opinion, and edges
198
+ representing these interactions are called active links. The dynamics of the q-neighbor Ising model on networks is a
199
+ modification of that of the kinetic Ising model with the Metropolis spin-flip rate in which, at each time step, each
200
+ spin interacts only with its q randomly chosen neighbors. MC simulations of the model are performed using random
201
+ asynchronous updating of spins, with each MC simulation step (MCSS) corresponding to updating all N spins. Nodes
202
+ are picked randomly and for each picked node q its neighbors are chosen randomly and without repetitions, which
203
+ form the q-neighborhood of the picked node. Then, the spin in the picked node is flipped with probability given by a
204
+ Metropolis-like formula,
205
+ E (l; T, q) = min {1, exp[−2(q − 2l)/T]} ,
206
+ (2)
207
+ where l is the number of nodes belonging to the q-neighborhood occupied by spins with a direction opposite to that
208
+ of the spin in the picked node, i.e., the number of active links attached to the picked node leading to nodes within
209
+
210
+ 4
211
+ the chosen q-neighborhood (notation in Eq. (2) emphasizes that T, q, are parameters of the model). As a result, the
212
+ flip rate for a picked spin given that it is placed in a node with degree k which has in total i active links attached
213
+ (0 ≤ i ≤ k) is
214
+ f (i; T|k) =
215
+ 1
216
+ �k
217
+ q
218
+
219
+ q
220
+
221
+ l=0
222
+ �i
223
+ l
224
+ ��k − i
225
+ q − l
226
+
227
+ E (l; T, q) =
228
+ 1
229
+ �k
230
+ i
231
+
232
+ q
233
+
234
+ l=0
235
+ �k − q
236
+ i − l
237
+ ��q
238
+ l
239
+
240
+ E (l; T, q) .
241
+ (3)
242
+ The q-neighbor Ising model on complete graphs for q = 3 exhibits second-order FM transition, while for q ≥ 4
243
+ first-order FM transition occurs with a clearly visible hysteresis loop. Width of the hysteresis loop in general increases
244
+ with q, though for q > 4 there are oscillations superimposed on this trend such that loops for the consecutive odd
245
+ values of q are narrower than for the neighboring even values of q [21]. The same is true for the model on networks
246
+ with finite mean degree ⟨k⟩ provided that q ≪ ⟨k⟩. However, as q is increased and becomes comparable with ⟨k⟩ the
247
+ hysteresis loop becomes narrower and eventually disappears, and the FM transition becomes second-order [24].
248
+ In the q-neighbor Ising model on MNs with full or partial overlap of nodes, interactions take place within individual
249
+ layers with respective, independently chosen q-neighborhoods. Then, spins flip according to a probabilistic rule which
250
+ combines the effect of the above-mentioned interactions. In this paper the LOCAL&AND spin update rule is used [50]
251
+ according to which the spin in the picked node flips if interaction with every q-neighborhood from every layer suggests
252
+ flip; consequently, the probability of the spin-flip is given by a product of the Metropolis-like factors (2) corresponding
253
+ to all layers containing the picked node. The LOCAL&AND rule is assumed in this paper since it usually leads to
254
+ richer phase diagrams than other methods of including the multiplex character of the network of interactions in the
255
+ spin-flip rate [46–49]. Eventually, in numerical simulations of the q-neighbor Ising model on MNs with partial overlap
256
+ of nodes and the LOCAL&AND spin update rule, each MCSS is performed as follows.
257
+ (i.) A node i, 1 ≤ i ≤ N, with multidegree ki is picked randomly.
258
+ (ii.) From each layer G(L) containing the picked node a set of its q neighbors (q-neighborhood) is chosen randomly
259
+ and without repetitions; it is assumed that 0 < q ≤ k(L)
260
+ i
261
+ . Sets from different layers are chosen independently,
262
+ thus the same node can by chance belong to two or more q-neighborhoods if it is a neighbor of the picked node
263
+ within two or more layers.
264
+ (iii.) The Metropolis-like factor for the picked node is evaluated separately for each layer G(L),
265
+ E
266
+
267
+ l(L); T, q
268
+
269
+ = min
270
+
271
+ 1, exp[−2(q − 2l(L))/T]
272
+
273
+ (4)
274
+ where l(L) is the number of nodes in the q-neighborhood in the layer G(L) occupied by spins with direction
275
+ opposite to that of the spin in the picked node; note that if a node does not belong to G(L) then q = l(L) = 0
276
+ and E(T, 0, 0) = 1.
277
+ (iv.) Due to the LOCAL&AND spin update rule, the spin σi in the picked node flips with probability
278
+ E (l; T, q) =
279
+ Lmax
280
+
281
+ L=A
282
+ E
283
+
284
+ l(L); T, q
285
+
286
+ ,
287
+ (5)
288
+ where l =
289
+
290
+ l(A), l(B), . . . l(Lmax)�
291
+ ; and obviously l(L) = 0 if the picked node does not belong to the layer G(L)
292
+ (i.e., l is a vector of numbers of active links from the individual layers attached to the picked node which lead
293
+ to nodes within the respective q-neighborhoods).
294
+ (v.) Steps (i.)-(iv.) are repeated until all N spins are updated without repetition.
295
+ Hence, the flip rate for a spin placed in a node with multidegree k =
296
+
297
+ k(A), k(B), . . . k(Lmax)�
298
+ and with the numbers of
299
+ attached active links within the individual layers i(L), 0 ≤ i(L) ≤ k(L), given by the corresponding components of the
300
+ vector i =
301
+
302
+ i(A), i(B), . . . i(Lmax)�
303
+ assumes a multiplicative form,
304
+ f (i; T |k) =
305
+ Lmax
306
+
307
+ L=A
308
+ f
309
+
310
+ i(L); T|k(L)�
311
+ (6)
312
+ (note that if a node does not belong to the layer G(L) there is k(L) = i(L) = 0 and f (0; T|0) ≡ 1).
313
+ The q-neighbor Ising model on a duplex network with layers in the form of complete graphs and partial overlap
314
+ of nodes, and with the LOCAL&AND spin update rule exhibits FM phase transition already for q ≥ 1 [49]. This
315
+
316
+ 5
317
+ transition is in general second-order, with some exceptions. For q = 2 the transition is first-order for 1/2 < r < 1,
318
+ with a clearly visible hysteresis loop, and for rc < r ≤ 1/2, where rc = 2(3
319
+
320
+ 2 − 4) = 0.4853 . . ., the coexistence of
321
+ the FM and PM phases is observed as the temperature is decreased below a critical value down to T = 0; for r < rc
322
+ there is no phase transition and the PM phase remains the only stable phase down to T = 0. For q ≥ 4 the transition
323
+ for small r is first-order and for larger r is second-order. The first- and second-order transitions are separated by a
324
+ tricritical point at r = rT CP (q) which for q = 4 occurs at a particularly high value of r, and for q > 4 is an increasing
325
+ function of q, but again with oscillations between the consecutive odd and even values of q superimposed on this
326
+ trend. Remarkably, for r = 1 the FM transition is always second-order for any q, i.e., full overlap of nodes suppresses
327
+ discontinuous transition. In this paper, it is investigated how the phase diagram of the model changes if the layers of
328
+ the MN are complex networks with a finite mean degree of nodes.
329
+ III.
330
+ THEORY
331
+ A.
332
+ Pair approximation
333
+ In the case of spin models on networks, the effect of the network topology (e.g, of the degree distribution or the mean
334
+ degree of nodes) on the observed phase transitions often can be more accurately described in the framework of the
335
+ PA than by the usual MFA [26–30]. In particular, this was demonstrated for the q-neighbor Ising model on complex
336
+ networks [24] and a sort of stochastic q-voter model on MNs with a full overlap of nodes [47]. In both above-mentioned
337
+ studies the networks, or the layers of the MNs, were homogeneous complex networks (e.g., RRGs), thus the simplest
338
+ homogeneous PA was enough to reproduce quantitatively results of MC simulations in a wide range of the parameters
339
+ of the models. As mentioned in Sec. I & II MNs with partial overlap of nodes retain some multiplexity-induced
340
+ inhomogeneity even if the layers are homogeneous complex networks. Nevertheless, in this section the homogeneous
341
+ PA derived in Ref. [47] for a wide class of models with various spin update rules on MNs with the full overlap of nodes
342
+ is presented in a more general form which makes it applicable to models on MNs with partial overlap of nodes, in
343
+ order to find, inter alia, to what extent it can be used to explain critical behavior of systems with multiplicity-induced
344
+ inhomogeneity.
345
+ The advantage of the PA consists in that it takes into account dynamical correlations between pairs of interacting
346
+ agents (spins). In the framework of the homogeneous PA, macroscopic quantities characterizing a model with two-
347
+ state spins on MNs are concentrations ck of spins directed up located in nodes with multidegree k (with possible zero
348
+ components in the case of MNs with partial overlap of nodes) as well as concentrations b(L) of active links within
349
+ separate layers G(L). The homogeneous character of the PA allows for the simplification that the latter concentrations
350
+ are averaged over all nodes belonging to a given layer and do not depend on the multidegrees of the connected nodes.
351
+ Consequently, it is assumed that conditional probabilities θ(L)
352
+ j
353
+ , j ∈ {↑, ↓}, that an active link within the layer G(L) is
354
+ attached to a node given that it is occupied by spin with direction j are also independent of the multidegree of the
355
+ node. These probabilities can be evaluated as ratios of the number of attachments of active links to nodes with spins
356
+ with direction j, independently of their multidegrees, within the layer G(L), which is N⟨k(L)⟩b(L)/2, and the number
357
+ of attachments of all links within GL to such nodes, which is �
358
+ k NP (k) k(L)ck,j, where ck,↑ = ck, ck,↓ = 1 − ck, thus
359
+ θ(L)
360
+
361
+ =
362
+ b(L)
363
+ 2 �
364
+ k P (k) k(L)ck,↑/⟨k(L)⟩ =
365
+ b(L)
366
+ 2 �
367
+ k P (k) k(L)ck/⟨k(L)⟩,
368
+ (7)
369
+ θ(L)
370
+
371
+ =
372
+ b(L)
373
+ 2 �
374
+ k P (k) k(L)ck,↓/���k(L)⟩ =
375
+ b(L)
376
+ 2
377
+
378
+ 1 − �
379
+ k P (k) k(L)ck/⟨k(L)⟩
380
+
381
+ (8)
382
+ The core approximation made in the PA for models on MNs is that the numbers of active links i(L) attached
383
+ to a node with degrees k(L) within individual layers G(L) (0 ≤ i(L) ≤ k(L)) occupied by spin with direction j obey
384
+ independent binomial distributions with parameters θ(L)
385
+ j
386
+ given by Eq. (7,8). Then, the rates at which the concentration
387
+ ck increases or decreases are given by averages of the spin-flip rate, Eq. (6), over the appropriate joint distributions
388
+ of the number of active links within all layers which have a multiplicative form
389
+ P(j, i|k) =
390
+ Lmax
391
+
392
+ L=A
393
+ Bk(L),i(L)
394
+
395
+ θ(L)
396
+ j
397
+
398
+ ,
399
+ (9)
400
+ where Bk,i(θ) =
401
+ �k
402
+ i
403
+
404
+ θi(1 − θ)k−i denotes the binomial factor and, formally, B0,0(θ) ≡ 1. Hence, the equation for the
405
+ time dependence of ck can be written as a rate equation,
406
+
407
+ 6
408
+ ∂ck
409
+ ∂t =
410
+
411
+ j∈{↑,↓}
412
+ (−1)δj,↑ck,j
413
+
414
+ i
415
+ Lmax
416
+
417
+ L=A
418
+ Bk(L),i(L)
419
+
420
+ θ(L)
421
+ j
422
+
423
+ f (i; T |k) ,
424
+ (10)
425
+ where �
426
+ i ≡ �k(A)
427
+ i(A)=0 . . . �k(Lmax)
428
+ i(Lmax)=0.
429
+ In order to obtain an equation for the time dependence of the concentrations of active links b(L) one should observe
430
+ that each flip of a spin (irrespective of its direction) in a picked node with multidegree k with the numbers of active
431
+ links attached given by the components of the vector i results in the change of the numbers of active links within
432
+ the individual layers G(L) by k(L) − 2i(L), since then i(L) previously active links become inactive and k(L) − i(L)
433
+ previously inactive links become active. The corresponding changes in the concentrations of active links b(L) are thus
434
+
435
+ k(L) − 2i(L)�
436
+ /(N⟨k(L)⟩/2). As in Eq. (10), such changes connected with the flip of a spin with direction j occur at a
437
+ rate given by the average of the spin-flip rate, Eq. (6), over the appropriate joint distributions of the number of active
438
+ links attached to the picked node, Eq. (9). Due to the homogeneous character of the PA, in order to obtain time
439
+ dependence of b(L) further averaging over all nodes occupied by spins with direction j should be performed, which
440
+ is equivalent to averaging over the probability distribution P(k)ck,j that a node with multidegree k is occupied by
441
+ a spin with direction j. Eventually, taking into account that nodes are picked and spins are updated within time
442
+ intervals 1/N, for a given layer G(L′) it is obtained that
443
+ ∂b(L′)
444
+ ∂t
445
+ =
446
+ 2
447
+ ⟨k(L′)⟩
448
+
449
+ j∈{↑,↓}
450
+
451
+ k
452
+ P (k) ck,j
453
+
454
+ i
455
+ Lmax
456
+
457
+ L=A
458
+ Bk(L),i(L)
459
+
460
+ θ(L)
461
+ j
462
+
463
+ f (i; T |k)
464
+
465
+ k(L′) − 2i(L′)�
466
+ ,
467
+ (11)
468
+ where L′ = A, B . . . Lmax.
469
+ In particular, let us consider the q-neighbor Ising model on a MN with two layers in the form of RRGs and partial
470
+ overlap of nodes, with the multidegree distribution given by Eq. (1). Then, the nodes are divided into three classes,
471
+ these belonging only to the layer G(A) with multidegree k = (K, 0), only to the layer G(B) with k = (0, K) and to
472
+ the overlapping part of G(A) and G(B), with k = (K, K). The macroscopic quantities to be used in the homogeneous
473
+ PA are thus concentrations of spins directed up in the nodes belonging to the subsequent classes c(K,0), c(0,K), c(K,K)
474
+ and concentrations of active links in the two layers b(A), b(B). Since both layers are identical, with N (A) = N (B) = ˜N,
475
+ stable solutions of the system of equations (10), (11) are limited to the subspace with c(0,K) = c(K,0), b(A) = b(B) ≡ b;
476
+ moreover, according to Eq. (7,8) there is θ(A)
477
+ j
478
+ = θ(B)
479
+ j
480
+ ≡ θj. Using Eq. (1), (3), (6), performing summations in Eq.
481
+ (10), (11) as in Ref. [24] and introducing functions R(θ; T, q) and S(θ; T, K, q) to shorten notation,
482
+ R(θ; T, q) =
483
+ q
484
+
485
+ l=0
486
+ Bq,l (θ) E(l; T, q),
487
+ (12)
488
+ S(θ; T, K, q) =
489
+ q
490
+
491
+ l=0
492
+ Bq,l (θ) [(K − q)θ + l]E(l; T, q),
493
+ (13)
494
+ the following system of three equations for the time dependence of the macroscopic quantities in the homogeneous
495
+ PA is obtained,
496
+ dc(K,0)
497
+ dt
498
+ =
499
+
500
+ 1 − c(K,0)
501
+
502
+ R (θ↓; T, q) − c(K,0)R (θ↑; T, q)
503
+ (14)
504
+ dc(K,K)
505
+ dt
506
+ =
507
+
508
+ 1 − c(K,K)
509
+
510
+ [R (θ↓; T, q)]2 − c(K,K) [R (θ↑; T, q)]2
511
+ (15)
512
+ db
513
+ dt = 2
514
+ K (1 − r)
515
+ ��
516
+ 1 − c(K,0)
517
+
518
+ [KR (θ↓; T, q) − 2S (θ↓; T, K, q)] + c(K,0) [KR (θ↑; T, q) − 2S (θ↑; T, K, q)]
519
+
520
+ + 2
521
+ K r
522
+ ��
523
+ 1 − c(K,K)
524
+
525
+ [KR (θ↓; T, q) − 2S (θ↓; T, K, q)] R (θ↓; T, q)
526
+ + c(K,K) [KR (θ↑; T, q) − 2S (θ↑; T, K, q)] R (θ↑; T, q)
527
+
528
+ ,
529
+ (16)
530
+ where
531
+ θ↑ =
532
+ b
533
+ 2
534
+
535
+ (1 − r)c(K,0) + rc(K,K)
536
+ �,
537
+ (17)
538
+ θ↓ =
539
+ b
540
+ 2
541
+
542
+ 1 − (1 − r)c(K,0) − rc(K,K)
543
+ �.
544
+ (18)
545
+
546
+ 7
547
+ Other macroscopic quantities of interest are the concentration of spins directed up in each layer, i.e., the fraction of ˜N
548
+ nodes occupied by such spins, which is ˜c = (1 − r)c(K,0) + rc(K,K), the concentration of spins directed up in the whole
549
+ MN, i.e., the fraction of N nodes occupied by such spins, which is c = 2(1−r)
550
+ 2−r c(K,0) +
551
+ r
552
+ 2−rc(K,K), and the resulting
553
+ magnetization of the MN m = 2c − 1. Note that in the limiting case of layers in the form of fully connected graphs
554
+ there is b = ˜N 2˜c(1 − ˜c)/[ ˜N( ˜N − 1)/2] ≈ 2˜c(1 − ˜c) and θ↓ = ˜c, θ↑ = 1 − ˜c; after inserting this into Eq. (14) and (15)
555
+ equations for the concentrations c(K,0), c(K,K) in the MF approximation are reproduced [49], as expected.
556
+ Natural extension of the homogeneous PA consists in taking into account heterogeneity of the concentrations of
557
+ the (possibly active) links connecting classes of nodes with different multidegrees, so that, instead of the average
558
+ concentration b(L) of active links within the layer G(L), e.g., concentrations of classes of active links connecting spins
559
+ in nodes with multidegrees k, k′ within the layer G(L) become separate macroscopic quantities characterizing the
560
+ model.
561
+ This leads to the most advanced and accurate version of the PA called fully heterogeneous PA [15, 27];
562
+ corresponding equations for the macroscopic quantities for spin models on MNs with partial overlap of nodes, in
563
+ particular for the q-neighbor Ising model under study, are given in Appendix A. In the latter case solutions of these
564
+ equations show that in the stationary state concentrations of active links (strictly speaking, of their ends called bonds)
565
+ belonging to different classes indeed show noticeable heterogeneity; nevertheless, this does not lead to the values of
566
+ magnetization noticeably different from these predicted by the homogeneous PA. Thus, magnetization curves and
567
+ phase diagrams for the model under study obtained from the fully heterogeneous PA are practically indistinguishable
568
+ from those obtained from the homogeneous PA and do not show better agreement with the results of MC simulations.
569
+ B.
570
+ Approximate Master equations
571
+ A more accurate approximation for the study of spin models on MNs with partial overlap of nodes is based on
572
+ approximate Master equations (AMEs) for the densities of spins directed up ck,m and down sk,m which are located
573
+ in nodes with multidegree k and have m(L) neighboring spins directed up within the consecutive layers G(L), which
574
+ is denoted as m =
575
+
576
+ m(A), m(B) . . . m(Lmax)�
577
+ . In the thermodynamic limit and for mutually uncorrelated layers in the
578
+ form of random networks with finite mean degrees
579
+
580
+ k(L)�
581
+ possibility that a pair of nodes is connected simultaneously
582
+ by edges within different layers can be neglected. Thus, in the AMEs it is assumed that in a single simulation step
583
+ for a given node the allowed changes of the number of neighboring spins directed up are m → m ± e(L), where e(L)
584
+ is a unit vector with Lmax components and only L-th component equal to one, while simultaneous changes of many
585
+ components of m, e.g., m → m ± e(L) ± e(L′), L ̸= L′, etc., cannot occur. Under the above-mentioned assumptions,
586
+ the AMEs in a general form are [45, 51]
587
+ dsk,m
588
+ dt
589
+ = −Fk,msk,m + Rk,mck,m
590
+ +
591
+ Lmax
592
+
593
+ L=A
594
+
595
+ −β(L)
596
+ s
597
+
598
+ k(L) − m(L)�
599
+ sk,m + β(L)
600
+ s
601
+
602
+ k(L) − m(L) + 1
603
+
604
+ sk,m−e(L)
605
+
606
+ +
607
+ Lmax
608
+
609
+ L=A
610
+
611
+ −γ(L)
612
+ s
613
+ m(L)sk,m + γ(L)
614
+ s
615
+
616
+ m(L) + 1
617
+
618
+ sk,m+e(L)
619
+
620
+ ,
621
+ (19)
622
+ dck,m
623
+ dt
624
+ = −Rk,mck,m + Fk,msk,m
625
+ +
626
+ Lmax
627
+
628
+ L=A
629
+
630
+ −β(L)
631
+ i
632
+
633
+ k(L) − m(L)�
634
+ ck,m + β(L)
635
+ i
636
+
637
+ k(L) − m(L) + 1
638
+
639
+ ck,m−e(L)
640
+
641
+ +
642
+ Lmax
643
+
644
+ L=A
645
+
646
+ −γ(L)
647
+ i
648
+ m(L)ck,m + γ(L)
649
+ i
650
+
651
+ m(L) + 1
652
+
653
+ ck,m+e(L)
654
+
655
+ .
656
+ (20)
657
+ In Eq. (19), (20) the first two terms account for the effect of a flip of a spin in a node with multidegree k and the
658
+ remaining terms account for the average effect of the flips of spins in the neighboring nodes, irrespective of their
659
+ multidegrees. In terms of Sec. II B the flip rate for a spin directed down occupying a node with multidegree k with
660
+ m neighboring spins directed up is Fk,m = f (m; T |k) and that for a spin directed up Rk,m = f (k − m; T |k).
661
+ The remaining average rates can be estimated by evaluating the ratios (at a given time step) of the average number
662
+ of edges connecting spins with a given direction such that one of these spins flips to the average total numbers
663
+ of these edges [28, 29]; in the case of models on MNs this should be done separately for each layer [45, 51].
664
+ Thus β(L)
665
+ s
666
+ =
667
+ � �
668
+ m
669
+
670
+ k(L) − m(L)�
671
+ Fk,msk,m
672
+
673
+ /
674
+ � �
675
+ m
676
+
677
+ k(L) − m(L)�
678
+ sk,m
679
+
680
+ , γ(L)
681
+ s
682
+ =
683
+ � �
684
+ m
685
+
686
+ k(L) − m(L)�
687
+ Rk,mck,m
688
+
689
+ /
690
+
691
+ 8
692
+ � �
693
+ m
694
+
695
+ k(L) − m(L)�
696
+ ck,m
697
+
698
+ ,
699
+ β(L)
700
+ i
701
+ =
702
+ � �
703
+ m m(L)Fk,msk,m
704
+
705
+ /
706
+ � �
707
+ m m(L)sk,m
708
+
709
+ ,
710
+ γ(L)
711
+ i
712
+ =
713
+ � �
714
+ m m(L)Rk,mck,m
715
+
716
+ /
717
+ � �
718
+ m m(L)ck,m
719
+
720
+ , where L = A, B, . . . Lmax, �
721
+ m ≡ �k(A)
722
+ m(A)=0
723
+ �k(B)
724
+ m(B)=0 . . . �k(Lmax)
725
+ m(Lmax)=0 and ⟨. . .⟩ denotes average
726
+ over the multidegree distribution P (k), as usually. Natural initial conditions for the system of equations (19), (20)
727
+ are sk,m(0) = (1−c(0)) �Lmax
728
+ L=A Bk(L),m(L)(c(0)), ck,m(0) = c(0) �Lmax
729
+ L=A Bk(L),m(L)(c(0)), where 0 < c(0) < 1 is arbitrary.
730
+ In particular, in the case of the q-neighbor Ising model on a MN with two layers in the form of RRGs and partial over-
731
+ lap of nodes, with the multidegree distribution P(k) given by Eq. (1), there are three classes of nodes with k = (0, K),
732
+ k = (K, 0) and k = (K, K). The corresponding spin flip rates are F(K,0),(m(A);0) = f
733
+
734
+ m(A); T |K
735
+
736
+ , F(0,K),(0;m(B)) =
737
+ f
738
+
739
+ m(B); T |K
740
+
741
+ , F(K,K),(m(A),m(B)) = f
742
+
743
+ m(A); T |K
744
+
745
+ f
746
+
747
+ m(B); T |K
748
+
749
+ and R(K,0),(m(A),0) = f
750
+
751
+ K − m(A); T |K
752
+
753
+ ,
754
+ R(0,K),(0,m(B)) = f
755
+
756
+ K − m(B); T |K
757
+
758
+ , R(K,K),(m(A),m(B)) = f
759
+
760
+ K − m(A); T |K
761
+
762
+ f
763
+
764
+ K − m(B); T |K
765
+
766
+ , with f (m; T |K )
767
+ given by Eq. (3). Hence, the system (19), (20) consists of 2(K +1)2+4(K +1) equations and can be solved numerically
768
+ for moderate K. The quantities of interest, e.g., the concentration c of spins directed up in the MN and the magnetiza-
769
+ tion m = 2c−1 can be evaluated as in Sec. III A using c(K,0) = �K
770
+ m(A)=0 c(K,0),(m(A),0), c(0,K) = �K
771
+ m(B)=0 c(0,0),(0,m(B)),
772
+ c(K,K) = �K
773
+ m(A)=0
774
+ �K
775
+ m(B)=0 c(K,K),(m(A),m(B)).
776
+ The AMEs are a starting point for a more elaborate approximation representing another formulation of the het-
777
+ erogeneous PA [28–30, 45, 51] which takes into account the possible heterogeneity due to different multidegrees k
778
+ of nodes of both the concentrations ck of spins directed up and of the conditional probabilities that a link attached
779
+ to a node is active or, equivalently, leads to a spin with a given (say, up) direction. A general formulation of such
780
+ AMEs-based heterogeneous PA for spin (two-state) models on (monoplex) networks by Gleeson [28, 29] was extended
781
+ to the case of weighted networks [51] and, partly, MNs [45]. It is believed that due to the approximations made the
782
+ AMEs-based heterogeneous PA is in general more accurate than the homogeneous PA and less accurate than the
783
+ fully heterogeneous PA mentioned in Sec. III A. In this paper the AMEs-based heterogeneous PA is applied to spin
784
+ models on MNs with partial overlap of nodes, in particular to the q-neighbor Ising model under study; equations
785
+ for the macroscopic quantities are given in Appendix B. Surprisingly, it turns out that in the stationary state the
786
+ above-mentioned conditional probabilities that a node has a link leading to a spin directed up do not depend on
787
+ whether the node belongs or not to the overlap. Hence, predictions of the AMEs-based heterogeneous PA concerning
788
+ the FM transition in the model under study are identical to those of the homogeneous PA from Sec. III A, so they
789
+ are not further discussed.
790
+ IV.
791
+ RESULTS
792
+ The main results concerning the FM transition in the q-neighbor Ising model on MNs with partial overlap of nodes
793
+ and with layers in the form of complete graphs have been summarized in Sec. II B. These results were obtained in the
794
+ MF approximation and confirmed by MC simulations [49]. In this section first predictions of the homogeneous PA
795
+ of Sec. III A concerning the FM transition in the q-neighbor Ising model on MNs with partial overlap of nodes and
796
+ with layers in the form of RRGs are presented and compared with results of MC simulations. In this case, noticeable
797
+ discrepancies occur between theoretical and numerical results, in particular concerning the first-order FM transition.
798
+ As pointed out in Sec. III, the more advanced fully and AMEs-based heterogeneous PA yield results practically
799
+ indistinguishable or even identical to the homogeneous PA, thus their predictions are only briefly mentioned in the
800
+ Appendix. Finally, it is verified in which cases and to what extent theoretical predictions are improved by using the
801
+ AMEs of Sec. III B.
802
+ In the framework of the homogeneous PA of Sec. III A stationary values of the magnetization m vs. T, corresponding
803
+ to different thermodynamic phases, are given by stable fixed points of the system of equations (14-16) with ˙c(K,0) =
804
+ ˙c(K,K) = ˙b = 0; for certain ranges of parameters r, q, K many stable fixed points can coexist for given T, and their
805
+ basins of attraction are then separated by stable manifolds of unstable fixed points. The homogeneous PA predicts
806
+ various critical behavior of the model under study as the temperature T is varied, depending on r, q, K which are
807
+ fixed: first- and second-order FM phase transition, the coexistence of the PM and FM phases for T → 0 and absence
808
+ of the FM transition. At high temperatures, the only stable fixed point is that with m = 0 corresponding to the PM
809
+ phase. In the case of the second-order FM transition, this fixed point loses stability as the temperature is decreased
810
+ below the critical value Tc, and simultaneously a pair of symmetric stable fixed points with m > 0 and m < 0 occurs
811
+ via a supercritical pitchfork bifurcation, corresponding to the two symmetric FM phases. In the case of the first-order
812
+ transition two symmetric pairs of stable and unstable fixed points with m > 0 and m < 0 occur simultaneously
813
+ via two saddle-node bifurcations as the temperature is decreased below the upper critical value T (2)
814
+ c
815
+ , and the two
816
+ above-mentioned stable fixed points correspond to the two symmetric FM phases. As the temperature is further
817
+ decreased both the FM and PM fixed points remain stable (coexist) until the PM point loses stability via a subcritical
818
+
819
+ 9
820
+ (c)
821
+ (d)
822
+ (b)
823
+ (a)
824
+ FIG. 1.
825
+ The curves show magnetization m vs. temperature T obtained from the homogeneous PA for different K (green
826
+ solid lines, both stable and unstable fixed points of the system of equations (14-16) are shown) and from the MFA of Ref.
827
+ [49] (black solid lines), for q = 2, K = 200, 100, 50, 20, 10, 4 (from left) and (a) r = 0.49, (b) r = 0.5, as well as for q = 4,
828
+ K = 500, 200, 100, 50, 20, 10 and (c) r = 0.05, (d) r = 0.15.
829
+ pitchfork bifurcation at the lower critical temperature T (1)
830
+ c
831
+ (T (1)
832
+ c
833
+ < T (2)
834
+ c
835
+ ) by colliding simultaneously with the two
836
+ above-mentioned unstable fixed points; coexistence of the PM and FM phases for T (1)
837
+ c
838
+ < T < T (2)
839
+ c
840
+ leads to the
841
+ occurrence of the hysteresis loop in the magnetization curves m(T). Eventually, for T < T (1)
842
+ c
843
+ the only stable fixed
844
+ points remain these corresponding to the two symmetric FM phases. In the case of the coexistence of the FM and
845
+ PM phases for T → 0 a pair of symmetric stable FM fixed points occurs at T = T (2)
846
+ c
847
+ as in the case of the first-order
848
+ transition, but these FM points, as well as the PM fixed point, remain stable (coexist) as T → 0. Finally, it can also
849
+ happen that fixed points corresponding to the FM phase do not exist for any T > 0, thus the FM transition is absent
850
+ and the only stable phase for T → 0 is the PM one.
851
+ Exemplary curves m(T) predicted by the homogeneous PA for the model under study with different K and selected
852
+ values of r are shown in Fig. 1 for the most interesting cases q = 2 and q = 4; in the former case, the MFA (valid
853
+ for the model on MNs with layers in the form of fully connected graphs with K → ∞) predicts occurrence of all
854
+ above-mentioned kinds of the critical behavior for different ranges of r, while in the latter one it predicts occurrence
855
+ of the first-order transition for a particularly wide range of small r. The curves m(T) for q = 2 are drawn in Fig. 1(a)
856
+ for r = 0.49, and in Fig. 1(b) for r = 0.5, i.e., for the values of r within or at the border of the interval rc < r < 0.5
857
+ where the MFA predicts coexistence of the FM and PM phases for T → 0. In contrast, for the model on MNs with
858
+ layers in the form of RRGs the homogeneous PA for r = 0.49 (Fig. 1(a)) predicts second- or first-order FM transition
859
+ for small and moderate K, respectively; the critical temperature(s) decrease and the width of the hysteresis loop
860
+ increases with K. Only for large K coexistence of the FM and PM phases for T → 0 is predicted by the PA, and the
861
+ curves m(T) approach those resulting from the MFA, as expected. For r = 0.5 (Fig. 1(b)) only second- or first-order
862
+ FM transitions for finite K are predicted by the PA, with the lower critical temperature for the first-order transition
863
+
864
+ 10
865
+ (a)
866
+ (b)
867
+ FIG. 2. Critical behavior predicted by the homogeneous PA for the model with q = 2 (left and middle panels) and q = 4 (right
868
+ panel) and different r, K; filled circles — continuous FM transition, open circles — discontinuous FM transition, filled squares
869
+ — coexistence of the FM and PM phases for T → 0, crosses — absence of the transition.
870
+ (a)
871
+ (b)
872
+ (c)
873
+ (d)
874
+ (e)
875
+ (f)
876
+ FIG. 3. Results of MC simulations, predictions of the PA and AMEs for the model with q = 2, K = 20 and (a) r = 0.45, (b)
877
+ r = 0.46, (c) r = 0.47, (d) r = 0.50, (e) r = 0.60, (f) r = 0.70; blue dots — results of MC simulations with FM initial conditions
878
+ and increasing temperature, red dots — results of MC simulations with PM initial conditions and decreasing temperature, black
879
+ dots — predictions of the AMEs for both FM (c(0) = 1) and PM (c(0) = 0.5) initial conditions and increasing or decreasing
880
+ temperature, respectively, green solid lines — predictions of the PA as in Fig. 1.
881
+
882
+ 60Q0-0000-011
883
+ (a)
884
+ (b)
885
+ (c)
886
+ (d)
887
+ (e)
888
+ (f)
889
+ FIG. 4. As in Fig. 3 but for q = 4. (a) K = 20, r = 0.05, (b) K = 20, r = 0.10, (c) K = 20, r = 0.15, (d) K = 10, r = 0.10,
890
+ (e) K = 50, r = 0.10, (f) k = 10, r = 0.05.
891
+ T (1)
892
+ c
893
+ > 0. The curves m(T) for q = 4 are drawn in Fig. 1(c) for r = 0.05, and in Fig. 1(d) for r = 0.15, i.e., for the
894
+ values of r where the MFA predicts first-order FM transition with a wide and narrow hysteresis loop, respectively.
895
+ For the model on MNs with layers in the form of RRGs the homogeneous PA for small r = 0.05 (Fig. 1(c)) similarly
896
+ predicts the first-order FM transition for moderate and large K, while for larger r = 0.15 (Fig. 1(d)) it predicts
897
+ the second-order FM transition already for moderate K and the first-order FM transition only for large K. Again,
898
+ the critical temperature(s) decrease, and the width of the hysteresis loop increases with K, and the curves m(T)
899
+ eventually approach these resulting from the MFA.
900
+ It may be inferred from Fig. 1 that the homogeneous PA predicts for the q-neighbor Ising model on MNs with
901
+ partial overlap of nodes and layers in the form of RRGs with finite K the same critical behavior as the MFA for
902
+ the model on analogous MNs with layers in the form of complete graphs, only for different ranges of the overlap r.
903
+ This conclusion is supported by Fig. 2 where the critical behavior predicted by the PA is summarized for the former
904
+ model with fixed q = 2 and q = 4 and different K, r. For all K and r = 1 (full overlap of nodes), both PA and MFA
905
+ predict continuous FM transition with decreasing T, i.e., the first-order transition observed in the model on monoplex
906
+ networks is suppressed. However, for both q = 2, 4 and finite K the PA predicts the second-order FM transition also
907
+ for a range of r below r = 1 which is broadened with decreasing K. As a consequence, for q = 2 (Fig. 2, left and
908
+ middle panels) the PA predicts that the range of the occurrence of the first-order FM transition is shifted toward
909
+ smaller values of r. Similarly, for a narrow range of still smaller values of the overlap the PA predicts the coexistence
910
+ of the FM and PM phases for T → 0, but for small K this kind of critical behavior is expected at r significantly
911
+ below the interval rc < r < 0.5 obtained from the MFA. Finally, it is predicted that the range of small r for which
912
+ the FM transition is absent for decreasing K is narrowed. Eventually, for very small K = 4 comparable with q only
913
+ continuous FM transition is expected for any r, and all other kinds of critical behavior are suppressed. For q = 4 (Fig.
914
+ 2, right panel) the range of small r for which the PA predicts the first-order FM transition is substantially diminished
915
+ with decreasing K.
916
+ In order to verify predictions of the homogeneous PA, MC simulations of the q-neighbor Ising model with q = 2, 4
917
+ on large MNs with various parameters r, K were performed and the magnetization curves m(T) were obtained for
918
+ random PM initial conditions σi = ±1, i = 1, 2, . . . N and decreasing temperature as well as for FM initial conditions
919
+ σi = +1, i = 1, 2 . . . N and increasing temperature. Comparison with MC simulations shows that the homogeneous
920
+ PA qualitatively captures modification of the critical behavior of the model under study due to finite values of the
921
+
922
+ 00000000-012
923
+ mean degree of the layers K, but its quantitative predictions, though much improved in comparison with those from
924
+ the MFA valid for large K, are not exact (Fig. 3, 4). For fixed q, K the PA approximately predicts the ranges
925
+ of the overlap r where different kinds of critical behavior should occur. However, as a rule, these predictions are
926
+ overestimated and in MC simulations the particular kinds of critical behavior appear for smaller values of r than
927
+ estimated from the PA. For example, for q = 2 the ranges of appearance of the coexistence of the FM and PM phases
928
+ for T → 0 (Fig. 3(a,b)) and of the second-order FM transition (Fig. 3(e,f)) in MC simulations are, respectively, shifted
929
+ and extended toward smaller values of r than expected from the PA. Consequently, in the case of the first-order FM
930
+ transition for q = 2 (Fig. 3(c,d)) and q = 4 (Fig. 4(a,b,e,f)) the lower and upper critical temperatures T (1)
931
+ c
932
+ , T (2)
933
+ c
934
+ are
935
+ underestimated and the width of the hysteresis loop is overestimated by the PA in comparison with these obtained
936
+ from MC simulations; it is interesting to note that discrepancies between the theoretical and numerical values of T (2)
937
+ c
938
+ are usually smaller than those for T (1)
939
+ c
940
+ . Similarly, in the case of the second-order FM transition for q = 2 (Fig. 3(f))
941
+ and q = 4 (Fig. 4(c,d)) the critical temperature Tc is underestimated by the PA in comparison with that obtained
942
+ from MC simulations. In general, the curves m(T) evaluated from the PA show better agreement with those obtained
943
+ from MC simulations in the case of the second-order than the first-order FM transition.
944
+ In order to investigate the critical behavior of the model under study by means of appropriate AMEs as defined
945
+ in Sec. III B, Eq. (19,20) were solved numerically with various initial conditions and the curves m(T) were obtained
946
+ using long-time asymptotic values of the concentrations of spins directed up c(K,0),(m(A),0), etc., to evaluate stationary
947
+ values of the magnetization. As expected, predictions of the AMEs usually show comparable or better agreement
948
+ with the results of MC simulations than those of the homogeneous PA. This is particularly visible in the case of the
949
+ second-order FM transition in the model under study with small K and q = 2 (Fig. 3(f)) and q = 4 (Fig. 4(d)),
950
+ where the theoretical and numerical curves m(T) coincide very well and the critical temperature Tc is predicted
951
+ correctly. However, the ranges of the overlap predicted by the AMEs for which different kinds of critical behavior
952
+ occur are still shifted toward slightly higher values of r than obtained from MC simulations (see Fig. 3(a), where the
953
+ AMEs predict the absence of the FM transition rather than coexistence of the FM and PM phases observed in MC
954
+ simulations, and Fig. 3(e), where the AMEs predict the first-order FM transition with a narrow hysteresis loop rather
955
+ than the second-order transition). In the case of the coexistence of the FM and PM phases for T ��� 0 for q = 2 (Fig.
956
+ 3(b)) and the first-order FM transition for q = 2 (Fig. 3(c,d)) and q = 4 (Fig. 4(a,b,e,f)) predictions of the AMEs
957
+ concerning the upper critical temperature T (2)
958
+ c
959
+ are usually better than those of the homogeneous PA, but the lower
960
+ critical temperature T (1)
961
+ c
962
+ is again usually underestimated and the width of the hysteresis loop is overestimated. In
963
+ general, some improvement of theoretical predictions by the AMEs in comparison with the homogeneous PA can be
964
+ seen for small and moderate K; for large K the curves m(T) obtained from the AMEs and PA coincide (Fig. 4(e)).
965
+ V.
966
+ DISCUSSION AND CONCLUSIONS
967
+ In this paper the q-neighbor Ising model on MNs with partial overlap of nodes and layers in the form of random
968
+ networks was investigated; as an example, the model on MNs with two layers in the form of RRGs was studied in
969
+ detail. Both theoretical considerations based on the homogeneous PA and AMEs as well as MC simulations show
970
+ that for given q ≥ 1 and finite mean degree of nodes K, and for varying overlap r and temperature T the model
971
+ exhibits qualitatively similar critical behavior as the q-neighbor Ising model on MNs with partial overlap of nodes
972
+ and layers in the form of complete graphs. In particular, for any q and full overlap of nodes r = 1 the first-order
973
+ FM transition is suppressed and only the second-order transition appears with decreasing T. Besides, for decreasing
974
+ K continuous rather than discontinuous FM transition is observed for an increasing range of large (for q = 2) and
975
+ large and moderate (for q > 2) values of r below r = 1. As a consequence, for decreasing K the ranges of r for
976
+ which the model exhibits the first-order FM transition (for q ≥ 2) and the coexistence of the FM and PM phases for
977
+ T → 0 (for q = 2) are shifted toward smaller values. It should be mentioned that in the q-neighbor Ising model on
978
+ (monoplex) networks the first-order FM transition is also suppressed for small K comparable with q [24]; in contrast,
979
+ in the model on MNs this suppression is due to the overlap of nodes and occurs for any K. The q-neighbor Ising
980
+ model was used here as an example, and related models for the opinion formation on MNs with partial overlap of
981
+ nodes can be studied using similar numerical and analytic methods; however, the expected qualitative changes of the
982
+ observed critical behavior with r will be probably less spectacular, since, e.g., in the case of the q-voter model even
983
+ for r = 1 the first-order FM transition is not suppressed [47].
984
+ For the model under study with large K predictions of the simple homogeneous PA and more advanced system of
985
+ AMEs converge to these of the MFA and agree quantitatively with the results of MC simulations. For finite K the
986
+ predicted curves m(T) and critical temperature(s) differ quantitatively from the numerically obtained ones; usually,
987
+ the particular kinds of critical behavior are predicted to occur for smaller values of the overlap than observed in MC
988
+ simulations. In general, predictions of both PA and AMEs show better agreement with the results of MC simulations
989
+
990
+ 13
991
+ in the case of the continuous than discontinuous FM transition. Predictions based on the AMEs are comparable to
992
+ or better than those of the PA; in particular, the critical temperature for the second-order FM transition and the
993
+ upper critical temperature for the first-order transition are more accurately predicted. Nevertheless, both PA and
994
+ AMEs qualitatively correctly capture changes of the critical behavior of the model with varying parameters K, r
995
+ characterizing the underlying MN.
996
+ Two versions of the heterogeneous PA were derived for the model under study, the more accurate fully heterogeneous
997
+ PA and the less accurate AMEs-based heterogeneous PA, which take to a different extent into account heterogeneity
998
+ of the distribution of the active links due to inhomogeneity of the nodes. In both cases, systems of equations for
999
+ the macroscopic quantities characterizing the model are significantly larger and more complicated than that in the
1000
+ homogeneous PA but do not lead to a noticeable improvement of theoretical predictions concerning the magnetization
1001
+ curves and phase diagrams for the model. This suggests that the simple homogeneous PA is as reliable as more
1002
+ advanced versions of the PA in the study of the critical behavior of systems with multiplexity-induced inhomogeneity.
1003
+ Only using much larger systems of AMEs in certain cases quantitatively improves agreement between theoretical
1004
+ predictions and results of MC simulations of the above-mentioned models.
1005
+ APPENDIX
1006
+ A.
1007
+ Fully heterogeneous pair approximation
1008
+ The following outline of the fully heterogeneous PA for models on MNs is an extension of that for the q-voter models
1009
+ with quenched disorder on networks, with two populations of agents differing by the spin-flip rates [15]. The fully
1010
+ heterogeneous PA uses the assumption that the probability that a spin directed up or down in a node with multidegree
1011
+ k has a given number of attached edges leading to spins directed up or down in nodes with multidegree ˜k obeys a
1012
+ binomial distribution; this assumption is valid for each layer and for any pair k, ˜k separately, and the related binomial
1013
+ distributions are assumed to be independent. The macroscopic quantities characterizing a model with two-state spins
1014
+ on a MN are concentrations ck of spins directed up in nodes with multidegree k and concentrations ek,˜k,(L)
1015
+ j,˜j
1016
+ (= e
1017
+ ˜k,k,(L)
1018
+ ˜j,j
1019
+ )
1020
+ of bonds (ends of edges) attached within the layer G(L) to nodes with multidegree k containing spins with direction
1021
+ j ∈ {↓, ↑} such that at the other end of the edge there is a node with multidegree ˜k containing spin with direction
1022
+ ˜j (normalized to the total number of bonds N⟨k(L)⟩ within G(L)). According to the above-mentioned assumptions
1023
+ the joint probability that a node with multidegree k containing spin with direction j has i =
1024
+
1025
+ i(A), i(B), . . . i(Lmax)�
1026
+ active bonds (ends of active links) attached within the consecutive layers, pointing at nodes with arbitrary multidegree
1027
+ containing spins with opposite direction −j, has a multiplicative form
1028
+ P(j, i|k) =
1029
+ Lmax
1030
+
1031
+ L=A
1032
+ Bk(L),i(L)
1033
+
1034
+ αk,(L)
1035
+ j
1036
+
1037
+ ,
1038
+ (21)
1039
+ where αk,(L)
1040
+ j
1041
+ = �
1042
+ k′ ek,k′,(L)
1043
+ j,−j
1044
+ / �
1045
+ k′
1046
+
1047
+ j′∈{↓,↑} ek,k′,(L)
1048
+ j,j′
1049
+ are conditional probabilities that an active bond is attached to
1050
+ a node with multidegree k and spin with direction j (similar to θ(L)
1051
+
1052
+ , θ(L)
1053
+
1054
+ given by Eq. (7, 8)). In order to evaluate
1055
+ the change in the concentration ek,˜k,(L)
1056
+ j,˜j
1057
+ due to, e.g., flipping the spin with direction j in a node with multidegree
1058
+ k, it is necessary to know the numbers of bonds y, z attached to this node within the layer G(L) pointing at nodes
1059
+ with multidegree ˜k given that these bonds are active (˜j = −j) or inactive (˜j = j), respectively. These numbers
1060
+ obey binomial distributions Bi(L),y
1061
+
1062
+ βk,˜k,(L)
1063
+ j,−j
1064
+
1065
+ , Bk(L)−i(L),z
1066
+
1067
+ γk,˜k,(L)
1068
+ j,j
1069
+
1070
+ , respectively, where the conditional probabilities
1071
+ are βk,˜k,(L)
1072
+ j,−j
1073
+ = ek,˜k,(L)
1074
+ j,−j
1075
+ / �
1076
+ k′ ek,k′,(L)
1077
+ j,−j
1078
+ , γk,˜k,(L)
1079
+ j,j
1080
+ = ek,˜k,(L)
1081
+ j,j
1082
+ / �
1083
+ k′ ek,k′,(L)
1084
+ j,j
1085
+ . Then the rate equations for the macroscopic
1086
+ concentrations of spins directed up are
1087
+ ∂ck
1088
+ ∂t =
1089
+
1090
+ j∈{↑,↓}
1091
+ (−1)δj,↑ck,j
1092
+
1093
+ i
1094
+ Lmax
1095
+
1096
+ L=A
1097
+ Bk(L),i(L)
1098
+
1099
+ αk,(L)
1100
+ j
1101
+
1102
+ f (i; T |k) ,
1103
+ (22)
1104
+ while the rate equations for the concentrations of active and inactive bonds within the layers contain terms such as
1105
+ d
1106
+ dtek,˜k,(L′)
1107
+ j,−j
1108
+ =
1109
+ 1
1110
+ ⟨k(L′)⟩P(k)ck,j
1111
+
1112
+ i
1113
+ Lmax
1114
+
1115
+ L=A
1116
+ Bk(L),i(L)
1117
+
1118
+ αk,(L)
1119
+ j
1120
+ � i(L′)
1121
+
1122
+ y=0
1123
+ Bi(L′),y
1124
+
1125
+ βk,˜k,(L′)
1126
+ j,−j
1127
+
1128
+ (−y)f (i; T |k) + . . .
1129
+ (23)
1130
+
1131
+ 14
1132
+ d
1133
+ dtek,˜k,(L′)
1134
+ j,j
1135
+ =
1136
+ 1
1137
+ ⟨k(L′)⟩P(k)ck,j
1138
+
1139
+ i
1140
+ Lmax
1141
+
1142
+ L=A
1143
+ Bk(L),i(L)
1144
+
1145
+ αk,(L)
1146
+ j
1147
+ � k(L′)−i(L′)
1148
+
1149
+ z=0
1150
+ Bk(L′)−i(L′),z
1151
+
1152
+ γk,˜k,(L′)
1153
+ j,j
1154
+
1155
+ (−z)f (i; T |k) + . . .
1156
+ (24)
1157
+ It can be seen that Eq. (22) resembles Eq. (10) in the homogeneous PA. Concerning the equations for the concentrations
1158
+ of bonds, e.g., Eq. (23) states that a flip of the spin with direction j in node with multidegree k, which has i(L′)
1159
+ active bonds attached within the layer G(L′), out of which y bonds point at nodes with multidegrees ˜k, decreases the
1160
+ concentration ek,˜k,(L′)
1161
+ j,−j
1162
+ by y/
1163
+
1164
+ N⟨k(L′)⟩
1165
+
1166
+ ; such a flip occurs with probability P(k)ck,jf (i; T |k) within a time interval
1167
+ 1/N; and the final input to the rate equation (23) is obtained by averaging the above-mentioned change over the
1168
+ probability distributions Bk(L′),i(L′)
1169
+
1170
+ αk,(L)
1171
+ j
1172
+
1173
+ for i(L′) and Bi(L′),y
1174
+
1175
+ βk,˜k,(L′)
1176
+ j,−j
1177
+
1178
+ for y; etc.
1179
+ In the case of the q-neighbor Ising model on MNs with partial overlap of nodes and with two layers in the form
1180
+ of RRGs, with the multidegree distribution P (k) given by Eq. (1), there are three classes of nodes with k = (K, 0),
1181
+ k = (0, K) and k = (K, K), and two layers G(L), L = A, B. Taking into account the symmetry of the model under
1182
+ study and general symmetry conditions for the concentrations ek,˜k,(L)
1183
+ j,˜j
1184
+ the solutions of the system of equations (22 - 24)
1185
+ can be constrained to a 12-dimensional subspace c(K,0) = c(0,K), e(K,0),(K,0),(A)
1186
+ j
1187
+ ,
1188
+ j′
1189
+ = e(K,0),(K,0),(A)
1190
+ j′
1191
+ ,
1192
+ j
1193
+ = e(0,K),(0,K),(B)
1194
+ j
1195
+ ,
1196
+ j′
1197
+ =
1198
+ e(0,K),(0,K),(B)
1199
+ j′
1200
+ ,
1201
+ j
1202
+ ≡ e(K,0),(K,0)
1203
+ j
1204
+ ,
1205
+ j′ , e(K,0),(K,K),(A)
1206
+ j
1207
+ ,
1208
+ j′
1209
+ = e(K,K),(K,0),(A)
1210
+ j′
1211
+ ,
1212
+ j
1213
+ = e(0,K),(K,K),(B)
1214
+ j
1215
+ ,
1216
+ j′
1217
+ = e(K,K),(0,K),(B)
1218
+ j′
1219
+ ,
1220
+ j
1221
+ ≡ e(K,0),(K,K)
1222
+ j
1223
+ ,
1224
+ j′ ,
1225
+ e(K,K),(K,K),(A)
1226
+ j
1227
+ ,
1228
+ j′
1229
+ = e(K,K),(K,K),(A)
1230
+ j′
1231
+ ,
1232
+ j
1233
+ = e(K,K),(K,K),(B)
1234
+ j
1235
+ ,
1236
+ j′
1237
+ = e(K,K),(K,K),(B)
1238
+ j′
1239
+ ,
1240
+ j
1241
+ ≡ e(K,K),(K,K)
1242
+ j
1243
+ ,
1244
+ j′
1245
+ , j, j′ ∈ {↓, ↑}. Thus, as in
1246
+ Ref. [15], there are effectively only two classes of agents located in nodes with k = (K, 0) and k = (K, K), differing
1247
+ by the spin-flip rates (6). Besides, the distributions of the number of links pointing at nodes belonging to each class
1248
+ given that these links are active or inactive are fully determined by the conditional probabilities βk,k
1249
+ j,−j, γk,k
1250
+ j,j for the
1251
+ links within each class. Taking this into account and performing summations in Eq. (22 - 24) as in Ref. [24] the
1252
+ following system of equations for the macroscopic quantities is obtained in the fully heterogeneous PA for the model
1253
+ under study,
1254
+ dc(K,0)
1255
+ dt
1256
+ =
1257
+
1258
+ 1 − c(K,0)
1259
+
1260
+ R
1261
+
1262
+ α(K,0)
1263
+ ↓ ; T, q
1264
+
1265
+ − c(K,0)R
1266
+
1267
+ α(K,0)
1268
+ ↑ ; T, q
1269
+
1270
+ (25)
1271
+ dc(K,K)
1272
+ dt
1273
+ =
1274
+
1275
+ 1 − c(K,K)
1276
+ � �
1277
+ R
1278
+
1279
+ α(K,K)
1280
+
1281
+ ; T, q
1282
+ ��2
1283
+ − c(K,K)
1284
+
1285
+ R
1286
+
1287
+ α(K,K)
1288
+
1289
+ ; T, q
1290
+ ��2
1291
+ (26)
1292
+ d
1293
+ dte(K,0),(K,0)
1294
+
1295
+ ,
1296
+
1297
+ = −2(1 − r)
1298
+ K
1299
+ c(K,0)γ(K,0),(K,0)
1300
+
1301
+ ,
1302
+
1303
+
1304
+ KR
1305
+
1306
+ α(K,0)
1307
+ ↑ ; T, q
1308
+
1309
+ − S
1310
+
1311
+ α(K,0)
1312
+ ↑ ; T, K, q
1313
+ ��
1314
+ + 2(1 − r)
1315
+ K
1316
+
1317
+ 1 − c(K,0)
1318
+
1319
+ β(K,0),(K,0)
1320
+
1321
+ ,
1322
+ ↑ S
1323
+
1324
+ α(K,0)
1325
+ ↓ ; T, K, q
1326
+
1327
+ (27)
1328
+ d
1329
+ dte(K,0),(K,0)
1330
+
1331
+ ,
1332
+
1333
+ = 2(1 − r)
1334
+ K
1335
+ c(K,0)β(K,0),(K,0)
1336
+
1337
+ ,
1338
+ ↓ S
1339
+
1340
+ α(K,0)
1341
+ ↑ ; T, K, q
1342
+
1343
+ − 2(1 − r)
1344
+ K
1345
+
1346
+ 1 − c(K,0)
1347
+
1348
+ γ(K,0),(K,0)
1349
+
1350
+ ,
1351
+
1352
+
1353
+ KR
1354
+
1355
+ α(K,0)
1356
+ ↓ ; T, q
1357
+
1358
+ − S
1359
+
1360
+ α(K,0)
1361
+ ↓ ; T, K, q
1362
+ ��
1363
+ (28)
1364
+ d
1365
+ dte(K,K),(K,K)
1366
+
1367
+ ,
1368
+
1369
+ = −2r
1370
+ K c(K,K)γ(K,K),(K,K)
1371
+
1372
+ ,
1373
+
1374
+
1375
+ KR
1376
+
1377
+ α(K,K)
1378
+
1379
+ ; T, q
1380
+
1381
+ − S
1382
+
1383
+ α(K,K)
1384
+
1385
+ ; T, K, q
1386
+ ��
1387
+ R
1388
+
1389
+ α(K,K)
1390
+
1391
+ ; T, q
1392
+
1393
+ + 2r
1394
+ K
1395
+
1396
+ 1 − c(K,K)
1397
+
1398
+ β(K,K),(K,K)
1399
+
1400
+ ,
1401
+
1402
+ S
1403
+
1404
+ α(K,K)
1405
+
1406
+ ; T, K, q
1407
+
1408
+ R
1409
+
1410
+ α(K,K)
1411
+
1412
+ ; T, K, q
1413
+
1414
+ (29)
1415
+ d
1416
+ dte(K,K),(K,K)
1417
+
1418
+ ,
1419
+
1420
+ = 2r
1421
+ K c(K,K)β(K,K),(K,K)
1422
+
1423
+ ,
1424
+
1425
+ S
1426
+
1427
+ α(K,K)
1428
+
1429
+ ; T, K, q
1430
+
1431
+ R
1432
+
1433
+ α(K,K)
1434
+
1435
+ ; T, K, q
1436
+
1437
+ − 2r
1438
+ K
1439
+
1440
+ 1 − c(K,K)
1441
+
1442
+ γ(K,K),(K,K)
1443
+
1444
+ ,
1445
+
1446
+
1447
+ KR
1448
+
1449
+ α(K,K)
1450
+
1451
+ ; T, q
1452
+
1453
+ − S
1454
+
1455
+ α(K,K)
1456
+
1457
+ ; T, K, q
1458
+ ��
1459
+ R
1460
+
1461
+ α(K,K)
1462
+
1463
+ ; T, q
1464
+
1465
+ (30)
1466
+ d
1467
+ dte(K,0),(K,0)
1468
+
1469
+ ,
1470
+
1471
+ = 1 − r
1472
+ K
1473
+ c(0,0)
1474
+
1475
+ −β(K,0),(K,0)
1476
+
1477
+ ,
1478
+ ↓ S
1479
+
1480
+ α(K,0)
1481
+ ↑ ; T, K, q
1482
+
1483
+ + γ(K,0),(K,0)
1484
+
1485
+ ,
1486
+
1487
+
1488
+ KR
1489
+
1490
+ α(K,0)
1491
+ ↑ ; T, q
1492
+
1493
+ − S
1494
+
1495
+ α(K,0)
1496
+ ↑ ; T, K, q
1497
+ ���
1498
+ + 1 − r
1499
+ K
1500
+
1501
+ 1 − c(K,0)
1502
+ � �
1503
+ γ(K,0),(K,0)
1504
+
1505
+ ,
1506
+
1507
+
1508
+ KR
1509
+
1510
+ α(K,0)
1511
+ ↓ ; T, q
1512
+
1513
+ − S
1514
+
1515
+ α(K,0)
1516
+ ↓ ; T, K, q
1517
+ ��
1518
+ − β(K,0),(K,0)
1519
+
1520
+ ,
1521
+ ↑ S
1522
+
1523
+ α(K,0)
1524
+ ↓ ; T, K, q
1525
+ ��
1526
+ (31)
1527
+ d
1528
+ dte(K,K),(K,K)
1529
+
1530
+ ,
1531
+
1532
+ = r
1533
+ K c(K,K)
1534
+
1535
+ −β(K,K),(K,K)
1536
+
1537
+ ,
1538
+
1539
+ S
1540
+
1541
+ α(K,K)
1542
+
1543
+ ; T, K, q
1544
+
1545
+
1546
+ 15
1547
+ + γ(K,K),(K,K)
1548
+
1549
+ ,
1550
+
1551
+
1552
+ KR
1553
+
1554
+ α(K,K)
1555
+
1556
+ ; T, q
1557
+
1558
+ − S
1559
+
1560
+ α(K,K)
1561
+
1562
+ ; T, K, q
1563
+ ���
1564
+ R
1565
+
1566
+ α(K,K)
1567
+
1568
+ ; T, q
1569
+
1570
+ + r
1571
+ K
1572
+
1573
+ 1 − c(K,K)
1574
+ � �
1575
+ γ(K,K),(K,K)
1576
+
1577
+ ,
1578
+
1579
+
1580
+ KR
1581
+
1582
+ α(K,K)
1583
+
1584
+ ; T, q
1585
+
1586
+ − S
1587
+
1588
+ α(K,K)
1589
+
1590
+ ; T, K, q
1591
+ ��
1592
+ − β(K,K),(K,K)
1593
+
1594
+ ,
1595
+
1596
+ S
1597
+
1598
+ α(K,K)
1599
+
1600
+ ; T, K, q
1601
+ ��
1602
+ R
1603
+
1604
+ α(K,K)
1605
+
1606
+ ; T, q
1607
+
1608
+ (32)
1609
+ d
1610
+ dte(K,0),(K,K)
1611
+
1612
+ ,
1613
+
1614
+ = −1 − r
1615
+ K
1616
+ c(K,0)
1617
+
1618
+ 1 − γ(K,0),(K,0)
1619
+
1620
+ ,
1621
+
1622
+ � �
1623
+ KR
1624
+
1625
+ α(K,0)
1626
+ ↑ ; T, q
1627
+
1628
+ − S
1629
+
1630
+ α(K,0)
1631
+ ↑ ; T, K, q
1632
+ ��
1633
+ + 1 − r
1634
+ K
1635
+
1636
+ 1 − c(K,0)
1637
+ � �
1638
+ 1 − β(K,0),(K,0)
1639
+
1640
+ ,
1641
+
1642
+
1643
+ S
1644
+
1645
+ α(K,0)
1646
+ ↓ ; T, K, q
1647
+
1648
+ − r
1649
+ K c(K,K)
1650
+
1651
+ 1 − γ(K,K),(K,K)
1652
+
1653
+ ,
1654
+
1655
+ � �
1656
+ KR
1657
+
1658
+ α(K,K)
1659
+
1660
+ ; T, q
1661
+
1662
+ − S
1663
+
1664
+ α(K,K)
1665
+
1666
+ ; T, K, q
1667
+ ��
1668
+ R
1669
+
1670
+ α(K,K)
1671
+
1672
+ ; T, q
1673
+
1674
+ + r
1675
+ K
1676
+
1677
+ 1 − c(K,K)
1678
+ � �
1679
+ 1 − β(K,K),(K,K)
1680
+
1681
+ ,
1682
+
1683
+
1684
+ S
1685
+
1686
+ α(K,K)
1687
+
1688
+ ; T, K, q
1689
+
1690
+ R
1691
+
1692
+ α(K,K)
1693
+
1694
+ ; T, q
1695
+
1696
+ (33)
1697
+ d
1698
+ dte(K,0),(K,K)
1699
+
1700
+ ,
1701
+
1702
+ = 1 − r
1703
+ K
1704
+ c(K,0)
1705
+
1706
+ 1 − β(K,0),(K,0)
1707
+
1708
+ ,
1709
+
1710
+
1711
+ S
1712
+
1713
+ α(K,0)
1714
+ ↑ ; T, K, q
1715
+
1716
+ − 1 − r
1717
+ K
1718
+
1719
+ 1 − c(K,0)
1720
+ � �
1721
+ 1 − γ(K,0),(K,0)
1722
+
1723
+ ,
1724
+
1725
+ � �
1726
+ KR
1727
+
1728
+ α(K,0)
1729
+ ↓ ; T, q
1730
+
1731
+ − S
1732
+
1733
+ α(K,0)
1734
+ ↓ ; T, K, q
1735
+ ��
1736
+ + r
1737
+ K c(K,K)
1738
+
1739
+ 1 − β(K,K),(K,K)
1740
+
1741
+ ,
1742
+
1743
+
1744
+ S
1745
+
1746
+ α(K,K)
1747
+
1748
+ ; T, K, q
1749
+
1750
+ R
1751
+
1752
+ α(K,K)
1753
+
1754
+ ; T, q
1755
+
1756
+ − r
1757
+ K
1758
+
1759
+ 1 − c(K,K)
1760
+ � �
1761
+ 1 − γ(K,K),(K,K)
1762
+
1763
+ ,
1764
+
1765
+ � �
1766
+ KR
1767
+
1768
+ α(K,K)
1769
+
1770
+ ; T, q
1771
+
1772
+ − S
1773
+
1774
+ α(K,K)
1775
+
1776
+ ; T, K, q
1777
+ ��
1778
+ R
1779
+
1780
+ α(K,K)
1781
+
1782
+ ; T, q
1783
+
1784
+ (34)
1785
+ d
1786
+ dte(K,0),(K,K)
1787
+
1788
+ ,
1789
+
1790
+ = −1 − r
1791
+ K
1792
+ c(K,0)
1793
+
1794
+ 1 − β(K,0),(K,0)
1795
+
1796
+ ,
1797
+
1798
+
1799
+ S
1800
+
1801
+ α(K,0)
1802
+ ↑ ; T, K, q
1803
+
1804
+ + 1 − r
1805
+ K
1806
+
1807
+ 1 − c(K,0)
1808
+ � �
1809
+ 1 − γ(K,0),(K,0)
1810
+
1811
+ ,
1812
+
1813
+ � �
1814
+ KR
1815
+
1816
+ α(K,0)
1817
+ ↓ ; T, q
1818
+
1819
+ − S
1820
+
1821
+ α(K,0)
1822
+ ↓ ; T, K, q
1823
+ ��
1824
+ + r
1825
+ K c(K,K)
1826
+
1827
+ 1 − γ(K,K),(K,K)
1828
+
1829
+ ,
1830
+
1831
+ � �
1832
+ KR
1833
+
1834
+ α(K,K)
1835
+
1836
+ ; T, q
1837
+
1838
+ − S
1839
+
1840
+ α(K,K)
1841
+
1842
+ ; T, K, q
1843
+ ��
1844
+ R
1845
+
1846
+ α(K,K)
1847
+
1848
+ ; T, q
1849
+
1850
+ − r
1851
+ K
1852
+
1853
+ 1 − c(K,K)
1854
+ � �
1855
+ 1 − β(K,K),(K,K)
1856
+
1857
+ ,
1858
+
1859
+
1860
+ S
1861
+
1862
+ α(K,K)
1863
+
1864
+ ; T, K, q
1865
+
1866
+ R
1867
+
1868
+ α(K,K)
1869
+
1870
+ ; T, q
1871
+
1872
+ (35)
1873
+ d
1874
+ dte(K,0),(K,K)
1875
+
1876
+ ,
1877
+
1878
+ = 1 − r
1879
+ K
1880
+ c(K,0)
1881
+
1882
+ 1 − γ(K,0),(K,0)
1883
+
1884
+ ,
1885
+
1886
+ � �
1887
+ KR
1888
+
1889
+ α(K,0)
1890
+ ↑ ; T, q
1891
+
1892
+ − S
1893
+
1894
+ α(K,0)
1895
+ ↑ ; T, K, q
1896
+ ��
1897
+ − 1 − r
1898
+ K
1899
+
1900
+ 1 − c(K,0)
1901
+ � �
1902
+ 1 − β(K,0),(K,0)
1903
+
1904
+ ,
1905
+
1906
+
1907
+ S
1908
+
1909
+ α(K,0)
1910
+ ↓ ; T, K, q
1911
+
1912
+ − r
1913
+ K c(K,K)
1914
+
1915
+ 1 − β(K,K),(K,K)
1916
+
1917
+ ,
1918
+
1919
+
1920
+ S
1921
+
1922
+ α(K,K)
1923
+
1924
+ ; T, K, q
1925
+
1926
+ R
1927
+
1928
+ α(K,K)
1929
+ ��
1930
+ ; T, q
1931
+
1932
+ + r
1933
+ K
1934
+
1935
+ 1 − c(K,K)
1936
+ � �
1937
+ 1 − γ(K,K),(K,K)
1938
+
1939
+ ,
1940
+
1941
+ � �
1942
+ KR
1943
+
1944
+ α(K,K)
1945
+
1946
+ ; T, q
1947
+
1948
+ − S
1949
+
1950
+ α(K,K)
1951
+
1952
+ ; T, K, q
1953
+ ��
1954
+ R
1955
+
1956
+ α(K,K)
1957
+
1958
+ ; T, q
1959
+
1960
+ ,
1961
+ (36)
1962
+ where the significant conditional probabilities are
1963
+ α(K,0)
1964
+
1965
+ =
1966
+ e(K,0),(K,0)
1967
+
1968
+ ,
1969
+
1970
+ + e(K,0),(K,K)
1971
+
1972
+ ,
1973
+
1974
+ e(K,0),(K,0)
1975
+
1976
+ ,
1977
+
1978
+ + e(K,0),(K,K)
1979
+
1980
+ ,
1981
+
1982
+ + e(K,0),(K,0)
1983
+
1984
+ ,
1985
+
1986
+ + e(K,0),(K,K)
1987
+
1988
+ ,
1989
+
1990
+ α(K,0)
1991
+
1992
+ =
1993
+ e(K,0),(K,0)
1994
+
1995
+ ,
1996
+
1997
+ + e(K,0),(K,K)
1998
+
1999
+ ,
2000
+
2001
+ e(K,0),(K,0)
2002
+
2003
+ ,
2004
+
2005
+ + e(K,0),(K,K)
2006
+
2007
+ ,
2008
+
2009
+ + e(K,0),(K,0)
2010
+
2011
+ ,
2012
+
2013
+ + e(K,0),(K,K)
2014
+
2015
+ ,
2016
+
2017
+ α(K,K)
2018
+
2019
+ =
2020
+ e(K,K),(K,K)
2021
+
2022
+ ,
2023
+
2024
+ + e(K,K),(K,0)
2025
+
2026
+ ,
2027
+
2028
+ e(K,K),(K,K)
2029
+
2030
+ ,
2031
+
2032
+ + e(K,K),(K,0)
2033
+
2034
+ ,
2035
+
2036
+ + e(K,K),(K,K)
2037
+
2038
+ ,
2039
+
2040
+ + e(K,K),(K,0)
2041
+
2042
+ ,
2043
+
2044
+ α(K,K)
2045
+
2046
+ =
2047
+ e(K,K),(K,K)
2048
+
2049
+ ,
2050
+
2051
+ + e(K,K),(K,0)
2052
+
2053
+ ,
2054
+
2055
+ e(K,K),(K,K)
2056
+
2057
+ ,
2058
+
2059
+ + e(K,K),(K,0)
2060
+
2061
+ ,
2062
+
2063
+ + e(K,K),(K,K)
2064
+
2065
+ ,
2066
+
2067
+ + e(K,K),(K,0)
2068
+
2069
+ ,
2070
+
2071
+ ,
2072
+ (37)
2073
+ β(K,0),(K,0)
2074
+
2075
+ ,
2076
+ ↑ =
2077
+ e(K,0),(K,0)
2078
+
2079
+ ,
2080
+
2081
+ e(K,0),(K,0)
2082
+
2083
+ ,
2084
+
2085
+ + e(K,0),(K,K)
2086
+
2087
+ ,
2088
+
2089
+ , β(K,0),(K,0)
2090
+
2091
+ ,
2092
+ ↓ =
2093
+ e(K,0),(K,0)
2094
+
2095
+ ,
2096
+
2097
+ e(K,0),(K,0)
2098
+
2099
+ ,
2100
+
2101
+ + e(K,0),(K,K)
2102
+
2103
+ ,
2104
+
2105
+
2106
+ 16
2107
+ 2.1
2108
+ 2.2
2109
+ 2.3
2110
+ 2.4
2111
+ 2.5
2112
+ 2.6
2113
+ 2.7
2114
+ T
2115
+ −1.0
2116
+ −0.5
2117
+ 0.0
2118
+ 0.5
2119
+ 1.0
2120
+ m
2121
+ FIG. 5. The curves show magnetization m vs. temperature T obtained from the homogeneous PA (solid lines) and from the
2122
+ heterogeneous PA (symbols) for q = 4, K = 20 and r = 0.1, 0.15, 0.2 (from left to right).
2123
+ β(K,K),(K,K)
2124
+
2125
+ ,
2126
+
2127
+ =
2128
+ e(K,K),(K,K)
2129
+
2130
+ ,
2131
+
2132
+ e(K,K),(K,K)
2133
+
2134
+ ,
2135
+
2136
+ + e(K,K),(K,0)
2137
+
2138
+ ,
2139
+
2140
+ , β(K,K),(K,K)
2141
+
2142
+ ,
2143
+
2144
+ =
2145
+ e(K,K),(K,K)
2146
+
2147
+ ,
2148
+
2149
+ e(K,K),(K,K)
2150
+
2151
+ ,
2152
+
2153
+ + e(K,K),(K,0)
2154
+
2155
+ ,
2156
+
2157
+ ,
2158
+ (38)
2159
+ γ(K,0),(K,0)
2160
+
2161
+ ,
2162
+ ↓ =
2163
+ e(K,0),(K,0)
2164
+
2165
+ ,
2166
+
2167
+ e(K,0),(K,0)
2168
+
2169
+ ,
2170
+
2171
+ + e(K,0),(K,K)
2172
+
2173
+ ,
2174
+
2175
+ , γ(K,0),(K,0)
2176
+
2177
+ ,
2178
+ ↑ =
2179
+ e(K,0),(K,0)
2180
+
2181
+ ,
2182
+
2183
+ e(K,0),(K,0)
2184
+
2185
+ ,
2186
+
2187
+ + e(K,0),(K,K)
2188
+
2189
+ ,
2190
+
2191
+ γ(K,K),(K,K)
2192
+
2193
+ ,
2194
+
2195
+ =
2196
+ e(K,K),(K,K)
2197
+
2198
+ ,
2199
+
2200
+ e(K,K),(K,K)
2201
+
2202
+ ,
2203
+
2204
+ + e(K,K),(K,0)
2205
+
2206
+ ,
2207
+
2208
+ , γ(K,K),(K,K)
2209
+
2210
+ ,
2211
+
2212
+ =
2213
+ e(K,K),(K,K)
2214
+
2215
+ ,
2216
+
2217
+ e(K,K),(K,K)
2218
+
2219
+ ,
2220
+
2221
+ + e(K,K),(K,0)
2222
+
2223
+ ,
2224
+
2225
+ .
2226
+ (39)
2227
+ Concentration ˜c of spins directed up within each layer and concentration c of spins directed up in the MN are defined
2228
+ in the same way as in Sec. III A. Natural initial conditions for the system of equations (25 - 36) are c(K,0)(0) =
2229
+ c(K,K)(0) = ρ0, e(K,0),(K,0)
2230
+
2231
+ ,
2232
+ ↑ (0) = (1 − r)2ρ2
2233
+ 0, e(K,0),(K,0)
2234
+
2235
+ ,
2236
+ ↓ (0) = (1 − r)2ρ0(1 − ρ0), e(K,0),(K,0)
2237
+
2238
+ ,
2239
+ ↓ (0) = (1 − r)2(1 − ρ0)2,
2240
+ e(K,K),(K,K)
2241
+
2242
+ ,
2243
+
2244
+ (0) = r2ρ2
2245
+ 0, e(K,K),(K,K)
2246
+
2247
+ ,
2248
+
2249
+ (0) = r2ρ0(1 − ρ0), e(K,K),(K,K)
2250
+
2251
+ ,
2252
+
2253
+ (0) = r2(1 − ρ0)2, e(K,0),(K,K)
2254
+
2255
+ ,
2256
+
2257
+ (0) = (1 − r)rρ2
2258
+ 0,
2259
+ e(K,0),(K,K)
2260
+
2261
+ ,
2262
+
2263
+ (0) = (1 − r)r(1 − ρ0)2, e(K,0),(K,K)
2264
+
2265
+ ,
2266
+
2267
+ (0) = (1 − r)2ρ0(1 − ρ0) = e(K,0),(K,0)
2268
+
2269
+ ,
2270
+ ↑ (0) = (1 − r)rρ0(1 − ρ0), where
2271
+ ρ0 can be chosen arbitrarily.
2272
+ As mentioned in Sec. III A the magnetization curves obtained from the fully heterogeneous PA are practically
2273
+ indistinguishable from those obtained from the homogeneous PA. This is illustrated by examples in Fig. 5.
2274
+ B.
2275
+ AMEs-based heterogeneous pair approximation
2276
+ The AMEs-based heterogeneous PA again uses the assumption that the probability that a spin directed up or down
2277
+ in a node with multidegree k has a given number of neighboring spins directed up obeys a binomial distribution; for
2278
+ models on MNs this assumption is made for each layer separately, and the related binomial distributions are assumed
2279
+ to be independent. Hence, in contrast with the homogeneous PA, in the AMEs-based heterogeneous PA it is taken
2280
+ into account that for a node with multidegree k occupied by a spin with downward or upward direction the respective
2281
+ probabilities ϑ(L)
2282
+ k , η(L)
2283
+ k
2284
+ that a randomly chosen neighboring node within the layer G(L) is occupied by a spin directed
2285
+ upward can depend on k. However, in contrast with the fully heterogeneous PA developed in Appendix A, all active
2286
+ or inactive edges attached to a given node within a given layer are treated in the same way and obey common binomial
2287
+ distributions [28, 29]. As mentioned in Sec. III B, these two assumptions should make the AMEs-based heterogeneous
2288
+ PA more accurate than the homogeneous PA and less accurate than the fully heterogeneous PA. Eventually, in the
2289
+ AMEs-based heterogeneous PA the time-dependent macroscopic quantities are the density ck of spins directed up in
2290
+ nodes with multidegree k as well as the above-mentioned probabilities ϑ(L)
2291
+ k , η(L)
2292
+ k .
2293
+ In terms of the densities ck,m and sk,m used in the AMEs, Eq. (19), (20) the above-mentioned macroscopic
2294
+ quantities can be expressed as ck = �
2295
+ m ck,m = 1 − �
2296
+ m sk,m, ϑ(L)
2297
+ k
2298
+ = �
2299
+ m m(L)sk,m/
2300
+
2301
+ k(L) (1 − ck)
2302
+
2303
+ , η(L)
2304
+ k
2305
+ =
2306
+
2307
+ 17
2308
+
2309
+ m m(L)ck,m/
2310
+
2311
+ k(L)ck
2312
+
2313
+ .
2314
+ Then, the core approximation for the AMEs-based heterogeneous PA can be made, ac-
2315
+ cording to which sk,m ≈ (1 − ck) �Lmax
2316
+ L=A Bk(L),m(L)
2317
+
2318
+ ϑ(L)
2319
+ k
2320
+
2321
+ , ck,m ≈ ck
2322
+ �Lmax
2323
+ L=A Bk(L),m(L)
2324
+
2325
+ η(L)
2326
+ k
2327
+
2328
+ . The latter approxi-
2329
+ mation should be made in Eq. (19), (20) as well as in the definitions of the average rates β(L)
2330
+ s
2331
+ , . . . , γ(L)
2332
+ i
2333
+ , so that,
2334
+ e.g., β(L′)
2335
+ s
2336
+ ≈ ¯β(L′)
2337
+ s
2338
+ =
2339
+
2340
+ (1 − ck) �
2341
+ m
2342
+
2343
+ k(L′) − m(L′)�
2344
+ Fk,m
2345
+ �Lmax
2346
+ L=A Bk(L),m(L)
2347
+
2348
+ ϑ(L)
2349
+ k
2350
+ � �
2351
+ /
2352
+
2353
+ (1 − ck) k(L′) �
2354
+ 1 − ϑ(L′)
2355
+ k
2356
+ � �
2357
+ , etc.
2358
+ Differentiating the definitions of ck, ϑ(L)
2359
+ k , η(L)
2360
+ k
2361
+ with respect to time and using Eq. (19), (20) with the above-mentioned
2362
+ approximations yields the following system of equations for the time dependence of the macroscopic quantities in the
2363
+ heterogeneous PA,
2364
+ dck
2365
+ dt = −ck
2366
+
2367
+ m
2368
+ Rk,m
2369
+ Lmax
2370
+
2371
+ L=A
2372
+ Bk(L),m(L)
2373
+
2374
+ η(L)
2375
+ k
2376
+
2377
+ + (1 − ck)
2378
+
2379
+ m
2380
+ Fk,m
2381
+ Lmax
2382
+
2383
+ L=A
2384
+ Bk(L),m(L)
2385
+
2386
+ ϑ(L)
2387
+ k
2388
+
2389
+ ,
2390
+ (40)
2391
+ dϑ(L′)
2392
+ k
2393
+ dt
2394
+ =
2395
+
2396
+ m
2397
+
2398
+ ϑ(L′)
2399
+ k
2400
+ − m(L′)
2401
+ k(L′)
2402
+ � �
2403
+ Fk,m
2404
+ Lmax
2405
+
2406
+ L=A
2407
+ Bk(L),m(L)
2408
+
2409
+ ϑ(L)
2410
+ k
2411
+
2412
+
2413
+ ck
2414
+ 1 − ck
2415
+ Rk,m
2416
+ Lmax
2417
+
2418
+ L=A
2419
+ Bk(L),m(L)
2420
+
2421
+ η(L)
2422
+ k
2423
+ ��
2424
+ +¯β(L′)
2425
+ s
2426
+
2427
+ 1 − ϑ(L′)
2428
+ k
2429
+
2430
+ − ¯γ(L′)
2431
+ s
2432
+ ϑ(L′)
2433
+ k
2434
+ ,
2435
+ (41)
2436
+ dη(L′)
2437
+ k
2438
+ dt
2439
+ =
2440
+
2441
+ m
2442
+
2443
+ η(L′)
2444
+ k
2445
+ − m(L′)
2446
+ k(L′)
2447
+ � �
2448
+ Rk,m
2449
+ Lmax
2450
+
2451
+ L=A
2452
+ Bk(L),m(L)
2453
+
2454
+ η(L)
2455
+ k
2456
+
2457
+ − 1 − ck
2458
+ ck
2459
+ Fk,m
2460
+ Lmax
2461
+
2462
+ L=A
2463
+ Bk(L),m(L)
2464
+
2465
+ ϑ(L)
2466
+ k
2467
+ ��
2468
+ +¯β(L′)
2469
+ i
2470
+
2471
+ 1 − η(L′)
2472
+ k
2473
+
2474
+ − ¯γ(L′)
2475
+ i
2476
+ η(L′)
2477
+ k
2478
+ ,
2479
+ (42)
2480
+ where L′ = A, B . . . Lmax. The above equations are very similar to those obtained in the AMEs-based heterogeneous
2481
+ PA for the spin models on (monoplex) networks [28, 29]; in particular, terms containing β(L)
2482
+ s
2483
+ , . . . , γ(L)
2484
+ i
2485
+ with L ̸= L′
2486
+ do not occur in Eq. (41), (42) for ϑ(L′)
2487
+ k
2488
+ , η(L′)
2489
+ k
2490
+ since the respective terms from Eq. (19), (20) sum up to zero in the
2491
+ derivation. It should be mentioned that the AMEs can also be a starting point to obtain the homogeneous PA from
2492
+ Sec. III A by assuming that the probability that a spin directed down has within the layer G(L) a neighboring spin
2493
+ directed up does not depend on k and can be expressed as the average θ(L)
2494
+
2495
+ = ⟨�
2496
+ m m(L)sk,m⟩/⟨k(L) (1 − ck)⟩ [28, 29].
2497
+ In the case of the q-neighbor Ising model on MNs with partial overlap of nodes and with layers in the form of
2498
+ RRGs, with the multidegree distribution P (k) given by Eq. (1), there are three classes of nodes with k = (K, 0),
2499
+ k = (0, K) and k = (K, K), and two layers G(L), L = A, B, thus the system of equations (40-42) is 11-dimensional.
2500
+ Due to the symmetry of the model solutions of these equations should be constrained to a subspace c(0,K) = c(K,0),
2501
+ ϑ(A)
2502
+ (K,0) = ϑ(B)
2503
+ (0,K) ≡ ϑ(0,K), η(A)
2504
+ (K,0) = η(B)
2505
+ (0,K) ≡ η(0,K), ϑ(A)
2506
+ (K,K) = ϑ(B)
2507
+ (K,K) ≡ ϑ(K,K), η(A)
2508
+ (K,K) = η(B)
2509
+ (K,K) ≡ η(K,K) which
2510
+ reduces the number of equations to six. Performing summations in Eq. (40-42) as in Ref. [24] the following system of
2511
+ equations for the macroscopic quantities is obtained in the AMEs-based heterogeneous PA for the model under study,
2512
+ dc(K,0)
2513
+ dt
2514
+ = −c(K,0)R
2515
+
2516
+ 1 − η(K,0); T, q
2517
+
2518
+ +
2519
+
2520
+ 1 − c(K,0)
2521
+
2522
+ R
2523
+
2524
+ ϑ(K,0); T, q
2525
+
2526
+ ,
2527
+ (43)
2528
+ dϑ(K,0)
2529
+ dt
2530
+ = ϑ(K,0)
2531
+
2532
+ R
2533
+
2534
+ ϑ(K,0); T, q
2535
+
2536
+
2537
+ c(K,0)
2538
+ 1 − c(K,0)
2539
+ R
2540
+
2541
+ 1 − η(K,0); T, q
2542
+ ��
2543
+ − 1
2544
+ K
2545
+
2546
+ S
2547
+
2548
+ ϑ(K,0); T, K, q
2549
+
2550
+
2551
+ c(K,0)
2552
+ 1 − c(K,0)
2553
+
2554
+ KR
2555
+
2556
+ 1 − η(K,0); T, q
2557
+
2558
+ − S
2559
+
2560
+ 1 − η(K,0); T, K, q
2561
+ ���
2562
+ + ¯βs
2563
+
2564
+ 1 − ϑ(K,0)
2565
+
2566
+ − ¯γsϑ(K,0),
2567
+ (44)
2568
+ dη(K,0)
2569
+ dt
2570
+ = η(K,0)
2571
+
2572
+ R
2573
+
2574
+ 1 − η(K,0); T, q
2575
+
2576
+ − 1 − c(K,0)
2577
+ c(K,0)
2578
+ R
2579
+
2580
+ ϑ(K,0); T, q
2581
+ ��
2582
+ − 1
2583
+ K
2584
+ ��
2585
+ KR
2586
+
2587
+ 1 − η(K,0); T, q
2588
+
2589
+ − S
2590
+
2591
+ 1 − η(K,0); T, K, q
2592
+ ��
2593
+ − 1 − c(K,0)
2594
+ c(K,0)
2595
+ S
2596
+
2597
+ ϑ(K,0); T, K, q
2598
+ ��
2599
+ + ¯βi
2600
+
2601
+ 1 − η(K,0)
2602
+
2603
+ − ¯γiη(K,0),
2604
+ (45)
2605
+ dc(K,K)
2606
+ dt
2607
+ = −c(K,K)
2608
+
2609
+ R
2610
+
2611
+ 1 − η(K,K); T, q
2612
+ ��2 +
2613
+
2614
+ 1 − c(K,K)
2615
+ � �
2616
+ R
2617
+
2618
+ ϑ(K,K); T, q
2619
+ ��2 ,
2620
+ (46)
2621
+ dϑ(K,K)
2622
+ dt
2623
+ = ϑ(K,K)
2624
+ ��
2625
+ R
2626
+
2627
+ ϑ(K,K); T, q
2628
+ ��2 −
2629
+ c(K,K)
2630
+ 1 − c(K,K)
2631
+
2632
+ R
2633
+
2634
+ 1 − η(K,K); T, q
2635
+ ��2
2636
+
2637
+ − 1
2638
+ K
2639
+
2640
+ S
2641
+
2642
+ ϑ(K,K); T, K, q
2643
+
2644
+ R
2645
+
2646
+ ϑ(K,K); T, q
2647
+
2648
+
2649
+ 18
2650
+
2651
+ c(K,K)
2652
+ 1 − c(K,K)
2653
+
2654
+ KR
2655
+
2656
+ 1 − η(K,0); T, q
2657
+
2658
+ − S
2659
+
2660
+ 1 − η(K,0); T, K, q
2661
+ ��
2662
+ R
2663
+
2664
+ 1 − η(K,K); T, q
2665
+ ��
2666
+ + ¯βs
2667
+
2668
+ 1 − ϑ(K,K)
2669
+
2670
+ − ¯γsϑ(K,K),
2671
+ (47)
2672
+ dη(K,K)
2673
+ dt
2674
+ = η(K,K)
2675
+ ��
2676
+ R
2677
+
2678
+ 1 − η(K,K); T, q
2679
+ ��2 − 1 − c(K,K)
2680
+ c(K,K)
2681
+
2682
+ R
2683
+
2684
+ ϑ(K,K); T, q
2685
+ ��2
2686
+
2687
+ − 1
2688
+ K
2689
+ ��
2690
+ KR
2691
+
2692
+ 1 − η(K,0); T, q
2693
+
2694
+ − S
2695
+
2696
+ 1 − η(K,0); T, K, q
2697
+ ��
2698
+ R
2699
+
2700
+ 1 − η(K,K); T, q
2701
+
2702
+ −1 − c(K,K)
2703
+ c(K,K)
2704
+ S
2705
+
2706
+ ϑ(K,K); T, K, q
2707
+
2708
+ R
2709
+
2710
+ ϑ(K,K); T, q
2711
+ ��
2712
+ + ¯βi
2713
+
2714
+ 1 − η(K,K)
2715
+
2716
+ − ¯γiη(K,K),
2717
+ (48)
2718
+ where the average rates are
2719
+ ¯βs =
2720
+ �1 − r
2721
+ 2 − r
2722
+
2723
+ 1 − c(K,0)
2724
+
2725
+ K
2726
+
2727
+ 1 − ϑ(K,0)
2728
+
2729
+ +
2730
+ r
2731
+ 2 − r
2732
+
2733
+ 1 − c(K,K)
2734
+
2735
+ K
2736
+
2737
+ 1 − ϑ(K,K)
2738
+ ��−1
2739
+ ×
2740
+ �1 − r
2741
+ 2 − r
2742
+
2743
+ 1 − c(K,0)
2744
+ � �
2745
+ KR
2746
+
2747
+ ϑ(K,0); T, q
2748
+
2749
+ − S
2750
+
2751
+ ϑ(K,0); T, K, q
2752
+ ��
2753
+ +
2754
+ r
2755
+ 2 − r
2756
+
2757
+ 1 − c(K,K)
2758
+ � �
2759
+ KR
2760
+
2761
+ ϑ(K,K); T, q
2762
+
2763
+ − S
2764
+
2765
+ ϑ(K,K); T, K, , q
2766
+ ��
2767
+ R
2768
+
2769
+ ϑ(K,K); T, q
2770
+ ��
2771
+ ,
2772
+ (49)
2773
+ ¯γs =
2774
+ �1 − r
2775
+ 2 − rc(K,0)K
2776
+
2777
+ 1 − η(K,0)
2778
+
2779
+ +
2780
+ r
2781
+ 2 − rc(K,K)K
2782
+
2783
+ 1 − η(K,K)
2784
+ ��−1
2785
+ ×
2786
+ �1 − r
2787
+ 2 − rc(K,0)S
2788
+
2789
+ 1 − η(K,0); T, K, q
2790
+
2791
+ +
2792
+ r
2793
+ 2 − rc(K,K)S
2794
+
2795
+ 1 − η(K,K); T, K, q
2796
+
2797
+ R
2798
+
2799
+ 1 − η(K,K); T, q
2800
+ ��
2801
+ ,
2802
+ (50)
2803
+ ¯βi =
2804
+ �1 − r
2805
+ 2 − r
2806
+
2807
+ 1 − c(K,0)
2808
+
2809
+ Kϑ(K,0) +
2810
+ r
2811
+ 2 − r
2812
+
2813
+ 1 − c(K,K)
2814
+
2815
+ Kϑ(K,K)
2816
+ �−1
2817
+ ×
2818
+ �1 − r
2819
+ 2 − r
2820
+
2821
+ 1 − c(K,0)
2822
+
2823
+ S
2824
+
2825
+ ϑ(K,0); T, K, q
2826
+
2827
+ +
2828
+ r
2829
+ 2 − r
2830
+
2831
+ 1 − c(K,K)
2832
+
2833
+ S
2834
+
2835
+ ϑ(K,K); T, K, q
2836
+
2837
+ R
2838
+
2839
+ ϑ(K,K); T, q
2840
+ ��
2841
+ ,
2842
+ (51)
2843
+ ¯γi =
2844
+ �1 − r
2845
+ 2 − rc(K,0)Kη(K,0) +
2846
+ r
2847
+ 2 − rc(K,K)Kη(K,K)
2848
+ �−1
2849
+ ×
2850
+ �1 − r
2851
+ 2 − rc(K,0)
2852
+
2853
+ KR
2854
+
2855
+ 1 − η(K,0); T, q
2856
+
2857
+ − S
2858
+
2859
+ 1 − η(K,0); T, K, q
2860
+ ��
2861
+ +
2862
+ r
2863
+ 2 − rc(K,K)
2864
+
2865
+ KR
2866
+
2867
+ 1 − η(K,K); T, q
2868
+
2869
+ − S
2870
+
2871
+ 1 − η(K,K); T, K, q
2872
+ ��
2873
+ R
2874
+
2875
+ 1 − η(K,K); T, q
2876
+ ��
2877
+ .
2878
+ (52)
2879
+ Concentration ˜c of spins directed up within each layer and concentration c of spins directed up in the MN are defined in
2880
+ the same way as in Sec. III A. Natural initial conditions for the system of equations (43-48) are ϑ(K,0)(0) = η(K,0)(0) =
2881
+ ϑ(K,K)(0) = η(K,K)(0) = ˜c(0), while c(K,0)(0), c(K,K)(0) can be chosen arbitrarily.
2882
+ [1] C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81 (2009) 591.
2883
+ [2] M. J. Oliveira, Isotropic majority-vote model on a square lattice, J. Stat. Phys. 66 (1992) 273.
2884
+ [3] Hanshuang Chen, Chuansheng Shen, Gang He, Haifeng Zhang, and Zhonghuai Hou, Critical noise of majority-vote model
2885
+ on complex networks, Phys. Rev. E 91 (2015) 022816.
2886
+ [4] H. Chen, C. Shen, H. Zhang, G. Li, Z. Hou, and J. Kurths, First-order phase transition in a majority-vote model with
2887
+ inertia, Phys. Rev. E 95 (2017) 042304.
2888
+ [5] B. Nowak and K. Sznajd-Weron, Symmetrical threshold model with independence on random graphs, Phys. Rev. E 101
2889
+ (2020) 052316.
2890
+ [6] Hanshuang Chen, Shuang Wang, Chuansheng Shen, Haifeng Zhang, and G. Bianconi, Non-markovian majority-vote model,
2891
+ Phys. Rev. E 102 (2020) 062311.
2892
+ [7] Minsuk Kim and Soon-Hyung Yook, Majority-vote model with degree-weighted influence on complex networks, Phys. Rev.
2893
+ E 103 (2021) 022302.
2894
+ [8] B. L. Granovsky, N. Madras, The noisy voter model, Stochastic Processes and their Applications 55 (1995) 23.
2895
+
2896
+ 19
2897
+ [9] A. Carro, R. Toral and M. San Miguel, The noisy voter model on complex networks, Sci Rep 6 (2016) 24775.
2898
+ [10] A. F. Peralta, A. Carro, M. San Miguel, and R. Toral, Stochastic pair approximation treatment of the noisy voter model,
2899
+ New J. Phys. 20 (2018) 103045.
2900
+ [11] C. Castellano, M. A. Mu˜noz, and R. Pastor-Satorras, Nonlinear q-voter model, Phys. Rev. E 80 (2009) 041129.
2901
+ [12] P. Nyczka, K. Sznajd-Weron and J. Cis�lo, Phase transitions in the q-voter model with two types of stochastic driving,
2902
+ Phys. Rev. E 86 (2012) 011105.
2903
+ [13] P. Moretti, S. Liu, C. Castellano, R. Pastor-Satorras, Mean-field analysis of the q-voter model on networks, J. Stat. Phys.
2904
+ 151 (2013) 113.
2905
+ [14] A. J¸edrzejewski, Pair approximation for the q-voter model with independence on complex networks, Phys. Rev. E 95 (2017)
2906
+ 012307.
2907
+ [15] A. J¸edrzejewski and K. Sznajd-Weron, Pair approximation for the q-voter models with quenched disorder on networks,
2908
+ Phys. Rev. E 105 (2022) 064306.
2909
+ [16] A. F. Peralta, A. Carro, M. San Miguel, and R. Toral, Analytical and numerical study of the non-linear noisy voter model
2910
+ on complex networks, Chaos 28 (2018) 075516.
2911
+ [17] A. Vieira and C. Anteneodo, Threshold q-voter model Phys. Rev. E 97 (2018) 052106.
2912
+ [18] A. R. Vieira, A. F. Peralta, R. Toral, M. San Miguel, and C. Anteneodo, Pair approximation for the noisy threshold q-voter
2913
+ model, Phys. Rev. E 101 (2020) 052131.
2914
+ [19] A. Abramiuk-Szurlej, A. Lipiecki, J. Paw�lowski, K. Sznajd-Weron, Discontinuous phase transitions in the q-voter model
2915
+ with generalized anticonformity on random graphs, Sci. Rep. 11 (2021) 1719.
2916
+ [20] B. Nowak, B. Sto´n, K. Sznajd-Weron, Discontinuous phase transitions in the multi-state noisy q-voter model: quenched
2917
+ vs. annealed disorder, Sci. Rep. 11 (2021) 6098.
2918
+ [21] A. J¸edrzejewski, A. Chmiel, K. Sznajd-Weron, Oscillating hysteresis in the q-neighbor Ising model, Phys. Rev. E 92 (2015)
2919
+ 052105.
2920
+ [22] J.-M. Park and J. D. Noh, Tricritical behavior of nonequilibrium Ising spins in fluctuating environments, Phys. Rev. E 95
2921
+ (2017) 042106.
2922
+ [23] A. J¸edrzejewski, A. Chmiel, and K. Sznajd-Weron, Kinetic Ising models with various single-spin-flip dynamics on quenched
2923
+ and annealed random regular graphs, Phys. Rev. E 96 (2017) 012132.
2924
+ [24] A. Chmiel, T. Gradowski and A. Krawiecki, q-neighbor Ising model on random networks, Int. J. Modern Phys. C 29 (2018)
2925
+ 1850041.
2926
+ [25] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80
2927
+ (2008) 1276.
2928
+ [26] F. Vazquez and V. M. Egu´ıluz, Analytical solution of the voter model on uncorrelated networks, New J. Phys. 10 (2008)
2929
+ 063011.
2930
+ [27] E. Pugliese and C. Castellano, Heterogeneous pair approximation for voter models on networks, Europhys. Lett. 88 (2009)
2931
+ 58004.
2932
+ [28] J. P. Gleeson, High-accuracy approximation of binary-state dynamics on networks, Phys. Rev. Lett. 107 (2011) 068701.
2933
+ [29] J. P. Gleeson, Binary-state dynamics on complex networks: pair approximation and beyond. Phys. Rev. X 3 (2013) 021004.
2934
+ [30] A. F. Peralta and R. Toral, Binary-state dynamics on complex networks: Stochastic pair approximation and beyond, Phys.
2935
+ Rev. Research 2 (2020) 043370.
2936
+ [31] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. G´omez-Garde˜nes, M. Romance, I. Sendi˜na-Nadal, Z. Wang, M.
2937
+ Zanin, The structure and dynamics of multilayer networks, Phys. Rep. 544 (2014) 1.
2938
+ [32] Kyu-Min Lee, Jung Yeol Kim, Sangchul Lee and K.-I. Goh, Multiplex networks, in: Networks of Networks: The Last
2939
+ Frontier of Complexity, ed. G. D’Agostino, A. Scala, Springer 2014.
2940
+ [33] Kyu-Min Lee, Byungjoon Min, and Kwang-Il Goh, Towards real-world complexity: an introduction to multiplex networks,
2941
+ Eur. Phys. J. B 88 (2015) 48.
2942
+ [34] C. Buono, L. G. Alvarez-Zuzek, P. A. Macri, L. A. Braunstein, Epidemics in Partially Overlapped Multiplex Networks,
2943
+ PLoS ONE 9 (2014) e92200.
2944
+ [35] L. G. Alvarez-Zuzek, M. A. Di Muro, S. Havlin, and L. A. Braunstein, Dynamic vaccination in partially overlapped
2945
+ multiplex network, Phys. Rev. E 99 (2019) 012302.
2946
+ [36] I. A. Perez, M. A. Di Muro, C. E. La Rocca, and L. A. Braunstein, Disease spreading with social distancing: A prevention
2947
+ strategy in disordered multiplex networks, Phys. Rev. E 102 (2020) 022310.
2948
+ [37] G. Bianconi, Statistical mechanics of multiplex networks: Entropy and overlap, Phys. Rev. E 87 (2013) 062806.
2949
+ [38] Byungjoon Min, Sangchul Lee, Kyu-Min Lee, K.-I. Goh, Link overlap, viability, and mutual percolation in multiplex
2950
+ networks, Chaos Solitons & Fractals 72 (2015) 49.
2951
+ [39] M. Diakonova, V. Nicosia, V. Latora and M. San Miguel, Irreducibility of multilayer network dynamics: the case of the
2952
+ voter model, New J. Phys. 18 (2016) 023010.
2953
+ [40] A. Krawiecki, Ferromagnetic transition in a simple variant of the Ising model on multiplex networks, Physica A 492 (2018)
2954
+ 534.
2955
+ [41] A. Krawiecki, Ferromagnetic transition in a simple variant of the Ising model on multiplex networks with partial overlap ,
2956
+ Acta Phys. Pol. B 50 (2019) 1643.
2957
+ [42] S. Jang, J. S. Lee, S. Hwang and B. Kahng, Ashkin-Teller model and diverse opinion phase transitions on multiplex
2958
+ networks, Phys. Rev. E 92 (2015) 022110.
2959
+ [43] Cook Hyun Kim, Minjae Jo, J. S. Lee, G. Bianconi, and B. Kahng, Link overlap influences opinion dynamics on multiplex
2960
+ networks of Ashkin-Teller spins, Phys. Rev. E 104 (2021) 064304.
2961
+
2962
+ 20
2963
+ [44] A. Krawiecki, T. Gradowski, G. Siudem, Majority vote model on multiplex networks, Acta Phys. Pol. A 133 (2018) 1433.
2964
+ [45] Jeehye Choi and K-I. Goh, Majority vote dynamics on multiplex networks with two layers, New J. Phys. 21 (2019) 035005.
2965
+ [46] A. Chmiel and K. Sznajd-Weron, Phase transitions in the q-voter model with noise on a duplex clique, Phys. Rev. E 92
2966
+ (2015) 052812.
2967
+ [47] T. Gradowski, A. Krawiecki, Pair approximation for the q-voter model with independence on multiplex networks, Phys.
2968
+ Rev. E 102 (2020) 022314.
2969
+ [48] A. Chmiel, J. Sienkiewicz, A. Fronczak and P. Fronczak, A veritable zoology of successive phase transitions in the asym-
2970
+ metric q-voter model on multiplex networks, Entropy 22 (2020) 1.
2971
+ [49] A. Chmiel, J. Sienkiewicz, and K. Sznajd-Weron, Tricriticality in the q-neighbor Ising model on a partially duplex clique,
2972
+ Phys. Rev. E 96 (2017) 062137.
2973
+ [50] K.-M. Lee, C.D. Brummitt, K.-I. Goh, Threshold cascades with response heterogeneity in multiplex networks, Phys. Rev.
2974
+ E 90 (2014) 062816.
2975
+ [51] S. Unicomb, G. I˜niguez and M. Karsai, Threshold driven contagion on weighted networks, Sci. Rep. 8 (2018) 3094.
2976
+
CNE1T4oBgHgl3EQfVwTa/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdAyT4oBgHgl3EQfR_ex/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:627b6cd55794074625950ef985815d5173e3bef53e68be7be02aff37a758df05
3
+ size 6488109
CdAyT4oBgHgl3EQfR_ex/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25ad54310d6b349981e1aa7abfb23354d2daac9103ff3417c54c450d856b5dcb
3
+ size 224958
CtE0T4oBgHgl3EQfQQAs/content/tmp_files/2301.02189v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtE0T4oBgHgl3EQfQQAs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E1T4oBgHgl3EQfWgQs/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98dcd39ed321b8b65c7bd781f2593dbde6463b3e2ff41a3144cf10007cc5cbe0
3
+ size 1234162
GNE0T4oBgHgl3EQfhQF8/content/tmp_files/2301.02429v1.pdf.txt ADDED
@@ -0,0 +1,2342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Solar Physics
2
+ DOI: 10.1007/•••••-•••-•••-••••-•
3
+ Reconstruction of the Sunspot Number Source
4
+ Database and the 1947 Zurich Discontinuity
5
+ Fr´ed´eric Clette1 · Laure Lef`evre1 ·
6
+ Sabrina Bechet1 · Renzo Ramelli2 ·
7
+ Marco Cagnotti3
8
+ © Springer ••••
9
+ Abstract The recalibration of the sunspot number series, the primary long-
10
+ term record of the solar cycle, requires the recovery of the entire collection of
11
+ raw sunspot counts collected by the Zurich Observatory for the production of
12
+ this index between 1849 and 1980.
13
+ Here, we report about the major progresses accomplished recently in the con-
14
+ struction of this global digital sunspot number database, and we derive global
15
+ statistics of all the individual observers and professional observatories who pro-
16
+ vided sunspot data over more than 130 years.
17
+ First, we can announce the full recovery of long-lost source-data tables covering
18
+ the last 34 years between 1945 and 1979, and we describe the unique information
19
+ available in those tables. We then also retrace the evolution of the core observing
20
+ team in Zurich and of the auxiliary stations. In 1947, we find a major disruption
21
+ in the composition of both the Zurich team and the international network of
22
+ auxiliary stations.
23
+ This sharp transition is unique in the history of the Zurich Observatory and
24
+ coincides with the main scale-jump found in the original Zurich sunspot number
25
+ series, the so-called “Waldmeier” jump. This adds key historical evidence ex-
26
+ plaining why methodological changes introduced progressively in the early 20th
27
+ century could play a role precisely at that time. We conclude on the remaining
28
+ steps needed to fully complete this new sunspot data resource.
29
+ Keywords: Sunspots, statistics; Solar Cycle, observations
30
+ � F. Clette
31
32
+ 1
33
+ Royal Observatory of Belgium, 3 Avenue Circulaire, 1180 Brussels, Belgium
34
+ 2
35
+ Istituto Ricerche Solari Locarno (IRSOL), Universit`a della Svizzera italiana, Via
36
+ Patocchi 57, 6600 Locarno, Switzerland
37
+ 3
38
+ Specola Solare Ticinese, Via ai Monti 146, 6605 Locarno, Switzerland
39
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 1
40
+ arXiv:2301.02429v1 [astro-ph.SR] 6 Jan 2023
41
+
42
+ Clette et al.
43
+ 1. Introduction
44
+ Our knowledge of the long-term evolution of the solar cycle is largely based on
45
+ the historical observations of sunspots since the newly invented telescope was
46
+ aimed at the Sun for the first time in 1610. Two main indices were built from
47
+ those sunspot observations. The sunspot number (hereafter SN) was initiated by
48
+ Rudolf Wolf in 1850 (Wolf, 1856; Friedli, 2016). This daily index combines the
49
+ total group count and the total spot count and its goes back to 1700. Much more
50
+ recently, Hoyt and Schatten (1998a,b) introduced the sunspot group number
51
+ (hereafter GN), which only uses the total group count, but was constructed back
52
+ to the very first telescopic observations in 1610. Both indices are abundantly
53
+ used by most studies of the long-term evolution of solar activity and Sun-Earth
54
+ relations, as constraints for validating physical models of the solar dynamo, and
55
+ for calibrating various parameters relevant to space weather and space climate
56
+ (geomagnetic and ionospheric indices, cosmogenic radionucleides).
57
+ However, significant disagreements between the sunspot number and group
58
+ number series over their common time interval indicated that either series or
59
+ both suffered from inhomogeneities. This prompted various efforts to identify
60
+ flaws and biases in both series, which led to the release of the first revised
61
+ versions of the group number (Svalgaard and Schatten, 2016, “backbone” GN)
62
+ and of the sunspot number (Clette et al., 2014; Clette and Lef`evre, 2016, SN
63
+ Version 2.0). Regarding the GN, further corrections and improvements have been
64
+ proposed over recent years, but we will not develop this ongoing work here (see
65
+ e.g. Chatzistergos et al., 2017; Willamo, Usoskin and Kovaltsov, 2017; Svalgaard
66
+ and Schatten, 2016; Svalgaard, 2020; Usoskin, Kovaltsov and Kiviaho, 2021).
67
+ However, a key element that supported this revision effort was the expansion
68
+ and correction of the GN database collecting all original observed group counts
69
+ (Vaquero et al., 2016). This work, which started from the original database
70
+ assembled over many years by Hoyt and Schatten (1998a,b), is still continuing
71
+ now, and already allowed new improved reconstructions of the GN directly from
72
+ the base source data. As highlighted by Mu˜noz-Jaramillo and Vaquero (2019),
73
+ the recovery of all existing historical observations is crucial for future progresses
74
+ in such reconstructions of past solar activity.
75
+ By contrast, the current revised SN series was reconstructed from source data
76
+ only for the recent decades, since 1981, when the production of the SN moved
77
+ from the Zurich Observatory to the Royal Observatory of Belgium, where it is
78
+ still maintained today (Clette et al., 2007, 2016). Indeed, the data processing was
79
+ then computerized, and all collected data from the worldwide network of con-
80
+ tributing stations are preserved in digital form (more than 500,000 observations
81
+ from 285 stations). On the other hand, for the entire Zurich period before 1981,
82
+ the corrected SN series was obtained by deriving and applying correction factors
83
+ to the original Zurich SN series, as provided by Wolf and his successors (Clette et
84
+ al., 2014; Clette and Lef`evre, 2016). This approach already allowed to correct the
85
+ main flaws present in the original SN series and affecting long segments of this
86
+ series, in particular a sharp 18% upward jump in 1947 (see Clette and Lef`evre,
87
+ 2016, for the details), but it faces limitations for finer corrections.
88
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 2
89
+
90
+ Sunspot Number Database and the 1947 Zurich Discontinuity
91
+ This more indirect and limited approach was imposed by two main constraints
92
+ that are specific to the history of the sunspot number. While the GN was directly
93
+ built from the whole set of available observations, the Zurich SN was mostly
94
+ based on the sunspot counts from the Zurich Observatory, which acted as pilot
95
+ station. The data from auxiliary stations were mostly used to fill in the daily
96
+ gaps due, e.g., to bad weather in Zurich, and they thus only played a secondary
97
+ role in the production of the early part of the SN (Clette et al., 2014; Dudok de
98
+ Wit, Lef`evre and Clette, 2016; Friedli, 2016, 2020). As a consequence, the sources
99
+ of inhomogeneity are predominantly associated with a single reference station,
100
+ and are thus very different from the GN, which requires other diagnostics.
101
+ However, the other major restriction was the absence of a global digital
102
+ database of the source data collected by Wolf and his successors. As we will
103
+ describe later in this article, only part of those data were published, and none
104
+ of those data were converted into digital form. The inaccessibility of the Zurich
105
+ source data prevents researchers from getting access to a huge amount of detailed
106
+ information and to essential metadata. The recovery of this vast collection can
107
+ feed full statistical analyses by current state-of-the-art methods and lead to an
108
+ improved index, independent of all assumptions and practices adopted over the
109
+ years by Wolf and his successors at the Observatory of Zurich.
110
+ This is what motivated a collective effort to recover and digitize all those
111
+ original source data. Major progresses have been accomplished over the past
112
+ few years. In this article, we report on those major advances. In Section 2, we
113
+ first present the global digitization of the published data, available in printed
114
+ form, and complemented by deeper archives of hand-written logbooks. Based
115
+ on the resulting global chronology of all contributing observers assembled in
116
+ Section 3, we summarize the temporal evolution of the sources on which the SN
117
+ was founded. In Section 4, we then present the recent recovery of the long-lost
118
+ Waldmeier archives, and we describe the contents of those new tables. Based
119
+ on the now-continuous historical timeline, we show the occurrence of a double
120
+ discontinuity in the composition of the Zurich team of observers (Section 5) and
121
+ the network of auxiliary stations (Section 6). In Section 7, we finish by concluding
122
+ on the overall Zurich history emerging from this early exploration of the new SN
123
+ database, and on the prospects and upcoming tasks.
124
+ 2. Complete Digitization of Published Tables (1849-1944)
125
+ 2.1. The Zurich Printed Data: Full Survey of the Mitteilungen
126
+ The Zurich sunspot number produced by Wolf and his successors is based on
127
+ three types of data:
128
+
129
+ the raw counts from the Zurich staff: essentially, the director and the assis-
130
+ tants in Zurich, and also in the course of the 20th century, other assistants
131
+ stationed in the Arosa and Locarno observatories in southern Switzerland.
132
+
133
+ the counts sent to the Observatory of Zurich by external auxiliary observers,
134
+ either individual solar observers or professional observatories.
135
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 3
136
+
137
+ Clette et al.
138
+
139
+ the historical observations collected by Wolf over the course of his entire
140
+ career, which extend the first two sets of data before 1849 and back to
141
+ 1610. Most of those numbers were recounted by Wolf himself from original
142
+ documents (Friedli, 2020).
143
+ Most of this material was published on a yearly basis in the bulletins of the Zurich
144
+ Observatory, the Astronomische Mitteilungen der Eidgen¨ossischen Sternwarte
145
+ Z¨urich (hereafter Mitteilungen). This is a fundamental resource for any future
146
+ recomputation of the SN series. As noted in the introduction, a large part of
147
+ those data were never directly used for the production of the sunspot number,
148
+ as on most days, the SN was simply the raw Wolf number from the Zurich
149
+ Observatory.
150
+ In each issue of the Mitteilungen, the source data are listed in a series of
151
+ numbered rubrics at the end of the issue. The rubric series starts in 1857 (Volume
152
+ 3, page 126) and ends in 1930 (Volume 122, page 41), at the 1727th entry,
153
+ forming all together a very comprehensive census of all data collected by the
154
+ Zurich Observatory. Systematic observations by the Zurich observers (with the
155
+ director and his assistants listed separately from 1870 onward) and by auxiliary
156
+ observers are presented in yearly tables (Figure 1) with, for each observed day,
157
+ the number of groups g and number of spots s, in the standard format g.s.
158
+ The table is preceded by a brief description of the observer, mainly his/her
159
+ name, the general location (city), and in most cases, the kind of telescope used
160
+ for the observations (aperture, focal length and magnification). Symbols are
161
+ sometimes added in the table to mark changes on a daily basis. The symbol
162
+ may identify a specific observer when there are several observers working in the
163
+ same observatory. In other cases, it marks a change of location or instrument. A
164
+ prominent example involves Wolf himself, who observed either with the standard
165
+ 83 mm Fraunhofer refractor mounted permanently at the Zurich Observatory or
166
+ with smaller portable refractors (Friedli, 2016, 2020). This auxiliary information
167
+ can thus prove essential for the proper exploitation of the raw data.
168
+ Sometimes, when Wolf includes a new observer who already collected spot
169
+ counts over many years, a long multi-year table is published with all those past
170
+ observations. Key examples are the tables for Staudacher (Vol. 4, 1857), Schwabe
171
+ (Vol. 10 , 1859), Flaugergues (Vol. 13 , 1861), Carrington (Vol. 35, 1873) or
172
+ Pastorff (Vol. 36, 1875). Finally, next to the tables, many rubrics mention small
173
+ isolated data sets, or even unique spot counts found in old documents during
174
+ searches that Wolf did in libraries all over Europe. These are mostly single
175
+ sunspot sightings that are embedded in textual descriptions, e.g. spots noticed
176
+ at the occasion of solar eclipses. Although they may be individually important,
177
+ all together, they form only a tiny fraction of Mitteilungen data (< 1%), and
178
+ they are less exploitable because they cannot be calibrated.
179
+ 2.2. The Digitization: First Milestone
180
+ So far, this large collection of data was completely inaccessible in digital form,
181
+ by contrast with the GN database, which includes all raw group counts collected
182
+ by Hoyt and Schatten (1998a,b) and was recently expanded by Vaquero et al.
183
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 4
184
+
185
+ Sunspot Number Database and the 1947 Zurich Discontinuity
186
+ Figure 1. Facsimile of a typical yearly table, as published in the Mitteilungen (first page
187
+ going up to early June). This table lists all daily observations from A.Wolfer for the year 1890.
188
+ Each column gives the date followed by the total number of groups and total number of spots,
189
+ separated by a dot. A star symbol is added for some days, and marks the days when the
190
+ observations were made occasionally with a different telescope (On these days, Wolfer used a
191
+ small portable “Parisian” telescope with a 40 mm aperture).
192
+ (2016). Although there is a rather wide overlap between the GN and SN data and
193
+ many observers are common to both data sets, the GN database unfortunately
194
+ contains only the number of groups. Therefore, the number of spots can only
195
+ be found in the Zurich data, as it was required to compute the SN. This thus
196
+ motivates the construction of a complete SN database, equivalent to the existing
197
+ GN database.
198
+ As a first major step, in 2018, a full encoding of the Mitteilungen data tables
199
+ was undertaken at the World Data Center Sunspot Index and Long-term Solar
200
+ Observations (SILSO), with the help of students for the bulk encoding work.
201
+ By the end of 2019, all the data tables have been digitized, forming the first
202
+ version of the SN database, which includes all data published between 1849,
203
+ when R. Wolf undertook the production of the sunspot number, and 1944, when
204
+ the last director, Max Waldmeier, decided to cease publishing raw data in print.
205
+ This database now contains 205,000 individual daily sunspot counts. Isolated
206
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 5
207
+
208
+ 625) Alfred Wolfer, Beobachtungen der Sonnenfecken
209
+ auf der Sternwarte in Zurich im Jahre 1890. (Fortsetzung
210
+ zu 604.)
211
+ 1890
212
+ 1890
213
+ 1890
214
+ 1890
215
+ 1890
216
+ 1
217
+ 1|1.1
218
+ II
219
+ 14/1.1
220
+ III
221
+ 17/0.0
222
+ IV
223
+ 15|1.2
224
+ V
225
+ 10/1.11
226
+ 21
227
+ 1.1
228
+ 1610.0*
229
+ 18|0.0
230
+ 161.3
231
+ 11/2.11
232
+ 41.1
233
+ 200.0
234
+ 190.0
235
+ 170.0
236
+ 122.13
237
+ 1.1
238
+ 210.0
239
+ 210.0
240
+ 18/0.0
241
+ 140.0
242
+ 6
243
+ 2.5
244
+ 2210.0
245
+ 22/0.0
246
+ 19/0.0
247
+ 15/0.0
248
+ 18/0.0
249
+ 25|0.0
250
+ 23|1.3
251
+ 20|0.0*
252
+ 160.0
253
+ 19/1.3*
254
+ 26/0.0
255
+ 240.0
256
+ 21/0.0
257
+ 17|3.11
258
+ 20/1.3*
259
+ 270.0
260
+ 26/0.0
261
+ 22/0.0
262
+ 18|2.11
263
+ 24/0.0
264
+ 28/1
265
+ 1.1
266
+ 270.0
267
+ 230.0
268
+ 192.6
269
+ 250.0
270
+ III
271
+ 11
272
+ 1.1
273
+ 280.0
274
+ 240.0
275
+ 203.6
276
+ 26|0.0
277
+ 2
278
+ 0.0
279
+ 290.0
280
+ 25/1.1
281
+ 22|2.5
282
+ 270.0
283
+ 3|1
284
+ 1.1
285
+ 300.0
286
+ 260.0
287
+ 23|1.1
288
+ 280.0
289
+ 411
290
+ 1.6
291
+ 31/0.0
292
+ 270.0
293
+ 24|1.1
294
+ 29
295
+ 0.0
296
+ 1.6
297
+ IV
298
+ 10.0
299
+ 28/1.3
300
+ 25/0.0
301
+ 30|1.2
302
+ 7
303
+ 1.5
304
+ 20.0
305
+ 291.7
306
+ 261.10
307
+ 31/1.6
308
+ 8]
309
+ 1.10
310
+ 40.0*
311
+ 30/1.11
312
+ 270.0
313
+ II
314
+ 11.3
315
+ 9|1
316
+ 1.10
317
+ 50.0*
318
+ V
319
+ 1|1.1
320
+ 290.0
321
+ 2|0.0*
322
+ 10/1.16
323
+ 60.0
324
+ 2|0.0
325
+ 300.0
326
+ 30.0
327
+ 11/1.11
328
+ 70.0
329
+ 30.0
330
+ 310.0
331
+ 40.0
332
+ 12|1.6
333
+ 9/0.0*
334
+ 4/0.0
335
+ VI
336
+ 1/0.0
337
+ 50.0
338
+ 13|1.3
339
+ 10/0.0
340
+ 5|0.0
341
+ 20.0
342
+ 1010.0
343
+ 14/1
344
+ 1.3
345
+ 122.10
346
+ 60.0
347
+ 30.0
348
+ 110.0
349
+ 15/1
350
+ 1.1
351
+ .13/2.8
352
+ 70.0
353
+
354
+ 4|0.0
355
+ 12|0.0
356
+ 16/0.0
357
+ 141.1
358
+ 9|1.2
359
+
360
+ 5|1.5
361
+ NB. Die mit * bezeichneten Beobachtungen sind mit einem
362
+ kleinern Fernrohr gemacht, welchem etwa der Factor 1,5 zukommt.
363
+ April1891,
364
+ **Clette et al.
365
+ numbers mentioned in textual rubrics are not yet included, but we plan to add
366
+ them later on, for the sake of historical completeness.
367
+ Next to the daily separate counts of spots and groups, the database includes
368
+ metadata derived from annotations in the printed tables. When daily symbols
369
+ indicated regular changes of observers or instruments and when each subset
370
+ included a large number of days, we split the data included in common tables,
371
+ and attached the subsets to distinct observers. So, an observer may appear in
372
+ different incarnations, corresponding to different instruments and/or locations,
373
+ which thus require a different calibration and should not be mixed.
374
+ Currently, this first major input to the SN database is subjected to a thorough
375
+ quality control, fixing typos, date inconsistencies and occasional ambiguities in
376
+ observer names. Meanwhile, we looked for other data sources that can help
377
+ recovering information that proved to be missing in the Mitteilungen. One of
378
+ the gaps happens in the early part of the SN database.
379
+ 2.3. Wolf’s Sourcebook and Wolfer’s Global Register
380
+ Indeed, before 1870, the information about the core observations made by Wolf
381
+ and his assistants is incomplete. A single “master” yearly table contains all the
382
+ counts used to produce the sunspot number. It thus consists mainly of the counts
383
+ made by Wolf, which are thus largely complete. On the other hand, data from
384
+ other observers, assistants or external observers, are only inserted on days when
385
+ the primary observer could not observe. As a consequence, between 1864, when
386
+ the first assistants were recruited, and 1869, only a small fraction of the data
387
+ from the Zurich assistants appear in the Mitteilungen, as Wolf’s own data fill a
388
+ majority of days.
389
+ Moreover, before 1864, Wolf’s main auxiliary observer was Samuel Heinrich
390
+ Schwabe. However, although a significant fraction of the daily counts were from
391
+ Schwabe, Wolf did not mark them in the published tables before 1859, as he
392
+ first considered Schwabe’s numbers fully equivalent to his own. This now makes
393
+ it impossible to distinguish Wolf’s primary counts from rescaled numbers from
394
+ Schwabe during the first 10 years of the Wolf series. This important information
395
+ about the primary Zurich observers is thus largely incomplete between 1849 and
396
+ 1870.
397
+ Fortunately, two additional sources that provide full tables of the base counts
398
+ were preserved, and are archived at the ETH Zurich University Archives of
399
+ the Eidgen¨ossische Technische Hochschule (ETH). One of them is the so-called
400
+ Wolf’s sourcebook (Wolf, 1878, catalogue entry Hs368:46). Those handwritten
401
+ yearly tables gather all daily numbers forming the sunspot number series from
402
+ 1610 to 1877 (Figure 2). In fact, these are the master tables assembled by Wolf
403
+ (Friedli, 2016). Those tables provide two kinds of unique information. Firstly,
404
+ right from the start of Wolf’s yearly census in 1849, they include symbols identi-
405
+ fying the source observer for each daily number. This additional information will
406
+ thus allow to remove the ambiguity in the early Mitteilungen tables. Moreover,
407
+ each yearly table indicates the personal k coefficient that was actually used
408
+ by Wolf, a precious information that can be crossed with the few occasional
409
+ mentions by Wolf of changes in his k calculations.
410
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 6
411
+
412
+ Sunspot Number Database and the 1947 Zurich Discontinuity
413
+ Figure 2. Facsimile of the table for 1860 in Wolf’s hand-written sourcebook, which covers the
414
+ period 1610 to 1877 (ETH catalogue entry Hs368:46). The layout is similar to the equivalent
415
+ yearly table published in the Mitteilungen, but it contains very important additional infor-
416
+ mation. Symbols indicate for each day, from which observer the daily sunspot number was
417
+ obtained. One can see that most of the observations were from Wolf, as primary observer. For
418
+ each auxiliary observer, including here Schwabe and Carrington, a list at bottom left mentions
419
+ the personal k coefficient that was used to rescale the raw numbers, to match the scale of
420
+ Wolf’s own numbers.
421
+ Moreover, as the copying and typesetting process for the publication in the
422
+ Mitteilungen most probably led to errors and typos, the original sourcebook
423
+ provides the ground truth and will allow fixing those occasional mistakes in the
424
+ master database. Thanks to the efforts of the Wolf Gesellschaft (Friedli, 2016),
425
+ Wolf’s sourcebook was digitized from 1849 to 1877, when the collection ends.
426
+ While the tables can now be consulted online at URL http://www.wolfinstitute.
427
+ ch/data-tables.html, this extended information must still be merged with the pri-
428
+ mary Mitteilungen database. This work is now in preparation. Finally, the yearly
429
+ tables in the sourcebook actually go back to the very first sunspot observations
430
+ in the early 17th century. Although this part is less substantial, those data tables
431
+ for years before 1849 must still be digitized.
432
+ However, like in the Mitteilungen, the sourcebook does not contain the full set
433
+ of raw observations collected by Wolf from the auxiliary observers and from his
434
+ assistants, between 1849 and 1870, in particular, the observations from Schwabe.
435
+ However, a larger set of handwritten tables also exists at the ETH Zurich
436
+ University archives (Wolfer, 1909, catalogue entry Hs1050:227). This series is a
437
+ standardized compilation of all data and metadata published in the Mitteilungen,
438
+ up to 1908 (Figure 3). This huge register was first produced by Wolf, and after
439
+ Wolf’s death in 1893, it was continued by A. Wolfer and his assistants until 1909,
440
+ as a base for a global verification of the sunspot number series. In this collection,
441
+ there is a separate table by observer and by year. Therefore, the full data set is
442
+ included, even data that were never used for the calculation of the daily Zurich
443
+ sunspot number. In particular, there are also many data series from before 1700,
444
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 7
445
+
446
+ 147
447
+ 8
448
+ 6.32
449
+ 92
450
+ .21
451
+ 121
452
+ 11 114
453
+ 10.5
454
+ 90
455
+ 7
456
+ 81
457
+ 3.19
458
+ cm
459
+ .43
460
+ 10.3
461
+ 12
462
+ 70.9
463
+ 34
464
+ 52
465
+ 132
466
+ .34
467
+ 104
468
+ 10
469
+ 9
470
+ 74s
471
+ 96
472
+ G
473
+ 52
474
+ 35
475
+ 94
476
+ 97
477
+ .32
478
+ 037
479
+ 3
480
+ .29
481
+ 2.8
482
+ ^.
483
+ .32
484
+ .22
485
+ 115
486
+ 10
487
+ 23
488
+ 121
489
+ 116
490
+ .2
491
+ .7
492
+ :8
493
+ 14
494
+ 73
495
+ h
496
+ 5 .192
497
+ 761
498
+ 131
499
+ 64
500
+ 44
501
+ 4
502
+ 3.5
503
+ 154
504
+ 128
505
+ 8.36
506
+ 11
507
+ 5.22
508
+ 74
509
+ 57
510
+ 2.8.
511
+ 718
512
+ .2.
513
+ 4.
514
+ .9
515
+ 36
516
+ C
517
+ 16
518
+ 3.15
519
+ 4 5
520
+ .24
521
+ 85
522
+ .1c
523
+ 4.7.
524
+ 103
525
+ 710
526
+ 34
527
+ .31
528
+ mm
529
+ w
530
+ 53
531
+ 11
532
+ 99
533
+ .25.
534
+ .21
535
+ 14
536
+ 112
537
+ 7
538
+ 5.12
539
+
540
+ 3 0
541
+ 50
542
+ .19
543
+ 4.14
544
+ 6x
545
+ .15
546
+ 127
547
+ .61
548
+ 114
549
+ 4.15
550
+
551
+ 15
552
+ 6
553
+ .9:
554
+ .13
555
+ 30
556
+ 72
557
+ 15
558
+ 118
559
+ 6.33
560
+ 94
561
+ .26
562
+ 848
563
+ 60
564
+ 4
565
+ .13
566
+ 39
567
+ 3 7
568
+ 55
569
+ 9
570
+ 8t:
571
+ 10 4
572
+ w
573
+ 5.1
574
+ 89529858848
575
+ 51
576
+ 91
577
+ 7
578
+ 6.13
579
+ 2 4
580
+ 104
581
+ 8.23
582
+ 103
583
+ .4
584
+ 5.18
585
+ 6.13
586
+ .34
587
+ 94
588
+ 1
589
+ 4.14
590
+ 6.22
591
+ 85
592
+ .16
593
+ :6
594
+ 4 . 7
595
+ 83
596
+ 19
597
+ 25
598
+ 4.22
599
+ 5.10
600
+ .43
601
+ 113
602
+ 2.2
603
+ 6.1元
604
+ 64
605
+ 97
606
+ 85
607
+ 19
608
+ 6.41
609
+ 104
610
+ 89
611
+ 93
612
+ 93
613
+ 5.18
614
+ 91
615
+ 6.23.
616
+ 6
617
+ .11
618
+ 3h
619
+ 58
620
+ 7.30
621
+ 1α1
622
+ 6.24
623
+ 84
624
+ 6.5
625
+ 99
626
+ 101
627
+ 5.25
628
+ 5.2
629
+ .14
630
+ w
631
+ .135
632
+ 94
633
+ 8.31
634
+ to,
635
+ 136
636
+ 13
637
+ 3k
638
+ 65
639
+ 6.18
640
+ 45
641
+ 133
642
+ 11.34
643
+ 14 4
644
+ 73
645
+ 6
646
+ .13
647
+
648
+ .9
649
+ 6.8
650
+ s1
651
+ 6o
652
+ 54
653
+ 128
654
+ 10.65
655
+ 9.17
656
+ 160
657
+ .33
658
+ 93
659
+ .19
660
+ .18
661
+ 58
662
+ 8.25
663
+ 708
664
+ 49
665
+ 50
666
+ 9.13
667
+ 160
668
+ G
669
+ 6
670
+ 84
671
+ .21
672
+ 712
673
+ 46
674
+ .39
675
+ 12,
676
+ 7.28
677
+ 6
678
+ g.11
679
+ 3.30
680
+ 49
681
+ 1.61
682
+ .16
683
+ 1u 4
684
+ 93
685
+ 27
686
+ 77.
687
+ 111
688
+ 36
689
+ w
690
+ 10 1
691
+ 10 .19,
692
+ 132
693
+ 164
694
+ 10. 43
695
+ 143
696
+ 10.64
697
+ 11 .160
698
+ .33
699
+ 123
700
+ 2 1
701
+ 154
702
+ 78
703
+ 29
704
+ 11. 83
705
+ 8.16
706
+ .
707
+ 25
708
+ 44
709
+ 109
710
+ 23
711
+ 125
712
+ 114
713
+ 94
714
+ 10.47
715
+ 11.72
716
+ -24
717
+ 114
718
+ 3 18
719
+ 6c
720
+ 19
721
+ 86
722
+ 2
723
+ 8.31
724
+ 992
725
+ 10.46
726
+ 2.11
727
+ 33
728
+ 4.20
729
+ 3
730
+ .17
731
+ 59
732
+ 33
733
+ 3.32.
734
+ 10 2.
735
+ 5.16
736
+ 4.8
737
+ 5
738
+ 6.37
739
+ 97
740
+ 7.44
741
+ 114
742
+ 10.31
743
+ 4.
744
+ 5.19
745
+ 103
746
+ 5.13
747
+ 13
748
+ 3 .
749
+ tei
750
+ 6
751
+ K
752
+ 6.13
753
+ 10 9
754
+ w
755
+ 44
756
+ M.
757
+ 116.7
758
+ 100,3
759
+ 92,2
760
+ 107,1
761
+ 108,6
762
+ M.
763
+ 9011
764
+ 97·9
765
+ 95,6
766
+ M.
767
+ M.
768
+ 81,5
769
+ 88.0
770
+ 98.9
771
+ 71.4
772
+ Bemerkungen :
773
+ Bemerkungen:
774
+ T,00
775
+ = 1,50
776
+ 2
777
+ Jehwae
778
+ = 1,25
779
+ 1859
780
+ =
781
+ (amington
782
+ =
783
+ 7, 03
784
+ webs
785
+ ht.si.
786
+ 2h
787
+ fmeatmth!
788
+ 0,47
789
+ 4o Vergl.m*tw,k,3
790
+ =
791
+ Jhon
792
+ =
793
+ 7,11
794
+ 46Clette et al.
795
+ Figure 3. Facsimile of one page from the register of hand-written tables compiled by R. Wolf
796
+ and continued by A. Wolfer, and covering the entire period 1610 - 1908 (ETH catalogue entry
797
+ Hs1050:227). This page shows the yearly table for Flaugergues in 1796. The layout is similar
798
+ to the yearly tables in Wolf’s sourcebook, but here, all daily observations are listed for each
799
+ observer. On the right, literal citations and detailed indications are often included to clarify
800
+ the interpretation of the tabulated numbers. This series of tables thus gives a complete and
801
+ well-standardized view of all data collected by Wolf and Wolfer, including data that were not
802
+ used to produce the daily sunspot number, and also data and metadata that were not published
803
+ in the Mitteilungen.
804
+ which were never used by Wolf, as he decided to compute the sunspot number
805
+ only from 1700 onwards.
806
+ Still, the tables in this complete register may prove invaluable for crossing
807
+ this information collected long ago by Wolf with other recovered observations
808
+ of the same observers. They also indicate which data were known by Wolf and
809
+ his collaborators at the epoch when they produced the Zurich numbers. The
810
+ scanning of this large set of tables is now planned at the ETH Library in Zurich.
811
+ When this step will be completed, the encoding into a database will require
812
+ substantial additional work.
813
+ 3. Chronology of the Data
814
+ Although series of data and metadata still needs to be added, the database is now
815
+ largely complete between 1849 and 1944, and we have now already a complete
816
+ chronology of all the observers who provided data to the Zurich Observatory
817
+ between 1849 and 1980, i.e. during the entire Zurich era. This allows us to derive
818
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 8
819
+
820
+ 1196
821
+ Jlru yuyur I 100
822
+ 1796
823
+
824
+ X
825
+ 11] rap 4 110
826
+ 1.8
827
+ o.0
828
+ 1.s0s
829
+ 0.0
830
+ 00
831
+ 0.0
832
+ 2
833
+ 3. 4
834
+ 6.0
835
+ 2 ·
836
+ 00
837
+ 0.0
838
+ 3
839
+ 0.0
840
+ 0. 0
841
+ 0.0
842
+ 0.0
843
+ n wlit luhi
844
+ 4
845
+ 2.4
846
+ 0·0
847
+ 0.0
848
+ 2.8
849
+ 0.0
850
+ 13( Jlg imum un
851
+ 0 .0
852
+ 0.0
853
+ 2.3
854
+ 0.0
855
+ 2.9
856
+ 0.0
857
+ 0.0
858
+ 0.0
859
+ lauhuy sd de ylun ln grrus du
860
+ 6
861
+ 2.5
862
+ H
863
+ 7
864
+ 0.0
865
+ 2.3
866
+ 0.0
867
+ 2. ~
868
+ 0.0
869
+ hin
870
+ 1.1
871
+ 0.0
872
+ 2. ~
873
+ 0.0
874
+ 9
875
+ 0.0
876
+ 1.1
877
+ 0.0
878
+ 1.1
879
+ 0-0
880
+ 1.~
881
+ S g' hu nuir 'ni rlri wn
882
+ (0
883
+ 1.2
884
+ 0.0
885
+ 1.1
886
+ 0.0
887
+ 1.(
888
+ (
889
+ 2·3
890
+ 1.7
891
+ le g muud ri lesrli;
892
+ 2.3
893
+ 6.0
894
+ 2.3
895
+ 0.0
896
+ 1.1
897
+ 0.0
898
+ 13
899
+ 1.7
900
+ 0.0
901
+ 1.1
902
+ 0-0
903
+ 1.s
904
+ 1-9
905
+ 14
906
+ 0.0
907
+ 1·3
908
+ 0.0
909
+ 1. G
910
+ 1.f
911
+ 0.0
912
+ 1·3
913
+ 0.0
914
+ duervrd ln us, tuhis
915
+ 16
916
+ 1-3
917
+ 0.0
918
+ 1.5
919
+ 0.0
920
+ 0.0
921
+ 1、-
922
+ 1.6
923
+ 13
924
+ 0.0
925
+ 0.0
926
+ 0.0
927
+ 0.0
928
+ 2-
929
+ C
930
+ 2.14
931
+ 1. 2
932
+ 1.-.
933
+ Tvmts
934
+ 8/
935
+ o.d
936
+ 1.9
937
+ 1.1
938
+ - 3
939
+ mliimms dyuiy ci muir
940
+ 19
941
+ 1.2
942
+ 1·2
943
+ 0.6
944
+ 0.0
945
+ 20
946
+ Cro
947
+ 2 -(2
948
+ 1.2
949
+ 1.1
950
+ 0.0
951
+ 21.
952
+ 00
953
+ nrrt l rcle
954
+ 0.0
955
+ 2
956
+ - 2
957
+ 23
958
+ 0.0
959
+ 1.1
960
+ 0.0
961
+ 1.2
962
+ Iy) Nn umus d tuulur liyinss
963
+ -
964
+ 24
965
+ 0.0
966
+ 1. 1
967
+ 0.0
968
+ 1-1
969
+ 25
970
+ 2
971
+ 1. 1
972
+ 1.1
973
+ 0.0
974
+ 0.0
975
+ 26
976
+ 0.0
977
+ 1-1
978
+ 0.0
979
+ 0.d
980
+ 0.0
981
+ 29
982
+ 1.4
983
+ 0.0
984
+ rry rid rut rnh chs yurli.
985
+ 1.4
986
+ 1.1
987
+ 24
988
+ 0..
989
+ 21
990
+ 2-2
991
+ 6.0
992
+ 0-0
993
+ 0.0
994
+ Cmui le misie d dis y.
995
+ 30
996
+ 4-u
997
+ 1.8
998
+ 0.0
999
+ 0.0
1000
+ 0.0
1001
+ 0.0
1002
+ 2.2
1003
+ 1.2
1004
+ 0.0Sunspot Number Database and the 1947 Zurich Discontinuity
1005
+ Figure 4. Evolution of the number of stations for each year contained in the data tables
1006
+ published in the Mitteilungen of the Zurich Observatory (gray curve). After 1919, when the
1007
+ Zurich Observatory ceased to publish all the data, the total number of contributing stations is
1008
+ plotted in blue, based on the annual list of stations. Between 1919 and 1944, the data from a
1009
+ subset of observers were still included, but after 1945, none of the source data were published.
1010
+ The two vertical shaded bands mark the two world wars, which both definitely left an imprint
1011
+ on the Zurich sunspot data set.
1012
+ some global statistics of the observers and the time interval over which they were
1013
+ active, which provides very interesting new insights in the construction of the
1014
+ Zurich SN.
1015
+ Figure 4 shows the number of stations for each year. This illustrates the
1016
+ evolution of the input data, as published in the Mitteilungen. The number of
1017
+ stations steadily increased from 1865 to 1896, when it reaches about 20 sta-
1018
+ tions and then drops slightly, but remaining above 15. This corresponds to the
1019
+ continuous recruiting of new additional external observers by Wolf and later by
1020
+ Wolfer. This evolution is completely disrupted in 1919. At the end of World
1021
+ War I (WWI), Wolfer adds many new observers. The number of stations passes
1022
+ the 40 mark, doubling the size of what becomes a true international network.
1023
+ However, probably for financial reasons, Wolfer then decides not to publish all
1024
+ data anymore (Friedli, 2020). Only the numbers from the Zurich observers and 7
1025
+ to 9 primary external observers are still published each year. Although some of
1026
+ those privileged external observers had been important long-term contributors
1027
+ by 1919, the selection criteria are unclear and were not explained by Wolfer.
1028
+ But another drop of the number of tabulated data happens in 1926, when
1029
+ William Otto Brunner succeeds Wolfer as director of the Zurich Observatory.
1030
+ Brunner then decides to publish only the data from the Zurich team (Brunner,
1031
+ 1927). None of the data from the network are published after that year. The
1032
+ only exception is Karl Rapp, a private observer, who observed in Locarno,
1033
+ Switzerland, from 1940 to 1957. Rapp was actually trained in the same way
1034
+ as assistants at the main observatory in Zurich, and was thus treated as an
1035
+ internal observer over his whole observing career. Although Brunner states in
1036
+ 1927 that the external data from auxiliary stations are archived and can be
1037
+ consulted on request (Brunner, 1927, page 188) (Friedli, 2020, Section 3.3),
1038
+ searches undertaken over past years failed to recover those archives. So far, only
1039
+ the data for 1944 were found in a single unpublished manuscript, referenced
1040
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 9
1041
+
1042
+ WWI
1043
+ WW II
1044
+ 60
1045
+ count
1046
+ 40
1047
+ Station
1048
+ 20
1049
+ Unpublished
1050
+ Published
1051
+ 1860
1052
+ 1880
1053
+ 1900
1054
+ 1920
1055
+ 1940
1056
+ 1960
1057
+ 1980
1058
+ Time (years)Clette et al.
1059
+ Hs1050:14 in the ETH Zurich University archives, which contains all calculation
1060
+ sheets for that single year (Friedli, 2020).
1061
+ Then in 1945, when Max Waldmeier becomes the new director, the publication
1062
+ of source data ceases completely, as can be seen in Figure 4. By then, the volume
1063
+ of data collected in Zurich had further increased, with almost 60 contributing
1064
+ stations (blue curve in Figure 8), making their publication bulky and costly.
1065
+ The Mitteilungen then switch to a different format. The thick yearly volumes
1066
+ become a series of shorter thematic issues, with articles about diverse research
1067
+ topics developed by Waldmeier. The sunspot number gets a more limited space,
1068
+ compared to the earlier volumes published by Wolfer and Brunner, which were
1069
+ almost entirely dedicated to sunspots. Again, during this last period of the Zurich
1070
+ history, all the original data were saved like before in archives at the observatory
1071
+ in Zurich.
1072
+ However, since the closing of the Zurich Observatory in 1980, those archives
1073
+ somehow went lost. This created a major 35-year data gap in the raw data
1074
+ collection on which the Zurich sunspot number is based. This wide gap falls at
1075
+ a critical moment, as one of the main scale jumps identified in the Zurich series
1076
+ falls in 1947, thus precisely within this time interval (Clette et al., 2014; Clette
1077
+ and Lef`evre, 2016). The raw input data are thus essential to reconstruct the
1078
+ methodological changes that took place in Zurich at that epoch and may have
1079
+ caused this inhomogeneity. Moreover, this gap creates a critical missing link
1080
+ between the early Zurich epoch, up to Brunner, and the modern international
1081
+ sunspot number produced in Brussels since 1981, for which all data are preserved
1082
+ in a computer-accessible digital database.
1083
+ 4. The Original Waldmeier Source Tables (1945-1980)
1084
+ 4.1. A Serendipitous and Complete Recovery
1085
+ Fortunately, in late 2018 and early 2019, a serendipitous finding by the staff of the
1086
+ Specola Solare Ticinese Observatory in Locarno (https://www.specola.ch/e/),
1087
+ followed by subsequent searches, allowed to recover the entire Waldmeier data
1088
+ archive (1945 – 1979), which was in fact dispersed over three locations: the Specola
1089
+ Observatory (26 years, 1945 – 1970), the Royal Observatory of Belgium in Brus-
1090
+ sels (4 years, 1971 – 1974), and in the deep storage of the ETH Zurich University
1091
+ archives in Zurich (5 years, 1975 – 1979). This dispersion seems to be due to
1092
+ the rather tumultuous closure of the Zurich Observatory (for an evocation of
1093
+ that transition, see Stenflo, 2016). Except for copies of the years 1975 – 1979
1094
+ on microfiches at the ETH archives, the fragmented original collection was also
1095
+ stored without inclusion in any inventory or catalogue.
1096
+ This recovery is a breakthrough, and given the amount of data collected over
1097
+ those 35 years, it will keep researchers busy for many years. Indeed, we estimate
1098
+ that those tables contain about 350,000 individual daily numbers, thus more
1099
+ than in all published tables from 1849 to 1944. In a first step, all the elements of
1100
+ this archive were brought together again at the ETH Zurich University archives.
1101
+ They are now fully cataloged (Waldmeier, 1980), and the ETH archives have
1102
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 10
1103
+
1104
+ Sunspot Number Database and the 1947 Zurich Discontinuity
1105
+ Figure 5. Facsimile of a typical handwritten yearly table from the complete 1945 – 1980
1106
+ collection of source tables that was recovered in 2018 – 2019. This table lists the data from
1107
+ H. M¨uller, one of the assistants observing at the Zurich Observatory with the standard 8-cm
1108
+ Fraunhofer refractor, for the year 1960 (ETH catalogue entry Hs1304.8:16.3; DOI: 10.7891/e–
1109
+ manuscripta-87290). For each day, the table gives the number of groups, the total number
1110
+ of spots, the calculated personal k value relative to the primary observer (Waldmeier), and
1111
+ a sky quality index. For each column, monthly sums and the mean k coefficient are given at
1112
+ the bottom. The yearly totals and the mean k coefficient for the whole year are appended
1113
+ at the lower right. Here, k equals 0.52 and thus differs by more than 15% from Waldmeier’s
1114
+ target value of 0.6, revealing a significant dispersion of the Wolf numbers from the assistants,
1115
+ although they were expected to be closely aligned on the primary observer.
1116
+ completed the digitization of the whole collection in 2020. The scans of all tables
1117
+ are now accessible online on the digital platform for manuscript material from
1118
+ Swiss libraries and archives at https://www.e-manuscripta.ch/ (ETH catalogue
1119
+ entry Hs 1304.8). Now, in order to make all the data computer-readable, all
1120
+ those tables need to be encoded. This work has now just started at the Royal
1121
+ Observatory of Belgium.
1122
+ 4.2. The Waldmeier Yearly Tables: a Key to the Zurich Method
1123
+ The Waldmeier archive consists in yearly handwritten tables, one per observer,
1124
+ and each one on a separate sheet. Over the period 1945 – 1980, there was an
1125
+ average of 50 stations each year. All tables adopt the same standard format,
1126
+ with one column per month. Figure 5 illustrates the typical layout of one sheet,
1127
+ here with the table for H. M¨uller, one of the Zurich observers, for the year 1960.
1128
+ External auxiliary stations are presented with exactly the same layout. Each
1129
+ table lists all daily observations provided by the observer. The number of spots
1130
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 11
1131
+
1132
+ Hs
1133
+ 1304.8:16.3
1134
+ Methode:
1135
+ Beobachter:
1136
+ Jahr...
1137
+ V
1138
+ VI
1139
+ VII
1140
+ IX
1141
+ X
1142
+ IX
1143
+ IV
1144
+ VIII
1145
+ IIX
1146
+ II
1147
+ III
1148
+ I
1149
+ 1960
1150
+ g, f
1151
+ g, f
1152
+ g, f
1153
+ g, f
1154
+ k
1155
+ k
1156
+ g, f
1157
+ k
1158
+ f
1159
+ k
1160
+ g, f
1161
+ J‘8
1162
+ g, f
1163
+ k
1164
+ k
1165
+ k
1166
+ g,
1167
+ f
1168
+ k
1169
+ k
1170
+ k
1171
+ k
1172
+ ots
1173
+ C.82#0.S2
1174
+ 8.1024
1175
+ 11.2532130.46
1176
+ 2.93
1177
+ 0.46
1178
+ 13.2082-30-516623
1179
+ ¥.182
1180
+ 1
1181
+ 8.14
1182
+ 1-21230.935
1183
+ 0.55
1184
+ 3.193
1185
+ 0.69
1186
+ 8.1
1187
+ 0.53
1188
+ 3.21420.49
1189
+ 0.50
1190
+ 15.4420
1191
+ M.MiUn...
1192
+ 2
1193
+ 12.82+30.531
1194
+ 15.0.51
1195
+ 0.50
1196
+ 3.M
1197
+ 3.340.46
1198
+ 3.242-0.50
1199
+ .60240.5310.1220.53
1200
+ Bemerkungen:
1201
+ 14.195130.55
1202
+ n-190230.51
1203
+ 8.1202
1204
+ 0.51
1205
+ 19.141-
1206
+ 0.4
1207
+ 3
1208
+ 9.592-3
1209
+ 8.1061-20.52
1210
+ M.291230.so3.210.63
1211
+ 11.168-4
1212
+ M.21923
1213
+ 0.433
1214
+ 16.155,
1215
+ 4
1216
+ M.1692-3
1217
+ 1-26050483.1530.55
1218
+ 8.612-s0.50
1219
+ 8.662-3
1220
+ 0.5111.19520.51
1221
+ .1082130.52
1222
+ 5
1223
+ Objektivoffnung:
1224
+ 14.228,0.4+13.1542
1225
+ 8.14130.1731323
1226
+ 4.843
1227
+ m.153420546.121230-51
1228
+ 6
1229
+ 8.432-30.52
1230
+ 9443243
1231
+ 14:1992130.4919.1363*
1232
+ o.106r.0.52m.112o.s5
1233
+ 8.1622-s0.4915.342-0.65
1234
+ <
1235
+ 10136.518.16530.515.51
1236
+ 8
1237
+ 8.1310.5510.1180.5111.104.0.52
1238
+ 9.834-5
1239
+ 10.1930.4812.110
1240
+ 8.1542+3
1241
+ 8.900.45
1242
+ 1.1180.50
1243
+ 1.14056
1244
+ 9
1245
+ 1.139
1246
+ M.100.5110.942-0.56
1247
+ 8.106元
1248
+ 10.1850.5213.1680.49
1249
+ 1.10320.54
1250
+ 6.11430.53
1251
+ 10
1252
+ 12-140.508.1413-4
1253
+ 12-13230.53
1254
+ 7.10210.49
1255
+ M.1920.491-161
1256
+ 11
1257
+ 9.142
1258
+ 6.803
1259
+ 13.301元
1260
+ 11.1400.5014.1602
1261
+ 1件.132
1262
+ 6.2003
1263
+ 12
1264
+ 10.125,0.48
1265
+ 0.52
1266
+ 82051
1267
+ 1.1182
1268
+ M.1410.S411.144420.517.89
1269
+ 1Y31804815.159
1270
+ 13
1271
+ 0.45
1272
+ h4.3230.5116.1482
1273
+ 4.2112-3
1274
+ 13.992-30.54
1275
+ 9.11242
1276
+ 8.911-2
1277
+ 1610.58
1278
+ 14
1279
+ 13.902+3
1280
+ 3887050
1281
+ .200元3
1282
+ 4.1432
1283
+ 4.93元
1284
+ 12180.481-133
1285
+ :3520.5111.1313
1286
+ 15
1287
+ 10.729
1288
+ 8.10213
1289
+ 3.1452
1290
+ 9.4092
1291
+ Y.3850.441.10150.50
1292
+ 16
1293
+ 4.992-5
1294
+ 14359元
1295
+ 12.1043
1296
+ 8.1500.50M.M50.4
1297
+ 17
1298
+ Vergr.:
1299
+ 8.12230.52
1300
+ 0.1233
1301
+ 7.14250.4515
1302
+ 210.8020.50
1303
+ 5.10930.52
1304
+ trinih
1305
+ 0.50
1306
+ 18
1307
+ 13.14143
1308
+ ¥1212-50.50
1309
+ L.lb-y0.S6
1310
+ 8.1202
1311
+ ¥.1300.53
1312
+ 12.321
1313
+ 7.8330.52
1314
+ 19
1315
+ 9.693
1316
+ .558.148,0.50
1317
+ L.622-3o.n.143
1318
+ 13.182
1319
+ 893130541
1320
+ 5.45元
1321
+ 810230.52
1322
+ 16.150元
1323
+ 20
1324
+ 5.413
1325
+ L.482- 0.52 13.1342
1326
+ 15.18+
1327
+ 64.
1328
+ 21
1329
+ 3.38-
1330
+ 8.1331-20.50
1331
+ 552150.49 13.13025
1332
+ 15.21330.52
1333
+ 3.893-± 0.50
1334
+ 22
1335
+ 3.1523
1336
+ 10.168,0.544.1212
1337
+ 14-1912-30.S1
1338
+ 23
1339
+ 10.19120.49.1830.4113.81
1340
+ 14.1712
1341
+ 3.632-30.53
1342
+ 5.6230.5Y
1343
+ 11.145
1344
+ 0.52
1345
+ 8.163/0.51
1346
+ 24
1347
+ 10.18843.53
1348
+ 1.14510.18
1349
+ 1188230.5069
1350
+ 12.1412
1351
+ 936.4
1352
+ 25
1353
+ t86
1354
+ 4.9325
1355
+ C.54-4
1356
+ 0.52
1357
+ ¥.12523
1358
+ 10.MLL0.53
1359
+ .1950.53
1360
+ 1.81,
1361
+ 01.1621420.49
1362
+ Sonnendurchmesser:
1363
+ 26
1364
+ 8.83元
1365
+ 10.81
1366
+ 6.4030.52
1367
+ 16.543-4
1368
+ 8hoFstrw
1369
+ 8.14
1370
+ 0.58
1371
+ 0.53
1372
+ M.2080.41.1590.44
1373
+ 27
1374
+ M.185r-2
1375
+ 10.1930.481.81
1376
+ tsh
1377
+ 9.2224
1378
+ 13.182130.468.105240.54
1379
+ 88
1380
+ m.023
1381
+ 9.2240.44
1382
+ 1-18:7
1383
+ S.SS.0.50
1384
+ 016.1432+3
1385
+ 8.4030.52
1386
+ 13.2430.5z
1387
+ 1.962
1388
+ 0.49
1389
+ 29
1390
+ 8.110
1391
+ 5.822
1392
+ tso
1393
+ 138
1394
+ 0.55121L230.54
1395
+ 13.2112-3
1396
+ S.130.50
1397
+ 3149-5L0.94
1398
+ 4.12
1399
+ 8.2042-3
1400
+ 30
1401
+ $·3
1402
+ 9.1200.53
1403
+ 6.48
1404
+ 3.200
1405
+ 31
1406
+ 1.69
1407
+ 8.34
1408
+ 3.84
1409
+ 6.33
1410
+ 6-66
1411
+ 9.33
1412
+ 2-61
1413
+ 6.43
1414
+ 4:1
1415
+
1416
+ M
1417
+ 6.89
1418
+ Nr.:
1419
+ 2
1420
+ 5
1421
+ 13
1422
+ 8
1423
+ 1
1424
+ 19
1425
+ 19
1426
+
1427
+ 9
1428
+ 4
1429
+ N
1430
+ 21
1431
+ 13
1432
+ 19
1433
+ 26
1434
+ 1
1435
+ 21
1436
+ 14
1437
+ 26
1438
+ 11
1439
+ 25
1440
+ 19
1441
+ 25
1442
+ 0.52
1443
+ 0.52
1444
+ 0.54
1445
+ 0.52
1446
+ 0.53
1447
+ 0.54
1448
+ 0.49
1449
+ 0-18
1450
+ 0.54J
1451
+ 0.53
1452
+ 0.52
1453
+ 0.51
1454
+ M
1455
+ 45.20
1456
+ 1960
1457
+ N
1458
+ 11462%3
1459
+ k= 0.52 (0.515)Clette et al.
1460
+ and groups are given separately, exactly like in the tables published earlier in
1461
+ the Mitteilungen.
1462
+ This essential piece of information, which was so far entirely lost, will allow
1463
+ to determine for each day exactly how the observers were separating sunspot
1464
+ groups, on the one hand, and counting sunspots on the other hand. In partic-
1465
+ ular, it will help clarifying and quantifying the use of weighted sunspot counts,
1466
+ an alternate counting method adopted by the Zurich observers, in particular
1467
+ by Waldmeier himself. This alternate counting rule, in which large spots with
1468
+ extended penumbra are counted as more than 1, is suspected to be the cause of
1469
+ the 18% upward jump that affected the original SN series in 1947 (Clette et al.,
1470
+ 2014; Clette and Lef`evre, 2016; Svalgaard, Cagnotti and Cortesi, 2017). Indeed,
1471
+ recent double counts, using the regular Wolf formula or weighted counts, were
1472
+ made at the Specola Observatory during several years, between 2003 and 2015,
1473
+ and led exactly to the same inflation of the sunspot number as the one found in
1474
+ the Zurich series after 1947 (Clette et al., 2014; Svalgaard, Cagnotti and Cortesi,
1475
+ 2017). The recovered tables are thus providing the same kind of evidence, but
1476
+ over 35 years, including the epoch when the jump occurred.
1477
+ The tables also include the monthly and yearly mean k personal coefficients
1478
+ computed by the Zurich Observatory, a very important piece of metadata to
1479
+ understand how Zurich was treating the source observations. In particular, k
1480
+ coefficients are given for all Zurich assistants, and also the associated observers
1481
+ of the Specola station in Locarno. As all internal observers were assumed to align
1482
+ themselves on the primary observer (Waldmeier during that period), without
1483
+ applying any rescaling by a personal k coefficient, those internal yearly k values
1484
+ can bring invaluable insights on how and to what extent assistants managed to
1485
+ actually align themselves on the primary reference in their daily raw observa-
1486
+ tions. As this internal practice was introduced by Wolf, as soon as 1870, when he
1487
+ started to combine his own counts with those of his first assistants, this can thus
1488
+ help in the understanding of the Zurich number production well before 1945.
1489
+ In this collection, the most important tables are the yearly tables for the
1490
+ primary observer, Max Waldmeier (Figure 6). They provide unique information
1491
+ about three key aspects of the resulting Zurich sunspot numbers. Firstly, those
1492
+ tables were the master tables from which the daily sunspot number was derived
1493
+ for each day of the year. Therefore, they include raw counts and the resulting
1494
+ Wolf number for each day of the year. They thus provide a complete day-by-day
1495
+ census of how each daily SN was derived.
1496
+ Secondly, most of the days contain the personal counts by Waldmeier, who
1497
+ had the role of base reference. Therefore, this is the yearly table of raw group
1498
+ and sunspot counts by the primary observer, which allows tracking changes in
1499
+ Waldmeier’s own daily observations. For instance, Waldmeier was sometimes on
1500
+ mission at the coronagraph of the astronomical station in Arosa, then observing
1501
+ from high altitude with an alternate telescope. The counts for those days may de-
1502
+ viate from the base reference scale defined by the standard Fraunhofer refractor
1503
+ used on the front terrace of the observatory in downtown Zurich. Fortunately,
1504
+ Waldmeier marked the days when he observed from Arosa, which will allow
1505
+ analyzing the consequences of this site alternation.
1506
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 12
1507
+
1508
+ Sunspot Number Database and the 1947 Zurich Discontinuity
1509
+ Figure 6. Facsimile of the primary table for Max Waldmeier in 1957, extracted from the
1510
+ complete 1945 – 1980 collection of source tables (ETH catalogue entry Hs1304.8:13.2; DOI:
1511
+ 10.7891/e-manuscripta-87246). Such tables are particularly important, as Waldmeier was
1512
+ the pilot observer of the Zurich sunspot number over that 35-year interval. They include
1513
+ various annotations that allow retracing day-by-day, how Waldmeier himself was observing,
1514
+ and which alternate number was used on days when he could not observe. They thus contain
1515
+ essential information about the Zurich data processing that cannot be found in any other
1516
+ Zurich document.
1517
+ Thirdly, the days in which Waldmeier could not observe are filled with num-
1518
+ bers from local assistants or from the stations in Arosa or Locarno (Karl Rapp
1519
+ until 1 April 1957 and the Specola Observatory starting on 1 October 1957).
1520
+ As can be seen in Figure 6, those days are also marked in the tables with a
1521
+ symbol identifying which alternate observer was used. Finally, as those tables
1522
+ record the provisional values issued immediately at the end of each month, on the
1523
+ remaining missing days when none of the local stations had managed to observe
1524
+ the Sun, the numbers were simply interpolated between adjacent days, and those
1525
+ dates are marked as “interpolated”. These are the few days which were later
1526
+ replaced by definitive values calculated using k-normalized Wolf numbers from
1527
+ the auxiliary stations, according to a standard method, of which the principle
1528
+ can be reconstructed from a few reference documents (Friedli, 2020).
1529
+ Those master tables thus provide almost all the keys that were badly miss-
1530
+ ing to reconstruct the method and practices implemented in Zurich, and most
1531
+ probably, to retrace persisting changes or local inconsistencies in the Zurich
1532
+ processing.
1533
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 13
1534
+
1535
+ Methode:
1536
+ Beobachter:
1537
+ Jahr: ...
1538
+ T
1539
+ II
1540
+ III
1541
+ IV
1542
+ V
1543
+ VI
1544
+ VII
1545
+ VIII
1546
+ IX
1547
+ X
1548
+ XI
1549
+ XII
1550
+ Tmnisiris he kdaf'vzah lm.
1551
+ R
1552
+ g, f
1553
+ R
1554
+ R
1555
+ g, f
1556
+ R
1557
+ g, f
1558
+ R
1559
+ g,f
1560
+ g,f
1561
+ R
1562
+ R
1563
+ g, f
1564
+ R
1565
+ g, f
1566
+ R
1567
+ g, f
1568
+ R
1569
+ R
1570
+ 1954
1571
+ g, f
1572
+ A
1573
+ g, f
1574
+ doc
1575
+ 244/20.242
1576
+ 150
1577
+ 105
1578
+ 14.145,
1579
+ 153
1580
+ 140
1581
+ 118
1582
+ 13.134),
1583
+ [M,202 ]
1584
+ 187
1585
+ 15.2M
1586
+ 216
1587
+ [9.160,]
1588
+ [12.114,
1589
+ dr.
1590
+ is.
1591
+ (180)
1592
+ 13.6oz
1593
+ 11.1642
1594
+ 164
1595
+ 13.130
1596
+ (121)
1597
+ 14.2002
1598
+ 204
1599
+ 2
1600
+ [12.152,]
1601
+ 20.200
1602
+ 240
1603
+ 3-4
1604
+ 13,244,
1605
+ 206
1606
+ Bemerkungen : ...mumliri.
1607
+ [13.209,]
1608
+ 9.1382
1609
+ 131
1610
+ 3
1611
+ 12.85,
1612
+ 123
1613
+ 12.226,
1614
+ 20.215,
1615
+ Ghz
1616
+ 45
1617
+ 10.1
1618
+ 121
1619
+ 3.130,
1620
+ 106
1621
+ 18.268,
1622
+ 33
1623
+ (210)
1624
+ 10.362
1625
+ 10.182
1626
+ 19.144
1627
+ 12.882
1628
+ 12.110,
1629
+ h8't
1630
+ 13.230
1631
+ 230
1632
+ 200
1633
+ 18.250
1634
+ .Objektivoffnung:
1635
+ [20.20b.]
1636
+ 67
1637
+ 16.83
1638
+ 10.80
1639
+ 14.183
1640
+ 18.248
1641
+ daz
1642
+ 17.189
1643
+ 1313,
1644
+ 9.136,
1645
+ da
1646
+ Sonnenfleckenbeobachtungen
1647
+ 1128,
1648
+ 8.160,
1649
+ 8
1650
+ 15.176,
1651
+ 150
1652
+ 12.122
1653
+ 10.145
1654
+ 250
1655
+ 13130
1656
+ 18
1657
+ 1M.130
1658
+ 9
1659
+ .
1660
+ 10.132
1661
+ 163
1662
+ 8.190,
1663
+ 162
1664
+ 6.120,
1665
+ 12.81,
1666
+ 214
1667
+ 13.149
1668
+ 158
1669
+ 1313
1670
+ 195
1671
+ 1
1672
+ 15.1602
1673
+ 9.160,
1674
+ 9.230,
1675
+ [2.144
1676
+ 14.98
1677
+ 10
1678
+ 150
1679
+ 152471
1680
+ Its 1304.8:13.2
1681
+ 11
1682
+ 13112
1683
+ 145
1684
+ 10.88
1685
+ 113
1686
+ 2
1687
+ 10.235,
1688
+ 1.124
1689
+ 140
1690
+ 110
1691
+ 12.130
1692
+ 12845678022230
1693
+ (16)
1694
+ (160)
1695
+ 9702
1696
+ 17.263,
1697
+ 260
1698
+ 20.16b
1699
+ 13.1
1700
+ 11.87,
1701
+ NA
1702
+ 160
1703
+ 忆忆忆
1704
+ 22.1
1705
+ 14
1706
+ [9.70,]
1707
+ 140
1708
+ 13.204]
1709
+ 10.165,
1710
+ M.1152
1711
+ 1
1712
+ 169
1713
+ 44.192]
1714
+ 10
1715
+ 1b,239,
1716
+ yr
1717
+ 139
1718
+ 11.134
1719
+ 181
1720
+ 1948
1721
+ M448
1722
+ 121
1723
+ 46.287
1724
+ 100
1725
+ .Vergr....
1726
+ 126
1727
+ (120
1728
+ 13.116
1729
+ 8h
1730
+ 15.1602
1731
+ 186
1732
+ [18.184]
1733
+ 150
1734
+ 14.102
1735
+ .
1736
+ 150
1737
+ 8.102
1738
+ 10
1739
+ 13,296
1740
+ 6.90
1741
+ 19.283
1742
+ 10
1743
+ 149
1744
+ 16.315
1745
+ 18.184
1746
+ 15.175
1747
+ 13,288
1748
+ 183
1749
+ 15.204*
1750
+ 12.138
1751
+ 6yx.
1752
+ 13.155
1753
+ dn
1754
+ 18.197
1755
+ 16.1463
1756
+ dn
1757
+ 4.195,
1758
+ (126)
1759
+ 12.122
1760
+ 104
1761
+ 15.249
1762
+ 20.235
1763
+ 11.282,
1764
+ 22
1765
+ 35
1766
+ 12.232
1767
+ 20.3754
1768
+ 150
1769
+ .. mdue. hidgnelhitit... Nr.:
1770
+ 170
1771
+ 138
1772
+ 127
1773
+ 13.136,
1774
+ 15.333
1775
+ 10
1776
+ 200
1777
+ 24.355
1778
+ 17.160
1779
+ 864
1780
+ 1.134
1781
+ 146/10.113
1782
+ 128
1783
+ 17.202
1784
+ 21.307
1785
+ (Otl)
1786
+ hhzhl
1787
+ 42.224,1
1788
+ 3
1789
+ 10
1790
+ Sonnendurchmesser:
1791
+ 12.10%
1792
+ 20.277
1793
+ 11.1463
1794
+ (1%0)
1795
+ 14,256
1796
+ 238
1797
+ 171
1798
+ 19.259,
1799
+ 19.1203
1800
+ 14.683
1801
+ 125
1802
+ 12b
1803
+ 12.1234
1804
+ 14+)
1805
+ 12.196h
1806
+ 20.234,
1807
+ 186
1808
+ 29
1809
+ 1215,
1810
+ 117
1811
+ 16.135
1812
+ 154
1813
+ [12.184]
1814
+ 142
1815
+ 50
1816
+ 23.228,
1817
+ 30
1818
+ 9.513
1819
+ 88
1820
+ 15136
1821
+ 155
1822
+ 14.143,]
1823
+ 142
1824
+ M2,244,1
1825
+ 213
1826
+ 171
1827
+ 21340
1828
+ 33011.1bog
1829
+ 162
1830
+ 24.217,
1831
+ 11.43,
1832
+ 92
1833
+ 12.1221
1834
+ M45
1835
+ 15.40,]
1836
+ 152
1837
+ 22,290
1838
+ 306
1839
+ 21.215,
1840
+ 31
1841
+ 4320
1842
+ 5255
1843
+ $108
1844
+ 6164
1845
+ 6023
1846
+ 5041
1847
+ 330
1848
+ 4867
1849
+ 8149
1850
+ 62.18
1851
+ 7251
1852
+ 32.69
1853
+ N
1854
+ 28
1855
+ 31
1856
+ 30
1857
+ [] +8
1858
+ 31
1859
+ 31
1860
+ 31
1861
+ [13]+4+2*
1862
+ 30
1863
+ [2] +3
1864
+ 30
1865
+ 30
1866
+ 31
1867
+ B] +16++*
1868
+ 10
1869
+ [28]
1870
+ 31
1871
+ [4] +13
1872
+ 1a7+12
1873
+ 3
1874
+ [10]+ 1
1875
+ 34
1876
+ 152.3
1877
+ 145.2
1878
+ 164.8
1879
+ 105.6
1880
+ 194.3
1881
+ 12.6
1882
+ M
1883
+ 157.0
1884
+ 944.3
1885
+ 116.8
1886
+ 262.9
1887
+ 233.9
1888
+ 1954
1889
+ 69318
1890
+ 355
1891
+ 180
1892
+ 29,6.02 184) -182
1893
+ ponoredus fora mMd
1894
+ 30.b[12.244,]-200Clette et al.
1895
+ Figure 7. Timelines of the active observing periods of all Zurich observers. In red (top group),
1896
+ the primary observers and in orange (bottom group), the assistants. In purple, the observers
1897
+ of the auxiliary station in Locarno, who were considered as members of the Zurich core group.
1898
+ The vertical shaded band marks World War II and the vertical dashed line indicates the time
1899
+ when the 1947 scale jump occurs in the original SN series. The bottom plot gives the number
1900
+ of active Zurich observers for each year.
1901
+ 5. A Major Disruption: Zurich Observers
1902
+ Although the above data still need to be digitized, we now have the full list
1903
+ of observers who contributed year-by-year to the Zurich sunspot number up to
1904
+ 1980. By assembling the timelines of each individual observer, we could map
1905
+ how their observing period overlaps with other observers. Figure 7 retraces the
1906
+ observing periods for all Zurich primary observers and all the assistants, between
1907
+ 1850 and 1960.
1908
+ In this figure, Schwabe is included among the assistants (orange group) al-
1909
+ though he was an external observer. Indeed, before Wolf could recruit his first
1910
+ assistants in the newly founded Zurich Observatory in 1865, he used Schwabe’s
1911
+ numbers as primary alternate source for filling the gaps in his own observations,
1912
+ and even initially considered Schwabe’s numbers as fully equivalent to his own
1913
+ (personal k = 1) before 1859. We also included K. Rapp in the associated Lo-
1914
+ carno station (purple group) although he contributed before the establishment
1915
+ of the Specola Observatory by Waldmeier in 1957, starting in 1940. Indeed,
1916
+ both Brunner and Waldmeier always included Rapps’s data together with the
1917
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 14
1918
+
1919
+ Wolf ST
1920
+ WolfPR
1921
+ Wolfer
1922
+ Brunner,wlo.
1923
+ Waldmeier
1924
+ Schwabe
1925
+ Fretz
1926
+ Weilenmann
1927
+ Mever
1928
+ Billwiller
1929
+ Fauquez
1930
+ Hoffler
1931
+ Broger
1932
+ Observers
1933
+ Biske
1934
+ Buser Arosa
1935
+ Brunner Ass
1936
+ Muller
1937
+ Beck
1938
+ Muller,E
1939
+ Wile
1940
+ Lemans
1941
+ Scheidlegger
1942
+ Frick
1943
+ Hermes
1944
+ Riesen
1945
+ Zelenka
1946
+ Durst
1947
+ Pfister
1948
+ Rapp
1949
+ Keller
1950
+ Schmidt
1951
+ ilszak
1952
+ Cbrtesi
1953
+ Pittini
1954
+ 1840
1955
+ 1860
1956
+ 1880
1957
+ 1900
1958
+ 1920
1959
+ 1940
1960
+ 1960
1961
+ 1980
1962
+ Time (years)Sunspot Number Database and the 1947 Zurich Discontinuity
1963
+ Zurich data in the Mitteilungen, even when the data of all the other external
1964
+ stations were not published anymore. Rapp was also trained to follow the Zurich
1965
+ observing methods, and can thus be considered as an internal member of the
1966
+ Zurich group of stations. Finally, although Waldmeier, the last primary observer
1967
+ (red group), started observing as an assistant in 1936, his participation was
1968
+ partly interrupted, as explained below.
1969
+ For the period before 1944, the resulting chronology reveals a few interesting
1970
+ facts. In particular, one of Wolfer’s assistants, Max Broger, had a very long
1971
+ observing career (40 years, 1896 to 1935). He actually observed over more years
1972
+ than several primary observers. As he observed in parallel with Wolfer and then
1973
+ with Brunner, his observations can provide an essential link to check the Wolfer-
1974
+ Brunner homogeneity.
1975
+ This touches the fundamental issue of the weighted sunspot counts used by
1976
+ the Zurich Observatory, as mentioned in the previous section. Indeed, Clette
1977
+ et al. (2014), Clette and Lef`evre (2016), and Svalgaard, Cagnotti and Cortesi
1978
+ (2017) conclude that this alternate counting method is the most likely cause of
1979
+ the 1947 scale jump in the original SN series. However, the timing and sharpness
1980
+ of the jump seem to be contradicted by the fact that this weighting practice was
1981
+ introduced progressively well before 1947, in the early 20th century by Wolfer
1982
+ (Cortesi et al., 2016; Svalgaard, Cagnotti and Cortesi, 2017). Although Wolfer
1983
+ himself never used it for his own counts (Svalgaard, Cagnotti and Cortesi, 2017),
1984
+ this practice was implemented to help assistants aligning their raw counts on the
1985
+ reference of Wolfer, the primary observer. This could be verified by taking the
1986
+ counts on occasional days when only a single big spot was visible on the Sun.
1987
+ Then, when one of Wolfer’s assistants, W.O. Brunner, took over as director and
1988
+ as primary observer in 1926, he continued to use weighted counts, but this time as
1989
+ primary observer. Although this marks the moment when the break with Wolf’s
1990
+ original methodology occurred, Brunner managed to maintain the stability of his
1991
+ counts, as found by Svalgaard, Cagnotti and Cortesi (2017). When Waldmeier
1992
+ took his succession in 1945, after being assistant for a few years, he thus just
1993
+ continued an established practice. So, apparently, this chronology does not match
1994
+ at all the abrupt occurrence of a jump in 1947, two years after Waldmeier became
1995
+ the new reference observer, a status that he kept for the next 35 years without
1996
+ any other noticeable transition.
1997
+ Now, by retracing the composition of the network of collaborating observers,
1998
+ we found evidence of a major transition that occurred between 1945 and 1947.
1999
+ The change was twofold. Firstly, at the Zurich Observatory, although Waldmeier
2000
+ became director in 1945, the former director, W.O. Brunner, actually continued
2001
+ observing during one year until December 1945 (see Figure 7). Moreover, his
2002
+ primary assistant, W. Brunner-Hagger, who was part of the team since 1928,
2003
+ continued until August 1946. This actually marks the moment when the link
2004
+ with the former Zurich core team is broken. As shown in Figure 7, in 1945,
2005
+ Waldmeier starts to recruit new assistants. However, the first one, Beck, worked
2006
+ in parallel with Brunner only during a few months, when solar activity was
2007
+ rather low, and he left the observatory already in 1949. Then follows a succession
2008
+ of other assistants who also leave after only a few years. This means that the
2009
+ overlap between the old and new team was extremely limited and that for several
2010
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 15
2011
+
2012
+ Clette et al.
2013
+ years the Zurich team was very unstable, contrary to the Brunner team that had
2014
+ remained unchanged for nearly 20 years.
2015
+ So, the internal stability of the Zurich system during the 1945 Brunner-
2016
+ Waldmeier transition rested only on Waldmeier himself. This is unprecedented
2017
+ in the entire Zurich history. Indeed, the stability of the Wolf-Wolfer transition
2018
+ benefited from a 17-year period, during which Wolf and Wolfer observed jointly.
2019
+ Although the Wolfer-Brunner joint period was shorter (3 years, 1926-1928),
2020
+ another assistant, Broger brought a solid reference to bridge the Wolfer-Brunner
2021
+ transition, as he had worked jointly with Wolfer for 30 years, since 1896, and
2022
+ then continued for 10 years together with Brunner, until 1935.
2023
+ Finally, although Waldmeier started collaborating with the Zurich Obser-
2024
+ vatory in 1936, he did not contribute during three years, from 1939 to 1941
2025
+ because of the onset of World War II. Moreover, as he was strongly involved in
2026
+ coronagraph observations, he worked for a large part of his time at the Arosa
2027
+ station, rather than as an ordinary assistant observing side by side with Brunner
2028
+ in Zurich. We also note that the last years before 1946 fell in a minimum of
2029
+ the solar cycle, when the low sunspot activity makes mutual comparisons less
2030
+ accurate. Therefore, all those circumstances reduced the effective overlap period
2031
+ between Brunner and Waldmeier.
2032
+ 6. A Major Disruption: Auxiliary Stations
2033
+ In parallel with the Zurich internal transition, another major and unprecedented
2034
+ disruption also occurred just after 1945, but now for the Zurich auxiliary sta-
2035
+ tions. Although those external data were not at the core of published sunspot
2036
+ numbers, they definitely provided a wide ensemble of independent data series
2037
+ against which the Zurich numbers were continuously compared. Moreover, all
2038
+ external stations derived their counts using Wolf’s original definition, without
2039
+ any weighting. Therefore, the auxiliary data were not affected by the introduc-
2040
+ tion of Zurich’s internal weighting practice, and in that sense, they provided
2041
+ the only base against which the Zurich team could infer that their weighted
2042
+ numbers remained coherent with the unwheighted Wolf numbers that formed
2043
+ the original SN series until Wolfer’s retirement in 1926 (Clette et al., 2014;
2044
+ Svalgaard, Cagnotti and Cortesi, 2017). This continuous bench-marking could
2045
+ only work if at any given time, there was a large number of active auxiliary
2046
+ stations which had already contributed data during many past years, preferably
2047
+ over one or more full solar cycles.
2048
+ Figure 8 shows the timelines of all auxiliary stations that contributed obser-
2049
+ vations to the Zurich Observatory since the mid-19th, over a duration longer
2050
+ than 11 years, i.e. a full solar cycle. This subset of long-duration stations is
2051
+ indeed the most important for the long-term calibration and stability of the
2052
+ series. We distinguished the professional observatories from the individual ama-
2053
+ teur observers, which reveals a deep evolution in the composition of the Zurich
2054
+ observing network. While a large majority of stations were individual observers
2055
+ before World War II (WWII), professional observatories dominate the network
2056
+ after WWII.
2057
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 16
2058
+
2059
+ Sunspot Number Database and the 1947 Zurich Discontinuity
2060
+ Figure 8. Timelines of the active observing periods of all external stations that sent data
2061
+ to Zurich until the observatory was closed in 1980. The stations are ordered according to the
2062
+ starting date of their series. The top series (dark blue) gathers the professional observatories
2063
+ and the bottom group (light blue) gathers the individual amateur observers. The vertical
2064
+ shaded band marks World War II and the vertical dashed line indicates the 1947 scale jump
2065
+ in the original Zurich series. The bottom plot gives the total number of active stations per
2066
+ year. The light-blue section indicates unpublished data that have not been recovered yet in
2067
+ the Zurich archives.
2068
+ However, a much more drastic change is also caused by WWII. In Figure 8,
2069
+ we see that, starting in 1938, long-time contributing stations cease to send data,
2070
+ one after the other. When WWII ended, none of those stations, which gave an
2071
+ external benchmark for the earlier Zurich SN, had survived. During the war,
2072
+ given the steep drop of contributing stations, Brunner and Waldmeier called to
2073
+ the rescue a large number of local Swiss amateur astronomers, but this local
2074
+ network was quickly changing, as most observers contributed only for one year
2075
+ or at best a few years (therefore, they do not appear in Figure 8). None of those
2076
+ observers were long-term observers in the preceding Zurich network established
2077
+ by Wolfer and Brunner.
2078
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 17
2079
+
2080
+ Observers
2081
+ Obs/year
2082
+ 40
2083
+ 20
2084
+ 0
2085
+ 1860
2086
+ 1880
2087
+ 1900
2088
+ 1920
2089
+ 1940
2090
+ 1960
2091
+ 1980
2092
+ Time (years)Clette et al.
2093
+ Then, just after the war, Waldmeier quickly undertakes the construction of
2094
+ a new international network. The number of stations grows steeply and reaches
2095
+ about 50 stations (see Figure 4), a number that will remain rather stable until
2096
+ 1980. As noted before, this new network includes many professional observa-
2097
+ tories, which since then, have delivered observations over very long durations.
2098
+ In fact, some of them are still contributing nowadays to the worldwide SILSO
2099
+ network, and thus provide an invaluable long-term reference spanning up to 75
2100
+ years, since 1945. However, none of those new stations were part of the pre-
2101
+ 1940 long-term network. Therefore, the context in which the sunspot number
2102
+ was produced after 1945 was largely disconnected from the context surrounding
2103
+ this production before 1940. This further weakened the thin internal continuity
2104
+ within the Zurich Observatory.
2105
+ In order to give a more quantitative measure of this second disruption, we
2106
+ summed the number of past observed years already accumulated by all stations
2107
+ that were active on a given year. Figure 9 (top plot) shows the temporal evolution
2108
+ of this total number, which gives a measure of the total amount of past informa-
2109
+ tion that the Zurich Observatory had at its disposal for past comparisons and the
2110
+ verification of their stability relative to independent observers. As expected, the
2111
+ evolution is characterized by a steady increase in the total amount of available
2112
+ data. The only interruption in this trend is the steep drop during WWII, when
2113
+ the count suddenly drops back to the values of the early 20th century. After
2114
+ WWII, there is a recovery, but it takes about 15 years before the amount of
2115
+ past reference data comes back to the value just before WWII. Afterwards, the
2116
+ amount of past data from active stations continues to grow and finally stabilizes
2117
+ in the 1970’s.
2118
+ If we divide this total number of past observed years by the number of active
2119
+ stations, we obtain the mean past duration over which stations active at a given
2120
+ time have been observing before that time (Figure 9; bottom plot). This mean
2121
+ duration quantifies the past memory built into the SN system. Between 1860 and
2122
+ 1890, this mean duration increases. This marks the progressive recruiting of the
2123
+ first auxiliary observers by Wolf. Then, the mean duration largely stabilizes until
2124
+ 1926, i.e. the Wolfer-Brunner transition. The only feature is a temporary peak
2125
+ associated with WWI, which thus left only a minor imprint in this evolution.
2126
+ Thanks to the many new observers recruited after WWI, and who continue
2127
+ observing until WWII, the mean duration grows to almost 15 years in 1938.
2128
+ Then, WWII again produces a steep drop, by a factor of two. In 1945 and the
2129
+ decade that follows, the mean memory range falls back to about 7 years, a level
2130
+ that was not encountered since 1880, i.e. the epoch when Wolf was still recruiting
2131
+ his first associated observers. After this dramatic shortening of the past memory,
2132
+ there was a steady recovery. However, it is only around 1965, 20 years after
2133
+ WWII, that the pre-WWII mean memory range is recovered. It continues to
2134
+ rise until 1980, when the Zurich Observatory was closed. This continuous trend
2135
+ largely rests on the long-term contribution from the professional observatories
2136
+ that entered the network just after WWII. Figure 9 thus illustrates that the
2137
+ years immediately following WWII were abruptly affected by a major loss of
2138
+ past references, and that this loss had no equivalent in the history of the Zurich
2139
+ SN number.
2140
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 18
2141
+
2142
+ Sunspot Number Database and the 1947 Zurich Discontinuity
2143
+ Figure 9. Evolution of the amount of past data available for each year at Zurich. The upper
2144
+ plot gives the total number of preceding observed years by all the stations active on a given
2145
+ year. After an almost continuous increase, a sharp drop occurs just after WWII. The lower
2146
+ plot shows the mean number of preceding observed years per station, for all stations active on
2147
+ a given year. The rise after 1925 indicates the growing participation of stations with very long
2148
+ duration, but a drop to 19th century levels marks the late 1940’s and early 1950’s.
2149
+ Although the above indicators are indirect contextual elements, the fact that
2150
+ this unique double discontinuity in the history of the Zurich sunspot number
2151
+ production coincides with the jump revealed by the SN series itself is a very
2152
+ strong indication that the sharp SN scale jump was a consequence of this abrupt
2153
+ and radical change in the base data input. Until 1946, the potential biasing effect,
2154
+ which was present since the weighted counting method had been introduced,
2155
+ had been kept under control thanks to the double stabilizing effect of long-term
2156
+ internal and external observers who did not change their counting practices.
2157
+ This stabilizing continuity was clearly broken between 1946 and 1947, which
2158
+ suddenly opened the way for the biasing effect inherent to the weighted counts, as
2159
+ evidenced by the 1947 upward jump. This new contextual evidence thus explains
2160
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 19
2161
+
2162
+ 800
2163
+ Amount of past data
2164
+ 600
2165
+ 400
2166
+ 200
2167
+ 0
2168
+ 1860
2169
+ 1880
2170
+ 1900
2171
+ 1920
2172
+ 1940
2173
+ 1960
2174
+ 1980
2175
+ Time (years)
2176
+ 25
2177
+ duration (years)
2178
+ 20
2179
+ 15
2180
+ past
2181
+ 10
2182
+ Mean
2183
+ 5
2184
+ 0
2185
+ 1860
2186
+ 1880
2187
+ 1900
2188
+ 1920
2189
+ 1940
2190
+ 1960
2191
+ 1980
2192
+ Time (years)Clette et al.
2193
+ simultaneously the delayed effect of the weighting practice and the abruptness
2194
+ of the jump.
2195
+ 7. Conclusion
2196
+ Over just a few years, we thus achieved major progress in the construction of
2197
+ the SN database. Now, about two thirds of the existing source data are recorded
2198
+ in digital form. We can now also report on the recovery of a major missing part
2199
+ of this collection, the yearly source tables of the Waldmeier era from 1945 to
2200
+ 1980. This fills the main gap in the SN database and provides the missing link
2201
+ between the contemporary index and the rest of this long series before 1945
2202
+ and back to 1700. While significant work is still needed to digitize those newly
2203
+ recovered documents, the global panorama that the SN database now offers
2204
+ made it possible to establish the complete chronology of contributing stations
2205
+ and observers. We found that the two world wars had deep consequences on
2206
+ the production of the SN by the Zurich Observatory. WWI brought a major
2207
+ expansion of the network of auxiliary observers, but without disrupting the
2208
+ internal practices and organization of the Zurich sunspot observers.
2209
+ On the other hand, after WWII, we find a double disruption in the Zurich
2210
+ system. A complete renewal of the Zurich observing team occurred between 1946
2211
+ and 1947, with almost no overlap between the old team, which had remained
2212
+ mostly unchanged for more than 20 years, and the new team progressively built
2213
+ by Waldmeier between 1946 and 1950. Moreover, after the loss of most of the
2214
+ external observers active over the decades preceding WWII, between 1938 and
2215
+ 1945, an entirely new worldwide network is established after the war with entirely
2216
+ different stations. The narrow correspondence of this drastic and unprecedented
2217
+ structural change with the 18% SN scale-jump diagnosed in the SN series pro-
2218
+ vides strong historical evidence that a sharp jump in the SN exactly at that
2219
+ moment is a real and logical consequence. Although the suspected cause, i.e. the
2220
+ introduction of the size-based weighting of the spot counts, was introduced much
2221
+ earlier in the practice of Zurich assistants, our now-complete timeline explains
2222
+ why it only led to actual consequences when this sharp and unprecedented
2223
+ discontinuity in the Zurich system took place.
2224
+ All together, those recovered tables open the way to future major steps in the
2225
+ end-to-end calibration of the sunspot number series. Full statistical diagnostics of
2226
+ the actual stability of each separate Zurich observer, which was simply postulated
2227
+ since the epoch of Wolf, will allow disentangling in detail the causes of anomalies
2228
+ found in the heritage series. Much more importantly, those data open the way for
2229
+ a full recalculation of the sunspot number, starting again from the full set of raw
2230
+ input data. This recalculation will use new advanced computer-based processing
2231
+ methods, which exploit the entire set of data instead of mostly using the numbers
2232
+ of the single primary observer, as was the case in the original Zurich series. This
2233
+ should improve further the stability and accuracy of the sunspot number in the
2234
+ interval 1945-1980, where so far, SN Version 2 consisted only in a correction
2235
+ factor applied to the original Zurich SN series. This would also finally bridge the
2236
+ gap separating the current international sunspot number from the early epoch
2237
+ before 1945.
2238
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 20
2239
+
2240
+ Sunspot Number Database and the 1947 Zurich Discontinuity
2241
+ However, a partial gap still remains. Although all observations made in Zurich
2242
+ from Wolf in 1849 to Waldmeier in 1980 now finally form a complete and unin-
2243
+ terrupted thread, we still miss the unpublished archives from the Brunner era.
2244
+ Therefore, efforts are still continuing to try recovering the last missing data from
2245
+ the network of the auxiliary stations between 1919 and 1944. Hopefully, this will
2246
+ finally bring the last touch to this digital database that will feed sunspot science
2247
+ and long-term solar-cycle studies for many years.
2248
+ Acknowledgments
2249
+ This work and the team of the World Data Center SILSO (http://www.
2250
+ sidc.be/silso/), which produces the international sunspot number and maintains the sunspot
2251
+ database used in this study, are supported by Belgian Solar-Terrestrial Center of Excellence
2252
+ (STCE, http://www.stce.be) funded by the Belgian Science Policy Office (BelSPo). This work
2253
+ was also supported by the International Space Science Institute (ISSI, Bern, Switzerland) via
2254
+ the International Team 417 “Recalibration of the Sunspot Number Series”, chaired by M.
2255
+ Owens and F. Clette (https://www.issibern.ch/teams/sunspotnoser/). Specola Solare Ticinese
2256
+ acknowledges the financial support provided by Canton Ticino through the Swisslos fund
2257
+ and by the Federal Office of Meteorology and Climatology MeteoSwiss, in the framework of
2258
+ GCOS. We would like to thank Thomas Friedli for digitizing and making available the original
2259
+ sourcebook by R. Wolf via the web site of the Rudolf Wolf Society (http://www.wolfinstitute.
2260
+ ch). We also thank the ETH Library (https://library.ethz.ch/en/), and in particular Evelyn
2261
+ Boesch, of the Hochschularchiv, for the deep searches in the catalogues and archives, and for
2262
+ giving us access to original historical documents from the Zurich Observatory. We also thank
2263
+ Olivier Lemaˆıtre for developing the software and computer database, Stephen Fay and Shreya
2264
+ Bhattasharya for the quality control, and last but not least, we are also grateful to the summer-
2265
+ job students who patiently and carefully encoded all numbers tabulated in the original paper
2266
+ documents: Elfaniel Hermel, Esther-Lauren M’Bilo and Mael Panouillot.
2267
+ Disclosure of Potential Conflicts of Interest
2268
+ The authors declare that they have no conflicts of interest.
2269
+ References
2270
+ Brunner, W., 1927. 2. Die Sonnenfleckenstatistik f¨ur das Jahr 1926, Astron. Mitteil. Eidgn.
2271
+ Sterw. Z¨urich, CXVI, 179-194, Sept. 1927.
2272
+ Chatzistergos, T., Usoskin, I.G., Kovaltsov, G.A., Krivova, N.A., Solanki, S.K., 2017.
2273
+ New reconstruction of the sunspot group numbers since 1739 using direct calibration
2274
+ and “backbone” methods, Astron. Astrophys., 602, id.A69, 18 pp., DOI 10.1051/0004-
2275
+ 6361/201630045
2276
+ Clette, F. and Lef`evre, L., 2016. The new sunspot number: Assembling all corrections, Solar
2277
+ Phys., 291, 2629-2651. DOI 10.1007/s11207-016-1014-y.
2278
+ Clette, F., Berghmans, D., Vanlommel, P., Van der Linden, R. A. M., Koeckelenbergh, A.,
2279
+ Wauters, L., 2007. From the Wolf number to the International Sunspot Index: 25 years of
2280
+ SIDC Adv. Space Res., 40, 919-928, DOI 10.1016/j.asr.2006.12.045
2281
+ Clette, F., Svalgaard, L., Vaquero, J.M. and Cliver, E.W., 2014. Revisiting the Sunspot Num-
2282
+ ber: a 400-year perspective on the solar cycle, Space Sci. Rev., 186/1-4, 35-103, DOI
2283
+ 10.1007/s11214-014-0074-2.
2284
+ Clette, F., Lef`evre, L., Cagnotti, M., Cortesi and S., Bulling, A., 2016. The revised Brussels–
2285
+ Locarno sunspot number (1981 – 2015), Solar Phys., 291, 2733-2761, DOI 10.1007/s11207-
2286
+ 016-0875-4.
2287
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 21
2288
+
2289
+ Clette et al.
2290
+ Cortesi, S., Cagnotti, M., Bianda, M., Ramelli, R., Manna, A., 2016. Sunspot Observations and
2291
+ Counting at Specola Solare Ticinese in Locarno since 1957, Solar Phys., 291, 3075-3080,
2292
+ DOI 10.1007/s11207-016-0872-7.
2293
+ Dudok de Wit, T., Lef`evre, L., Clette, F., 2016. Uncertainties in the Sunspot Numbers: Estima-
2294
+ tion and Implications, Solar Phys., 291/9-10, 2709-2731, DOI 10.1007/s11207-016-0970-6.
2295
+ Friedli, T.K., 2016. Sunspot Observations of Rudolf Wolf from 1849 – 1893, Solar Phys.,
2296
+ 291/9-10, 2505-2517, DOI 10.1007/s11207-016-0907-0.
2297
+ Friedli, T.K., 2020. Recalculation of the Wolf Series from 1877 to 1893 , Solar Phys., 295/6,
2298
+ art. 72, DOI 10.1007/s11207-020-01637-9 .
2299
+ Hoyt, D.V. and Schatten, K.H.: 1998a. Group Sunspot Numbers: A new solar activity
2300
+ reconstruction, Solar Phys., 179, 189, DOI: 10.1023/A:1005007527816
2301
+ Hoyt, D.V., Schatten, K.H.: 1998b. Group Sunspot Numbers: A new solar activity reconstruc-
2302
+ tion, Solar Phys., 181, 491, DOI: 10.1023/A:1005056326158
2303
+ Mu˜noz-Jaramillo, A., Vaquero, J. M. 2019. Visualization of the challenges and limitations of
2304
+ the long-term sunspot number record, Nature Astronomy, 3, 205-211, DOI: 10.1038/s41550-
2305
+ 018-0638-2
2306
+ Stenflo, J.O., 2016. Transition of the Sunspot Number from Zurich to Brussels in 1980: A
2307
+ personal Perspective, Solar Phys., 291, 2487-2492, DOI 10.1007/s11207-015-0837-2.
2308
+ Svalgaard, L., 2020. Several Populations of Sunspot Group Numbers – Resolving a Conundrum,
2309
+ eprint arXiv:2011.05356.
2310
+ Svalgaard, L., Schatten, K. H. 2016. Reconstruction of the Sunspot Group Number: The
2311
+ Backbone Method, Solar Phys., 291, 9-10, 2653-2684, DOI: 10.1007/s11207-015-0815-8
2312
+ Svalgaard, L., Cagnotti, M., Cortesi, S., 2017. The Effect of Sunspot Weighting, Solar Phys.,
2313
+ 292, 34 (19pp), DOI 10.1007/s11207-016-1024-9.
2314
+ Usoskin, I., Kovaltsov, G., Kiviaho, W., 2021. Robustness of Solar-Cycle Empirical Rules
2315
+ Across Different Series Including an Updated Active-Day Fraction (ADF) Sunspot Group
2316
+ Series, Sol Phys., 296, 13, DOI 10.1007/s11207-020-01750-9
2317
+ Vaquero, J.M., Svalgaard, L., Carrasco, V.M.S., Clette, F., Lef`evre, L., Gallego, M.C., Arlt, R.,
2318
+ Aparicio, A.J.P., Richard, J.-G., Howe, R., 2016. A Revised Collection of Sunspot Group
2319
+ Numbers, Solar Phys., 291, 3061-3074, DOI 10.1007/s11207-016-0982-2.
2320
+ Waldmeier,
2321
+ M.,
2322
+ 1980.
2323
+ Aufzeichnungen
2324
+ zur
2325
+ Bestimmung
2326
+ der
2327
+ Z¨urcher
2328
+ Sonnenflecken-
2329
+ Relativzahlen. Tabellenbl¨atter ab 1945, mit Werten ermittelt in Z¨urich, Locarno und
2330
+ Arosa, sowie aufgezeichnet f¨ur Observatorien weltweit, ETH-Bibliothek, Hochschularchiv,
2331
+ Hs 1304.8, 0.4 Laufmeter, unpublished manuscript, Zurich.
2332
+ Willamo, T., Usoskin, I.G., Kovaltsov, G.A., 2017. Updated sunspot group number reconstruc-
2333
+ tion for 1749–1996 using the active day fraction method, Astron. Astrophys., 601, id.A109,
2334
+ 12 pp., DOI 10.1051/0004-6361/201629839
2335
+ Wolf, R., 1856. Mittheilungen ¨uber die Sonnenflecken I, Astron. Mittheil. Eidgn. Sterw. Z¨urich,
2336
+ 1, 3-13.
2337
+ Wolf, R., 1878. Beobachtungen der Sonnenflecken, ETH Bibliothek, Hochschularchiv, Hs
2338
+ 368:46, 1Bd., unpublished manuscript, Zurich.
2339
+ Wolfer, A., 1909. Sonnenflecken – Statistik 1600 – 1900, ETH Bibliothek, Hochschularchiv, Hs
2340
+ 1050:227, 13 Dossiers, unpublished manuscript, Zurich.
2341
+ SOLA: Clette_SNDB2.tex; 9 January 2023; 1:30; p. 22
2342
+
GNE0T4oBgHgl3EQfhQF8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9E1T4oBgHgl3EQfXwRb/content/2301.03130v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87872236a79d3f0c8a98669b494f715aecb826804be53402610c863204a0c46d
3
+ size 4718057
H9E1T4oBgHgl3EQfXwRb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3227038ffec92b006bb04bfe8bd7c0d652a0ceb72859b34b6046e74cfa2c8aa
3
+ size 2949165
H9E1T4oBgHgl3EQfXwRb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4ca019a115a55808167ef3ce5df4e5ab1e46332c4e4328bf176469686a2df1
3
+ size 113701
HNE4T4oBgHgl3EQfgg1T/content/tmp_files/2301.05117v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
HNE4T4oBgHgl3EQfgg1T/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INE0T4oBgHgl3EQfhwHS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe5843b5d881e58471496be9b9e1f0d3607e13d764089fb1c63a9e04d1ec3cd
3
+ size 3080237
INE0T4oBgHgl3EQfhwHS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df34c3c4391c56d55c18e9f54d13a6bf422929130d6bbf30b8720e9f7fcc9305
3
+ size 115508
JtFLT4oBgHgl3EQfKS8v/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09fe82000ffe1b6e3eb0927ebeb729917b0ca2a2fe5387de88419db2f96fb8c
3
+ size 207805
K9E4T4oBgHgl3EQf8A5c/content/tmp_files/2301.05344v1.pdf.txt ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Stochastic Model of Organizational State Transitions in a Turbulent Pipe Flow
2
+ Robert J¨ackel1,3, Bruno Magacho2,3, Bayode Owolabi2,3,
3
+ Luca Moriconi2,3∗, David J.C. Dennis3, and Juliana B.R. Loureiro1,3
4
+ 1Programa de Engenharia Mecˆanica, Coordena¸c˜ao dos Programas de P´os-Gradua¸c˜ao em Engenharia,
5
+ Universidade Federal do Rio de Janeiro, C.P. 68503, CEP: 21941-972, Rio de Janeiro, RJ, Brazil
6
+ 2Instituto de F´ısica, Universidade Federal do Rio de Janeiro,
7
+ Av. Athos da Silveira Ramos 149, CEP: 21941-909, Rio de Janeiro, RJ, Brazil
8
+ and
9
+ 3Interdisciplinary Center for Fluid Dynamics, Universidade Federal do Rio de Janeiro,
10
+ R. Moniz Arag˜ao 360, CEP: 21941-594, Rio de Janeiro, Brazil
11
+ Turbulent pipe flows exhibit organizational states (OSs) that are labelled by discrete azimuthal
12
+ wavenumber modes and are reminiscent of the traveling wave solutions of low Reynolds number
13
+ regimes. The discretized time evolution of the OSs, obtained through stereoscopic particle image
14
+ velocimetry, is shown to be non-Markovian for data acquisition carried out at a structure-resolved
15
+ sampling rate. In particular, properly defined time-correlation functions for the OS transitions are
16
+ observed to decay as intriguing power laws, up to a large-eddy time horizon, beyond which they
17
+ decorrelate at much faster rates. We are able to establish, relying upon a probabilistic descrip-
18
+ tion of the creation and annihilation of streamwise streaks, a lower-level Markovian model for the
19
+ OS transitions, which reproduces their time-correlated behavior with meaningful accuracy. These
20
+ findings indicate that the OSs are distributed along the pipe as statistically correlated packets of
21
+ quasi-streamwise vortical structures.
22
+ Notwithstanding the large body of knowledge accumu-
23
+ lated since the landmark experiments of Reynolds [1],
24
+ turbulent pipes comprise flow patterns which have re-
25
+ mained surprisingly unsuspected until recent years. They
26
+ can be depicted as relatively organized sets of wall-
27
+ attached low-speed streaks coupled to pairs of counter-
28
+ rotating quasi-streamwise vortices [2–4]. These organi-
29
+ zational states (OSs) actually characterize the turbulent
30
+ velocity fluctuations at high Reynolds numbers and are
31
+ topologically similar to traveling waves – a class of ex-
32
+ act (but unstable) low-Reynolds number solutions of the
33
+ Navier-Stokes equations [5, 6].
34
+ As for traveling waves, the OSs can be classified by the
35
+ number of low-speed streaks they contain. Observation
36
+ tells us, however, that this quantity changes in an ap-
37
+ parently random way along the turbulent pipe. For the
38
+ sake of illustration, Fig. 1 shows a transition between
39
+ OSs, visualized from a pair of cross-sectional snapshots
40
+ of the flow obtained through stereoscopic particle image
41
+ velocimetry (sPIV).
42
+ The existence of spatial transitions among the OS
43
+ modes suggests, within the perspective of dynamical sys-
44
+ tems, that the turbulent pipe flow could be described as
45
+ a chaotic attractor and its unstable periodic orbits in a
46
+ phase space of much reduced dimensionality [7–11]. In
47
+ connection with this circle of ideas, we are motivated to
48
+ study the OS transitions in the framework of stochastic
49
+ processes, focusing particular attention on their recurrent
50
+ dynamics.
51
+ To start, let u = u(r, θ) be, in polar coordinates, the
52
+ fluctuating streamwise component of the velocity field
53
+ ∗Corresponding author: [email protected]
54
+ FIG. 1: Example of a transition between organized states,
55
+ as sampled out from our measurements, which are associated
56
+ to two and three low-speed streaks. Blue and red colors re-
57
+ fer, respectively, to negative and positive streamwise velocity
58
+ fluctuations around the mean (the systematic procedure to
59
+ ascertain a well-defined number of low-speed structures to a
60
+ given flow snapshot is discussed in the text).
61
+ defined over a fixed pipe’s cross-sectional plane. We may
62
+ introduce, accordingly, the instantaneous spectral power
63
+ density,
64
+ I(kn) =
65
+ ����
66
+ � 2π
67
+ 0
68
+ dθeiknθfuu(r0, θ)
69
+ ����
70
+ 2
71
+ ,
72
+ (1)
73
+ where
74
+ fuu(r0, θ) =
75
+ � 2π
76
+ 0
77
+ dθ′u(r0, θ′)u(r0, θ′ + θ) ,
78
+ (2)
79
+ kn = n ∈ Z+ is an azimuthal wavenumber, and r0 is a ref-
80
+ erence radial distance which falls within the log-region of
81
+ the pipe’s turbulent boundary layer. Empirical evidence
82
+ shows that I(kn) is in general peaked at some clearly
83
+ dominant wavenumber ¯k (to be identified to the number
84
+ of snapshotted low-speed streaks), which can be used to
85
+ label the probed velocity profile u(r, θ). As time evolves,
86
+ arXiv:2301.05344v1 [physics.flu-dyn] 13 Jan 2023
87
+
88
+ 3
89
+ 22
90
+ FIG. 2: Statistical results for the OS mode ¯k = 5. Left image:
91
+ positive (red) and negative (blue) level curves of Ruu, defined
92
+ by |Ruu(r − r0|¯k)| = 5% and 10% of (Ruu)max, with the
93
+ reference point r0 depicted as a black dot. Right image: a
94
+ closer look at the averaged streamwise velocity fluctuations
95
+ (red for positive, blue for negative), conditioned on u(r0) > 0.
96
+ The cross-sectional averaged velocity field reveals the vortical
97
+ structures that are usually coupled with velocity streaks.
98
+ I(kn) changes, and so does the wavenumber position of
99
+ its dominant peak.
100
+ Therefore, if u(r, θ) is recorded at
101
+ equally spaced time intervals ∆, the dynamical evolu-
102
+ tion of the pipe turbulent field can be mapped into the
103
+ stochastic process
104
+ S ≡ {¯k(t), ¯k(t + ∆), ¯k(t + 2∆), ... } .
105
+ (3)
106
+ In order to investigate the still very open statistical prop-
107
+ erties of S, we have performed a pipe flow experiment, at
108
+ Reynolds number Re = 24415, in the large pipe rig facil-
109
+ ity of the Interdisciplinary Nucleus for Fluid Dynamics
110
+ (NIDF) at the Federal University of Rio de Janeiro. The
111
+ pipe’s diameter and length are, respectively, D = 15 cm
112
+ and L = 12 m. By means of sPIV, with sampling rate
113
+ of 10 Hz (i.e., ∆ = 0.1 s), we have collected 104 cross-
114
+ sectional snapshots of the flow, each one containing the
115
+ three components of the turbulent velocity field over a
116
+ uniform grid of size 78 × 78. It turns out that all the ob-
117
+ served OS modes fall into the range 0 ≤ ¯k ≤ ¯kmax = 10.
118
+ Our experimental data has been validated with the
119
+ help of previous benchmark pipe flow experiments [12],
120
+ through the inspection of the performance of first and
121
+ second order single-point statistics for the streamwise
122
+ component of velocity field.
123
+ We have also attained a
124
+ further validation of the entire measured velocity field,
125
+ from the evaluation of particularly defined streamwise
126
+ velocity-velocity correlation functions conditioned on the
127
+ OS modes ¯k, more precisely,
128
+ Ruu(∆r|¯k) ≡ E[u(r0)u(r0 + ∆r)|¯k] ,
129
+ (4)
130
+ which has its level curves depicted in Fig. 2, for the case
131
+ ¯k = 5, in close correspondence with the results of Ref. [4].
132
+ The first immediate question that can be raised about
133
+ the stochastic process S is whether it is Markovian or
134
+ |λh|
135
+ 10−3
136
+ 10−2
137
+ 10−1
138
+ 100
139
+ 10−3
140
+ 10−2
141
+ 10−1
142
+ 100
143
+ h = time lag between sPIV snapshots / Δ
144
+ 0
145
+ 1
146
+ 2
147
+ 3
148
+ 0
149
+ 1
150
+ 2
151
+ 3
152
+ FIG. 3: Eigenvalues of the probability transition matrices for
153
+ the original process (h = 1) and a decimated one (h = 2).
154
+ The dashed lines should intercept eigenvalue pairs if S were
155
+ a Markovian process.
156
+ not. Of course, while it is not possible to answer this
157
+ in full rigor, one may check if the Chapman-Kolmogorov
158
+ (CK) equation holds for the time series (3), a necessary
159
+ condition for S to be Markovian [13]. The CK equation
160
+ would imply that the eigenvalues of the transition prob-
161
+ ability matrix for OS modes separated by the time inter-
162
+ val h∆ can be represented, in some arbitrary ordering, as
163
+ the set of powers {λh
164
+ 1, λh
165
+ 2, ..., λh
166
+ ¯kmax}. A straightforward
167
+ computation of the transition matrix eigenvalues for the
168
+ cases h = 1 and h = 2 indicates, however, that S is not
169
+ Markovian; see Fig. 3.
170
+ We expect that the decimated process for h large
171
+ enough is essentially Markovian, since in this situation
172
+ the OS modes become weakly correlated. The transition
173
+ to Markovian behavior can be alternatively addressed
174
+ from the analysis of correlation functions which we intro-
175
+ duce as it follows. Taking 0 ≤ m, m′ ≤ ¯kmax, let Vm(t)
176
+ and Mm′m(t) be, respectively, the components of vector
177
+ and matrix valued stochastic processes derived from S as
178
+ Vm(t) =
179
+
180
+ 1,
181
+ if ¯k(t) = m
182
+ 0,
183
+ otherwise
184
+ (5)
185
+ and
186
+ Mm′m(t) =
187
+
188
+ 1,
189
+ if ¯k(t) = m and ¯k(t + ∆) = m′
190
+ 0,
191
+ otherwise .
192
+ (6)
193
+ Define, now, the correlation functions
194
+ ˜F(t − t′) ≡ E[V(t) · V(t′)] − (E[V])2 ,
195
+ (7)
196
+ ˜G(t − t′) ≡ Tr
197
+
198
+ E[MT(t)M(t′)] − E[M]TE[M]
199
+
200
+ , (8)
201
+ and their normalized versions,
202
+ F(t − t′) ≡
203
+ ˜F(t − t′)
204
+ ˜F(0)
205
+ , G(t − t′) ≡
206
+ ˜G(t − t′)
207
+ ˜G(0)
208
+ .
209
+ (9)
210
+
211
+ O3
212
+ F(t-t')
213
+ 10−3
214
+ 10−2
215
+ 10−1
216
+ 100
217
+ 10−3
218
+ 10−2
219
+ 10−1
220
+ 100
221
+ |t-t'| (s)
222
+ 10−1
223
+ 100
224
+ 10−1
225
+ 100
226
+ δt
227
+ (a)
228
+ G(t-t')
229
+ 10−2
230
+ 10−1
231
+ 100
232
+ 10−2
233
+ 10−1
234
+ 100
235
+ |t-t'| (s)
236
+ 10−1
237
+ 100
238
+ 10−1
239
+ 100
240
+ δt
241
+ (b)
242
+ FIG. 4: The time-dependent correlation functions defined in
243
+ (9) are noticed to decay as power laws for |t − t′| ≤ δt ≈ 2 s.
244
+ The dotted lines in (a) and (b) have scaling exponent −1 for
245
+ both F(t − t′) and G(t − t′).
246
+ It is not difficult to see that F(t − t′) and G(t − t′)
247
+ describe, respectively, the correlations of returning OS
248
+ modes and transitions which are apart from each other
249
+ by the time interval |t − t′|. They are plotted in Fig. 4
250
+ and are noticed to have interesting power law decays
251
+ (with the same approximate scaling exponent −1) up to
252
+ |t − t′| ≡ δt ≈ 20∆ = 2 s, which suggests some sort of
253
+ self-similarity across the spatial distribution of about ten
254
+ OS modes (their mean lifetime is 0.2 s ≈ δt/10).
255
+ For
256
+ time separations larger than δt, the correlation func-
257
+ tions become suddenly undersampled, meaning that they
258
+ crossover to a faster law of decay, probably exponential,
259
+ as it should be for the putative asymptotic Markovian
260
+ behavior of a large-time decimated S.
261
+ It is worth emphasizing that the non-Markovian nature
262
+ of S does not mean at all that it cannot be modeled as
263
+ a Markov process defined in terms of lower-level state
264
+ variables. In this connection, it is reasonable to assume
265
+ that there is a combinatoric degeneracy factor
266
+ Ω(¯kmax, m) =
267
+ �¯kmax
268
+ m
269
+
270
+ (10)
271
+ associated to a given OS mode ¯k = m. We simply mean
272
+ here that the m wall-attached low-speed streaks can be
273
+ spatially arranged for this particular mode in Ω(¯kmax, m)
274
+ different ways, since the pipe’s cross-sectional plane is
275
+ taken to hold at most ¯kmax low-speed streak channels.
276
+ The phase space of the “microscopic” state variables
277
+ for the underlying Markovian model of S is spanned,
278
+ therefore, by all the possible sets of ¯kmax streak bits,
279
+ X ≡ {s1, s2, ..., s¯kmax}, where
280
+ si =
281
+
282
+ 1,
283
+ if the i-th streak channel is active
284
+ 0,
285
+ otherwise .
286
+ (11)
287
+ We postulate, now, that the time evolution of the micro-
288
+ scopic states X is produced from the independent fluctu-
289
+ ations of streak bits, which have persistence probabilities
290
+ that depend on the total number of active streak chan-
291
+ nels, that is the OS label m. In this way, we define qm
292
+ and pm to be the persistence probabilities for any given
293
+ streak bit to keep its value 0 or 1, respectively, along
294
+ subsequent sPIV snapshots. There are, thus, four dif-
295
+ ferent types of streak bit flips, which appear in different
296
+ occurrence numbers for a given OS mode transition, as
297
+ summarized in Table I.
298
+ Transition Type # of Streak Channels Transition Prob.
299
+ 0 → 0
300
+ n1
301
+ qm
302
+ 0 → 1
303
+ n2
304
+ 1 − qm
305
+ 1 → 0
306
+ n3
307
+ 1 − pm
308
+ 1 → 1
309
+ n4
310
+ pm
311
+ TABLE I: Definition of the four possible transition types for
312
+ the streak channel states, together with the notations for their
313
+ occurrence numbers and individual transition probabilities.
314
+ Above, m = n3 + n4 labels the OS mode.
315
+ The parameters reported in Table I are related to
316
+ the OS mode transition m → m′, where m = n3 + n4
317
+ and m′ = n2 + n4. The transition probability between
318
+ any specific pair of associated microstates is, as a conse-
319
+ quence, qn1
320
+ m (1−qm)n2(1−pm)n3pn4
321
+ m . Taking into account,
322
+ furthermore, the role of degeneracy factors, we may write
323
+ the transition probability between the OS modes m and
324
+ m′ as
325
+
326
+ 4
327
+ Tm′m =
328
+ �¯kmax
329
+ m
330
+ �−1 ¯kmax
331
+
332
+ n1=0
333
+ ¯kmax
334
+
335
+ n2=0
336
+ ¯kmax
337
+
338
+ n3=0
339
+ ¯kmax
340
+
341
+ n4=0
342
+ δ(n1 + n2 + n3 + n4, ¯kmax)δ(n3 + n4, m)δ(n2 + n4, m′) ×
343
+ ×
344
+ �¯kmax
345
+ n1
346
+ ��¯kmax − n1
347
+ n2
348
+ ��¯kmax − n1 − n2
349
+ n3
350
+
351
+ qn1
352
+ m (1 − qm)n2(1 − pm)n3pn4
353
+ m .
354
+ (12)
355
+ Using, from now on, ¯kmax = 10, the Markovian model
356
+ just introduced may not appear very phenomenologically
357
+ attractive at first glance, since Tm′m is parametrized by
358
+ a large number of unknown parameters (q0, q1, ..., q9 and
359
+ p1, p2, ..., p10).
360
+ Note, however, that there are, in prin-
361
+ ciple, 90 independent entries in the empirical transition
362
+ matrix (the one derived from the sPIV measurements),
363
+ so the model is rather underdetermined (as we would ex-
364
+ pect for a phase-space reduced description of turbulent
365
+ fluctuations).
366
+ Instead of attempting to provide a detailed and com-
367
+ putationally costly model of the empirical transition ma-
368
+ trix, we address a much simpler approach, where we focus
369
+ on the asymptotic probability eigenvector of the modeled
370
+ transition matrix,
371
+ P = (P1, P2, ..., P10) ,
372
+ (13)
373
+ which satifies to TP = P, that is, �10
374
+ m=0 Tm′mPm = Pm′.
375
+ Here, Pm is the probability that the OS mode m be ob-
376
+ served in the statistically stationary regime. In an analo-
377
+ gous way, denoting by P∞ the empirical probability vec-
378
+ tor, determined from the sPIV measurements, we are in-
379
+ terested to find the set of probabilities qm and pm that
380
+ minimize the quadratic error
381
+ d({qm}, {pm}) ≡ ||P − P∞||2 .
382
+ (14)
383
+ While, as already commented, the original problem is
384
+ underdetermined, the optimization scheme related to
385
+ Eq. (14) is not: as a matter of fact, we would have to
386
+ model the 9 independent probability entries of (13) by
387
+ means of the 20 probability parameters qm and pm. To
388
+ reduce this large overdeterminacy, we rely on a few phe-
389
+ nomenological inputs:
390
+ (i) We assume that we can model the observed coher-
391
+ ence (time persistence) of low-speed streaks by a single
392
+ mode-independent and not small probability parameter
393
+ p, where p = p2 = p3 = ... = p10;
394
+ (ii) P0 turns out to be negligible, so we suppress transi-
395
+ tions from the OS mode m = 1 to m = 0, by imposing
396
+ that p1 = 1 (other transitions to the mode m = 0 from
397
+ modes m ̸= 1 are possible, but they are of O((1 − p)2).
398
+ Therefore, we end up with 11 parameters (q0, q1, ..., q9
399
+ and p) to locate the minimum value of (14). The result
400
+ is a slightly overdetermined system, but if besides P∞,
401
+ the correlation functions F(t − t′) and G(t − t′) turn out
402
+ to be well reproduced with the same set of probability
403
+ parameters, as an extra bonus, then the model can be
404
+ taken as physically appealing. That is the heuristic setup
405
+ that we have in mind.
406
+ We have resorted to a straightforward Monte Carlo
407
+ procedure to obtain the set of qm’s that minimizes (14)
408
+ for various fixed values of p. We find, as shown in Fig. 5,
409
+ Min{q}[d({q},p)]
410
+ 0.0
411
+ 0.5
412
+ 1.0
413
+ 1.5
414
+ 2.0
415
+ 2.5
416
+ 0.0
417
+ 0.5
418
+ 1.0
419
+ 1.5
420
+ 2.0
421
+ 2.5
422
+ p (= p2 = p3 ... = p10)
423
+ 0.5
424
+ 0.6
425
+ 0.7
426
+ 0.8
427
+ 0.9
428
+ 1.0
429
+ 0.5
430
+ 0.6
431
+ 0.7
432
+ 0.8
433
+ 0.9
434
+ 1.0
435
+ FIG. 5: Minimization of the quadratic distance d({q}, p) for
436
+ various values of p.
437
+ Occurrence Probability (%)
438
+ 0
439
+ 5
440
+ 10
441
+ 15
442
+ 20
443
+ 0
444
+ 5
445
+ 10
446
+ 15
447
+ 20
448
+ OS Mode (k)
449
+ 0
450
+ 1
451
+ 2
452
+ 3
453
+ 4
454
+ 5
455
+ 6
456
+ 7
457
+ 8
458
+ 9
459
+ 10
460
+
461
+ 0
462
+ 1
463
+ 2
464
+ 3
465
+ 4
466
+ 5
467
+ 6
468
+ 7
469
+ 8
470
+ 9
471
+ 10
472
+ FIG. 6: The occurrence probability of OS modes obtained
473
+ from the experiment (dots) and from the stochastic model
474
+ (open circles: p = 0.86; crosses: p = 0.95), defined by the
475
+ transition matrix elements (12).
476
+
477
+ 5
478
+ F(t-t')
479
+ 10−3
480
+ 10−2
481
+ 10−1
482
+ 100
483
+ 10−3
484
+ 10−2
485
+ 10−1
486
+ 100
487
+ |t-t'| (s)
488
+ 10−1
489
+ 100
490
+ 10−1
491
+ 100
492
+ (a)
493
+ G(t-t')
494
+ 10−2
495
+ 10−1
496
+ 100
497
+ 10−2
498
+ 10−1
499
+ 100
500
+ |t-t'| (s)
501
+ 10−1
502
+ 100
503
+ 10−1
504
+ 100
505
+ δt
506
+ δt
507
+ (b)
508
+ 10−3
509
+ 10−2
510
+ 10−1
511
+
512
+ 2
513
+ 4
514
+ 6
515
+ 8
516
+
517
+ FIG. 7: Empirical (dots) and modeled (crosses) correlation
518
+ functions F(t−t′) and G(t−t′). Crosses refer, in (a) and (b),
519
+ respectively, to modeling parameters p = 0.86 and p = 0.95.
520
+ The semi-log plot in the inset of (b) indicates the simple ex-
521
+ ponential form of G(t − t′) at large enough |t − t′|.
522
+ that the quadratic error quickly drops for p ≥ 0.85. The
523
+ modeled asymptotic probabilities for the occurrence of
524
+ OS modes are excellently compared, in Fig. 6, to the
525
+ empirical ones for the cases p = 0.86 and p = 0.95. These
526
+ are the values of p that lead to good accounts of F(t−t′)
527
+ and G(t−t′), as reported in Fig. 7. The related values of
528
+ the probabilities qm are listed in Table II. Even if a point
529
+ of subjective concern, the uncertainty of about 10% in
530
+ the definition of p should be taken as relatively small,
531
+ vis a vis the model’s accuracy in predicting the decaying
532
+ profiles of the OS correlation functions.
533
+ p
534
+ q0
535
+ q1
536
+ q2
537
+ q3
538
+ q4
539
+ q5
540
+ q6
541
+ q7
542
+ q8
543
+ q9
544
+ 0.86 0.53 0.96 0.95 0.92 0.92 0.85 0.95 0.75 0.86 1.0
545
+ 0.95 0.22 0.98 0.98 0.97 0.97 0.96 0.97 0.93 0.94 0.49
546
+ TABLE II: The list of probabilities qm’s which describe
547
+ the persistence of inactive streak channels, for the cases
548
+ p = 0.86 and p = 0.95.
549
+ Also evidenced in the inset Fig. 7 is the exponential
550
+ decay profile of the modeled G(t − t′) for time intervals
551
+ larger than δt.
552
+ At present, this point rests as a pre-
553
+ diction of the modeling scenario introduced in this work,
554
+ akin with the observed sudden undersampling of the time
555
+ series for larger decimations. We note that the crossover
556
+ to the faster exponential decay of correlation functions
557
+ takes place at δt ≈ 2D/U, where U is the bulk flow ve-
558
+ locity. Thus, the physical picture that emerges is that
559
+ the OSs are packed as chains of low-speed streaks and
560
+ vortical structures which are strongly correlated within
561
+ sizes that scale with the pipe’s diameter, although they
562
+ are merged along the entire turbulent flow.
563
+ To summarize, we have investigated the stochastic
564
+ properties of the non-Markovian OS mode transitions in a
565
+ turbulent pipe flow, recovering them as a surjective map-
566
+ ping of a lower-level Markov process. The essential idea
567
+ that underlies the model construction is that a given OS
568
+ mode may be associated to several spatial arrangements
569
+ of its low-speed streaks into a fixed number of “streak
570
+ channels” which azimuthally partition the pipe’s cross
571
+ section.
572
+ We find that the Markov model can account for the
573
+ scaling behavior of specifically introduced correlation
574
+ functions of OS mode transitions. Further work is in or-
575
+ der, not only to enlarge the size of sPIV ensembles, but
576
+ to address, in an analytical way, the very unexpected self-
577
+ similar dynamics of the OS mode transitions. We point
578
+ out that the dynamical scaling range of the recurrent OS
579
+ transitions reflects the existence of finite-sized OS packets
580
+ along the pipe flow, correlated at integral length scales
581
+ (i.e., the pipe’s diameter).
582
+ An interesting theoretical direction to pursue is related
583
+ to the use of instanton techniques [14] to evaluate the
584
+ transition probabilities between unstable flow configura-
585
+ tions as are the OS modes. In the turbulence or transi-
586
+ tional context, instantons are taken, respectively, as ex-
587
+ treme events or flow configurations that dominate the
588
+ probability measures in the weak coupling limit. They
589
+ have been successfully applied to a number of fluid dy-
590
+ namic problems, as in geophysical models, homogeneous
591
+ turbulence and the laminar-turbulent transition in shear
592
+ flows [15–17].
593
+ We conclude by noting that the findings here presented
594
+ are likely to add relevant phenomenological information
595
+ to the discussion of fundamentally important issues in
596
+ pipe flow turbulence, as drag control and particle-laden
597
+ dynamics, once they are closely connected to the statis-
598
+ tical features of near-wall coherent structures [18–23].
599
+ Acknowledgments
600
+ This work was partially supported by the Conselho
601
+ Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico
602
+ (CNPq) and by Funda¸c˜ao Coppetec/UFRJ (project num-
603
+ ber 20459). L.M. thanks E. Marensi for enlightening dis-
604
+ cussions about the phenomenology of traveling waves.
605
+
606
+ 6
607
+ [1] O. Reynolds, Philos. Trans. R. Soc. 174, 935 (1883).
608
+ [2] B. Hof, C.W.H. van Doorne, J. Westerweel, F.T.M.
609
+ Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Ker-
610
+ swell, and F. Waleffe, Science 305, 1594 (2004).
611
+ [3] T.M. Schneider, B. Eckhardt, and J. Vollmer, Phys. Rev.
612
+ E 75, 066313 (2007).
613
+ [4] D.J.C. Dennis and F.M. Sogaro, Phys. Rev. Lett. 113,
614
+ 234501 (2014).
615
+ [5] H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502
616
+ (2003).
617
+ [6] H. Wedin and R.R. Kerswell, J. Fluid Mech. 508, 333
618
+ (2004).
619
+ [7] J. Gibson, J. Halcrow, and Cvitanovi´c, J. Fluid Mech.
620
+ 611, 107 (2008).
621
+ [8] J. Moehlis, H. Faisst, and B. Eckhardt, SIAM J. Appl.
622
+ Dyn. Syst. 4, 352 (2005).
623
+ [9] N.B. Budanur, K.Y. Short, M. Farazmand, A.P. Willis,
624
+ and P. Cvitanovi´c, J. Fluid Mech. 883, 274 (2017).
625
+ [10] G. Yalnız, B. Hof, and N.B. Budanur Phys. Rev. Lett.
626
+ 126, 244502 (2021).
627
+ [11] E. Marensi, G. Yalnız, B. Hof, and N.B. Budanur, J.
628
+ Fluid Mech. 954, A 10 (2023).
629
+ [12] J.M.J. Den Toonder and F.T.M. Nieuwstadt, Phys. Flu-
630
+ ids, 9, 3398 (1997).
631
+ [13] Erhan C¸irlan, Introduction to Stochastic Processes, Dover
632
+ (1975).
633
+ [14] T. Grafke, R. Grauer, and T. Sch¨afer, J. Phys. A: Math.
634
+ Theor. 48 333001 (2015).
635
+ [15] J. Laurie and F. Bouchet, New J. Phys. 17, 015009
636
+ (2015).
637
+ [16] G.B. Apolin´ario, L. Moriconi, R.M. Pereira, and V.J.
638
+ Valad˜ao, Phys. Lett. A 449, 128360 (2022).
639
+ [17] S. Gom´e, L.S. Tuckerman, and D. Barkley, Phil. Trans.
640
+ R. Soc. A 380, 20210036 (2022).
641
+ [18] H. Choi, P. Moin, and J. Kim, J. Fluid Mech. 262, 75
642
+ (1994).
643
+ [19] W. Schoppa and F. Hussain, Phys. Fluids 10, 1049
644
+ (1998).
645
+ [20] I. Marusic, D. Chandran, A. Rouhi, M.K. Fu, D. Wine,
646
+ B. Holloway, D. Chung, and A.J. Smits, Nat. Commun.
647
+ 12, 5805 (2021) .
648
+ [21] E. Gallorini, M. Quadrio, and D. Gatti, Phys. Rev. Fluids
649
+ 7, 114602 (2022).
650
+ [22] G. Wang and D. Richter, J. Fluid Mech. 861, 901 (2019).
651
+ [23] L. Brandt and F. Coletti, Annu. Rev. Fluid Mech. 54,
652
+ 159 (2022).
653
+
K9E4T4oBgHgl3EQf8A5c/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf,len=379
2
+ page_content='Stochastic Model of Organizational State Transitions in a Turbulent Pipe Flow Robert J¨ackel1,3, Bruno Magacho2,3, Bayode Owolabi2,3, Luca Moriconi2,3∗, David J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
3
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
4
+ page_content=' Dennis3, and Juliana B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
5
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
6
+ page_content=' Loureiro1,3 1Programa de Engenharia Mecˆanica, Coordena¸c˜ao dos Programas de P´os-Gradua¸c˜ao em Engenharia, Universidade Federal do Rio de Janeiro, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
7
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
8
+ page_content=' 68503, CEP: 21941-972, Rio de Janeiro, RJ, Brazil 2Instituto de F´ısica, Universidade Federal do Rio de Janeiro, Av.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
9
+ page_content=' Athos da Silveira Ramos 149, CEP: 21941-909, Rio de Janeiro, RJ, Brazil and 3Interdisciplinary Center for Fluid Dynamics, Universidade Federal do Rio de Janeiro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
10
+ page_content=' Moniz Arag˜ao 360, CEP: 21941-594, Rio de Janeiro, Brazil Turbulent pipe flows exhibit organizational states (OSs) that are labelled by discrete azimuthal wavenumber modes and are reminiscent of the traveling wave solutions of low Reynolds number regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
11
+ page_content=' The discretized time evolution of the OSs, obtained through stereoscopic particle image velocimetry, is shown to be non-Markovian for data acquisition carried out at a structure-resolved sampling rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
12
+ page_content=' In particular, properly defined time-correlation functions for the OS transitions are observed to decay as intriguing power laws, up to a large-eddy time horizon, beyond which they decorrelate at much faster rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
13
+ page_content=' We are able to establish, relying upon a probabilistic descrip- tion of the creation and annihilation of streamwise streaks, a lower-level Markovian model for the OS transitions, which reproduces their time-correlated behavior with meaningful accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
14
+ page_content=' These findings indicate that the OSs are distributed along the pipe as statistically correlated packets of quasi-streamwise vortical structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
15
+ page_content=' Notwithstanding the large body of knowledge accumu- lated since the landmark experiments of Reynolds [1], turbulent pipes comprise flow patterns which have re- mained surprisingly unsuspected until recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
16
+ page_content=' They can be depicted as relatively organized sets of wall- attached low-speed streaks coupled to pairs of counter- rotating quasi-streamwise vortices [2–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
17
+ page_content=' These organi- zational states (OSs) actually characterize the turbulent velocity fluctuations at high Reynolds numbers and are topologically similar to traveling waves – a class of ex- act (but unstable) low-Reynolds number solutions of the Navier-Stokes equations [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
18
+ page_content=' As for traveling waves, the OSs can be classified by the number of low-speed streaks they contain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
19
+ page_content=' Observation tells us, however, that this quantity changes in an ap- parently random way along the turbulent pipe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
20
+ page_content=' For the sake of illustration, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
21
+ page_content=' 1 shows a transition between OSs, visualized from a pair of cross-sectional snapshots of the flow obtained through stereoscopic particle image velocimetry (sPIV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
22
+ page_content=' The existence of spatial transitions among the OS modes suggests, within the perspective of dynamical sys- tems, that the turbulent pipe flow could be described as a chaotic attractor and its unstable periodic orbits in a phase space of much reduced dimensionality [7–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
23
+ page_content=' In connection with this circle of ideas, we are motivated to study the OS transitions in the framework of stochastic processes, focusing particular attention on their recurrent dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
24
+ page_content=' To start, let u = u(r, θ) be, in polar coordinates, the fluctuating streamwise component of the velocity field ∗Corresponding author: moriconi@if.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
25
+ page_content='ufrj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
26
+ page_content='br FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
27
+ page_content=' 1: Example of a transition between organized states, as sampled out from our measurements, which are associated to two and three low-speed streaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
28
+ page_content=' Blue and red colors re- fer, respectively, to negative and positive streamwise velocity fluctuations around the mean (the systematic procedure to ascertain a well-defined number of low-speed structures to a given flow snapshot is discussed in the text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
29
+ page_content=' defined over a fixed pipe’s cross-sectional plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
30
+ page_content=' We may introduce, accordingly, the instantaneous spectral power density, I(kn) = ���� � 2π 0 dθeiknθfuu(r0, θ) ���� 2 , (1) where fuu(r0, θ) = � 2π 0 dθ′u(r0, θ′)u(r0, θ′ + θ) , (2) kn = n ∈ Z+ is an azimuthal wavenumber, and r0 is a ref- erence radial distance which falls within the log-region of the pipe’s turbulent boundary layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
31
+ page_content=' Empirical evidence shows that I(kn) is in general peaked at some clearly dominant wavenumber ¯k (to be identified to the number of snapshotted low-speed streaks), which can be used to label the probed velocity profile u(r, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
32
+ page_content=' As time evolves, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
33
+ page_content='05344v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
34
+ page_content='flu-dyn] 13 Jan 2023 3 22 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
35
+ page_content=' 2: Statistical results for the OS mode ¯k = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
36
+ page_content=' Left image: positive (red) and negative (blue) level curves of Ruu, defined by |Ruu(r − r0|¯k)| = 5% and 10% of (Ruu)max, with the reference point r0 depicted as a black dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
37
+ page_content=' Right image: a closer look at the averaged streamwise velocity fluctuations (red for positive, blue for negative), conditioned on u(r0) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
38
+ page_content=' The cross-sectional averaged velocity field reveals the vortical structures that are usually coupled with velocity streaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
39
+ page_content=' I(kn) changes, and so does the wavenumber position of its dominant peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
40
+ page_content=' Therefore, if u(r, θ) is recorded at equally spaced time intervals ∆, the dynamical evolu- tion of the pipe turbulent field can be mapped into the stochastic process S ≡ {¯k(t), ¯k(t + ∆), ¯k(t + 2∆), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
41
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
42
+ page_content=' } .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
43
+ page_content=' (3) In order to investigate the still very open statistical prop- erties of S, we have performed a pipe flow experiment, at Reynolds number Re = 24415, in the large pipe rig facil- ity of the Interdisciplinary Nucleus for Fluid Dynamics (NIDF) at the Federal University of Rio de Janeiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
44
+ page_content=' The pipe’s diameter and length are, respectively, D = 15 cm and L = 12 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
45
+ page_content=' By means of sPIV, with sampling rate of 10 Hz (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
46
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
47
+ page_content=', ∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
48
+ page_content='1 s), we have collected 104 cross- sectional snapshots of the flow, each one containing the three components of the turbulent velocity field over a uniform grid of size 78 × 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
49
+ page_content=' It turns out that all the ob- served OS modes fall into the range 0 ≤ ¯k ≤ ¯kmax = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
50
+ page_content=' Our experimental data has been validated with the help of previous benchmark pipe flow experiments [12], through the inspection of the performance of first and second order single-point statistics for the streamwise component of velocity field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
51
+ page_content=' We have also attained a further validation of the entire measured velocity field, from the evaluation of particularly defined streamwise velocity-velocity correlation functions conditioned on the OS modes ¯k, more precisely, Ruu(∆r|¯k) ≡ E[u(r0)u(r0 + ∆r)|¯k] , (4) which has its level curves depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
52
+ page_content=' 2, for the case ¯k = 5, in close correspondence with the results of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
53
+ page_content=' [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
54
+ page_content=' The first immediate question that can be raised about the stochastic process S is whether it is Markovian or |λh| 10−3 10−2 10−1 100 10−3 10−2 10−1 100 h = time lag between sPIV snapshots / Δ 0 1 2 3 0 1 2 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
55
+ page_content=' 3: Eigenvalues of the probability transition matrices for the original process (h = 1) and a decimated one (h = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
56
+ page_content=' The dashed lines should intercept eigenvalue pairs if S were a Markovian process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
57
+ page_content=' not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
58
+ page_content=' Of course, while it is not possible to answer this in full rigor, one may check if the Chapman-Kolmogorov (CK) equation holds for the time series (3), a necessary condition for S to be Markovian [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
59
+ page_content=' The CK equation would imply that the eigenvalues of the transition prob- ability matrix for OS modes separated by the time inter- val h∆ can be represented, in some arbitrary ordering, as the set of powers {λh 1, λh 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
60
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
61
+ page_content=', λh ¯kmax}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
62
+ page_content=' A straightforward computation of the transition matrix eigenvalues for the cases h = 1 and h = 2 indicates, however, that S is not Markovian;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
63
+ page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
64
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
65
+ page_content=' We expect that the decimated process for h large enough is essentially Markovian, since in this situation the OS modes become weakly correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
66
+ page_content=' The transition to Markovian behavior can be alternatively addressed from the analysis of correlation functions which we intro- duce as it follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
67
+ page_content=' Taking 0 ≤ m, m′ ≤ ¯kmax, let Vm(t) and Mm′m(t) be, respectively, the components of vector and matrix valued stochastic processes derived from S as Vm(t) = � 1, if ¯k(t) = m 0, otherwise (5) and Mm′m(t) = � 1, if ¯k(t) = m and ¯k(t + ∆) = m′ 0, otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
68
+ page_content=' (6) Define, now, the correlation functions ˜F(t − t′) ≡ E[V(t) · V(t′)] − (E[V])2 , (7) ˜G(t − t′) ≡ Tr � E[MT(t)M(t′)] − E[M]TE[M] � , (8) and their normalized versions, F(t − t′) ≡ ˜F(t − t′) ˜F(0) , G(t − t′) ≡ ˜G(t − t′) ˜G(0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
69
+ page_content=" (9) O3 F(t-t') 10−3 10−2 10−1 100 10−3 10−2 10−1 100 |t-t'| (s) 10−1 100 10−1 100 δt (a) G(t-t') 10−2 10−1 100 10−2 10−1 100 |t-t'| (s) 10−1 100 10−1 100 δt (b) FIG." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
70
+ page_content=' 4: The time-dependent correlation functions defined in (9) are noticed to decay as power laws for |t − t′| ≤ δt ≈ 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
71
+ page_content=' The dotted lines in (a) and (b) have scaling exponent −1 for both F(t − t′) and G(t − t′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
72
+ page_content=' It is not difficult to see that F(t − t′) and G(t − t′) describe, respectively, the correlations of returning OS modes and transitions which are apart from each other by the time interval |t − t′|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
73
+ page_content=' They are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
74
+ page_content=' 4 and are noticed to have interesting power law decays (with the same approximate scaling exponent −1) up to |t − t′| ≡ δt ≈ 20∆ = 2 s, which suggests some sort of self-similarity across the spatial distribution of about ten OS modes (their mean lifetime is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
75
+ page_content='2 s ≈ δt/10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
76
+ page_content=' For time separations larger than δt, the correlation func- tions become suddenly undersampled, meaning that they crossover to a faster law of decay, probably exponential, as it should be for the putative asymptotic Markovian behavior of a large-time decimated S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
77
+ page_content=' It is worth emphasizing that the non-Markovian nature of S does not mean at all that it cannot be modeled as a Markov process defined in terms of lower-level state variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
78
+ page_content=' In this connection, it is reasonable to assume that there is a combinatoric degeneracy factor Ω(¯kmax, m) = �¯kmax m � (10) associated to a given OS mode ¯k = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
79
+ page_content=' We simply mean here that the m wall-attached low-speed streaks can be spatially arranged for this particular mode in Ω(¯kmax, m) different ways, since the pipe’s cross-sectional plane is taken to hold at most ¯kmax low-speed streak channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
80
+ page_content=' The phase space of the “microscopic” state variables for the underlying Markovian model of S is spanned, therefore, by all the possible sets of ¯kmax streak bits, X ≡ {s1, s2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
81
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
82
+ page_content=', s¯kmax}, where si = � 1, if the i-th streak channel is active 0, otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
83
+ page_content=' (11) We postulate, now, that the time evolution of the micro- scopic states X is produced from the independent fluctu- ations of streak bits, which have persistence probabilities that depend on the total number of active streak chan- nels, that is the OS label m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
84
+ page_content=' In this way, we define qm and pm to be the persistence probabilities for any given streak bit to keep its value 0 or 1, respectively, along subsequent sPIV snapshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
85
+ page_content=' There are, thus, four dif- ferent types of streak bit flips, which appear in different occurrence numbers for a given OS mode transition, as summarized in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
86
+ page_content=' Transition Type # of Streak Channels Transition Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
87
+ page_content=' 0 → 0 n1 qm 0 → 1 n2 1 − qm 1 → 0 n3 1 − pm 1 → 1 n4 pm TABLE I: Definition of the four possible transition types for the streak channel states, together with the notations for their occurrence numbers and individual transition probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
88
+ page_content=' Above, m = n3 + n4 labels the OS mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
89
+ page_content=' The parameters reported in Table I are related to the OS mode transition m → m′, where m = n3 + n4 and m′ = n2 + n4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
90
+ page_content=' The transition probability between any specific pair of associated microstates is, as a conse- quence, qn1 m (1−qm)n2(1−pm)n3pn4 m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
91
+ page_content=' Taking into account, furthermore, the role of degeneracy factors, we may write the transition probability between the OS modes m and m′ as 4 Tm′m = �¯kmax m �−1 ¯kmax � n1=0 ¯kmax � n2=0 ¯kmax � n3=0 ¯kmax � n4=0 δ(n1 + n2 + n3 + n4, ¯kmax)δ(n3 + n4, m)δ(n2 + n4, m′) × × �¯kmax n1 ��¯kmax − n1 n2 ��¯kmax − n1 − n2 n3 � qn1 m (1 − qm)n2(1 − pm)n3pn4 m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
92
+ page_content=' (12) Using, from now on, ¯kmax = 10, the Markovian model just introduced may not appear very phenomenologically attractive at first glance, since Tm′m is parametrized by a large number of unknown parameters (q0, q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
93
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
94
+ page_content=', q9 and p1, p2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
95
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
96
+ page_content=', p10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
97
+ page_content=' Note, however, that there are, in prin- ciple, 90 independent entries in the empirical transition matrix (the one derived from the sPIV measurements), so the model is rather underdetermined (as we would ex- pect for a phase-space reduced description of turbulent fluctuations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
98
+ page_content=' Instead of attempting to provide a detailed and com- putationally costly model of the empirical transition ma- trix, we address a much simpler approach, where we focus on the asymptotic probability eigenvector of the modeled transition matrix, P = (P1, P2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
99
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
100
+ page_content=', P10) , (13) which satifies to TP = P, that is, �10 m=0 Tm′mPm = Pm′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
101
+ page_content=' Here, Pm is the probability that the OS mode m be ob- served in the statistically stationary regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
102
+ page_content=' In an analo- gous way, denoting by P∞ the empirical probability vec- tor, determined from the sPIV measurements, we are in- terested to find the set of probabilities qm and pm that minimize the quadratic error d({qm}, {pm}) ≡ ||P − P∞||2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
103
+ page_content=' (14) While, as already commented, the original problem is underdetermined, the optimization scheme related to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
104
+ page_content=' (14) is not: as a matter of fact, we would have to model the 9 independent probability entries of (13) by means of the 20 probability parameters qm and pm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
105
+ page_content=' To reduce this large overdeterminacy, we rely on a few phe- nomenological inputs: (i) We assume that we can model the observed coher- ence (time persistence) of low-speed streaks by a single mode-independent and not small probability parameter p, where p = p2 = p3 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
106
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
107
+ page_content=' = p10;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
108
+ page_content=' (ii) P0 turns out to be negligible, so we suppress transi- tions from the OS mode m = 1 to m = 0, by imposing that p1 = 1 (other transitions to the mode m = 0 from modes m ̸= 1 are possible, but they are of O((1 − p)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
109
+ page_content=' Therefore, we end up with 11 parameters (q0, q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
110
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
111
+ page_content=', q9 and p) to locate the minimum value of (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
112
+ page_content=' The result is a slightly overdetermined system, but if besides P∞, the correlation functions F(t − t′) and G(t − t′) turn out to be well reproduced with the same set of probability parameters, as an extra bonus, then the model can be taken as physically appealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
113
+ page_content=' That is the heuristic setup that we have in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
114
+ page_content=' We have resorted to a straightforward Monte Carlo procedure to obtain the set of qm’s that minimizes (14) for various fixed values of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
115
+ page_content=' We find, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
116
+ page_content=' 5, Min{q}[d({q},p)] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
117
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
118
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
119
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
120
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
121
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
122
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
123
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
124
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
125
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
126
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
127
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
128
+ page_content='5 p (= p2 = p3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
129
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
130
+ page_content=' = p10) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
131
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
132
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
133
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
134
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
135
+ page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
136
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
137
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
138
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
139
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
140
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
141
+ page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
142
+ page_content='0 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
143
+ page_content=' 5: Minimization of the quadratic distance d({q}, p) for various values of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
144
+ page_content=' Occurrence Probability (%) 0 5 10 15 20 0 5 10 15 20 OS Mode (k) 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
145
+ page_content=' 6: The occurrence probability of OS modes obtained from the experiment (dots) and from the stochastic model (open circles: p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
146
+ page_content='86;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
147
+ page_content=' crosses: p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
148
+ page_content='95), defined by the transition matrix elements (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
149
+ page_content=" 5 F(t-t') 10−3 10−2 10−1 100 10−3 10−2 10−1 100 |t-t'| (s) 10−1 100 10−1 100 (a) G(t-t') 10−2 10−1 100 10−2 10−1 100 |t-t'| (s) 10−1 100 10−1 100 δt δt (b) 10−3 10−2 10−1 2 4 6 8 FIG." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
150
+ page_content=' 7: Empirical (dots) and modeled (crosses) correlation functions F(t−t′) and G(t−t′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
151
+ page_content=' Crosses refer, in (a) and (b), respectively, to modeling parameters p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
152
+ page_content='86 and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
153
+ page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
154
+ page_content=' The semi-log plot in the inset of (b) indicates the simple ex- ponential form of G(t − t′) at large enough |t − t′|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
155
+ page_content=' that the quadratic error quickly drops for p ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
156
+ page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
157
+ page_content=' The modeled asymptotic probabilities for the occurrence of OS modes are excellently compared, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
158
+ page_content=' 6, to the empirical ones for the cases p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
159
+ page_content='86 and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
160
+ page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
161
+ page_content=' These are the values of p that lead to good accounts of F(t−t′) and G(t−t′), as reported in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
162
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
163
+ page_content=' The related values of the probabilities qm are listed in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
164
+ page_content=' Even if a point of subjective concern, the uncertainty of about 10% in the definition of p should be taken as relatively small, vis a vis the model’s accuracy in predicting the decaying profiles of the OS correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
165
+ page_content=' p q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
166
+ page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
167
+ page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
168
+ page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
169
+ page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
170
+ page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
171
+ page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
172
+ page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
173
+ page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
174
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
175
+ page_content='86 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
176
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
177
+ page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
178
+ page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
179
+ page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
180
+ page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
181
+ page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
182
+ page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
183
+ page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
184
+ page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
185
+ page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
186
+ page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
187
+ page_content='49 TABLE II: The list of probabilities qm’s which describe the persistence of inactive streak channels, for the cases p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
188
+ page_content='86 and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
189
+ page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
190
+ page_content=' Also evidenced in the inset Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
191
+ page_content=' 7 is the exponential decay profile of the modeled G(t − t′) for time intervals larger than δt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
192
+ page_content=' At present, this point rests as a pre- diction of the modeling scenario introduced in this work, akin with the observed sudden undersampling of the time series for larger decimations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
193
+ page_content=' We note that the crossover to the faster exponential decay of correlation functions takes place at δt ≈ 2D/U, where U is the bulk flow ve- locity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
194
+ page_content=' Thus, the physical picture that emerges is that the OSs are packed as chains of low-speed streaks and vortical structures which are strongly correlated within sizes that scale with the pipe’s diameter, although they are merged along the entire turbulent flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
195
+ page_content=' To summarize, we have investigated the stochastic properties of the non-Markovian OS mode transitions in a turbulent pipe flow, recovering them as a surjective map- ping of a lower-level Markov process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
196
+ page_content=' The essential idea that underlies the model construction is that a given OS mode may be associated to several spatial arrangements of its low-speed streaks into a fixed number of “streak channels” which azimuthally partition the pipe’s cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
197
+ page_content=' We find that the Markov model can account for the scaling behavior of specifically introduced correlation functions of OS mode transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
198
+ page_content=' Further work is in or- der, not only to enlarge the size of sPIV ensembles, but to address, in an analytical way, the very unexpected self- similar dynamics of the OS mode transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
199
+ page_content=' We point out that the dynamical scaling range of the recurrent OS transitions reflects the existence of finite-sized OS packets along the pipe flow, correlated at integral length scales (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
200
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
201
+ page_content=', the pipe’s diameter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
202
+ page_content=' An interesting theoretical direction to pursue is related to the use of instanton techniques [14] to evaluate the transition probabilities between unstable flow configura- tions as are the OS modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
203
+ page_content=' In the turbulence or transi- tional context, instantons are taken, respectively, as ex- treme events or flow configurations that dominate the probability measures in the weak coupling limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
204
+ page_content=' They have been successfully applied to a number of fluid dy- namic problems, as in geophysical models, homogeneous turbulence and the laminar-turbulent transition in shear flows [15–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
205
+ page_content=' We conclude by noting that the findings here presented are likely to add relevant phenomenological information to the discussion of fundamentally important issues in pipe flow turbulence, as drag control and particle-laden dynamics, once they are closely connected to the statis- tical features of near-wall coherent structures [18–23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
206
+ page_content=' Acknowledgments This work was partially supported by the Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq) and by Funda¸c˜ao Coppetec/UFRJ (project num- ber 20459).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
207
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
208
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
209
+ page_content=' thanks E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
210
+ page_content=' Marensi for enlightening dis- cussions about the phenomenology of traveling waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
211
+ page_content=' 6 [1] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
212
+ page_content=' Reynolds, Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
213
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
214
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
215
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
216
+ page_content=' 174, 935 (1883).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
217
+ page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
218
+ page_content=' Hof, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
219
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
220
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
221
+ page_content=' van Doorne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
222
+ page_content=' Westerweel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
223
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
224
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
225
+ page_content=' Nieuwstadt, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
226
+ page_content=' Faisst, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
227
+ page_content=' Eckhardt, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
228
+ page_content=' Wedin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
229
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
230
+ page_content=' Ker- swell, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
231
+ page_content=' Waleffe, Science 305, 1594 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
232
+ page_content=' [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
233
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
234
+ page_content=' Schneider, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
235
+ page_content=' Eckhardt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
236
+ page_content=' Vollmer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
237
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
238
+ page_content=' E 75, 066313 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
239
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
240
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
241
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
242
+ page_content=' Dennis and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
243
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
244
+ page_content=' Sogaro, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
245
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
246
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
247
+ page_content=' 113, 234501 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
248
+ page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
249
+ page_content=' Faisst and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
250
+ page_content=' Eckhardt, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
251
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
252
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
253
+ page_content=' 91, 224502 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
254
+ page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
255
+ page_content=' Wedin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
256
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
257
+ page_content=' Kerswell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
258
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
259
+ page_content=' 508, 333 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
260
+ page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
261
+ page_content=' Gibson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
262
+ page_content=' Halcrow, and Cvitanovi´c, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
263
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
264
+ page_content=' 611, 107 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
265
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
266
+ page_content=' Moehlis, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
267
+ page_content=' Faisst, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
268
+ page_content=' Eckhardt, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
269
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
270
+ page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
271
+ page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
272
+ page_content=' 4, 352 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
273
+ page_content=' [9] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
274
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
275
+ page_content=' Budanur, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
276
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
277
+ page_content=' Short, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
278
+ page_content=' Farazmand, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
279
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
280
+ page_content=' Willis, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
281
+ page_content=' Cvitanovi´c, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
282
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
283
+ page_content=' 883, 274 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
284
+ page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
285
+ page_content=' Yalnız, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
286
+ page_content=' Hof, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
287
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
288
+ page_content=' Budanur Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
289
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
290
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
291
+ page_content=' 126, 244502 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
292
+ page_content=' [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
293
+ page_content=' Marensi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
294
+ page_content=' Yalnız, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
295
+ page_content=' Hof, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
296
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
297
+ page_content=' Budanur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
298
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
299
+ page_content=' 954, A 10 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
300
+ page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
301
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
302
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
303
+ page_content=' Den Toonder and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
304
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
305
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
306
+ page_content=' Nieuwstadt, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
307
+ page_content=' Flu- ids, 9, 3398 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
308
+ page_content=' [13] Erhan C¸irlan, Introduction to Stochastic Processes, Dover (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
309
+ page_content=' [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
310
+ page_content=' Grafke, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
311
+ page_content=' Grauer, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
312
+ page_content=' Sch¨afer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
313
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
314
+ page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
315
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
316
+ page_content=' 48 333001 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
317
+ page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
318
+ page_content=' Laurie and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
319
+ page_content=' Bouchet, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
320
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
321
+ page_content=' 17, 015009 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
322
+ page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
323
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
324
+ page_content=' Apolin´ario, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
325
+ page_content=' Moriconi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
326
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
327
+ page_content=' Pereira, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
328
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
329
+ page_content=' Valad˜ao, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
330
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
331
+ page_content=' A 449, 128360 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
332
+ page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
333
+ page_content=' Gom´e, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
334
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
335
+ page_content=' Tuckerman, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
336
+ page_content=' Barkley, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
337
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
338
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
339
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
340
+ page_content=' A 380, 20210036 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
341
+ page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
342
+ page_content=' Choi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
343
+ page_content=' Moin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
344
+ page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
345
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
346
+ page_content=' 262, 75 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
347
+ page_content=' [19] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
348
+ page_content=' Schoppa and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
349
+ page_content=' Hussain, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
350
+ page_content=' Fluids 10, 1049 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
351
+ page_content=' [20] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
352
+ page_content=' Marusic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
353
+ page_content=' Chandran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
354
+ page_content=' Rouhi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
355
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
356
+ page_content=' Fu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
357
+ page_content=' Wine, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
358
+ page_content=' Holloway, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
359
+ page_content=' Chung, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
360
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
361
+ page_content=' Smits, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
362
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
363
+ page_content=' 12, 5805 (2021) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
364
+ page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
365
+ page_content=' Gallorini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
366
+ page_content=' Quadrio, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
367
+ page_content=' Gatti, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
368
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
369
+ page_content=' Fluids 7, 114602 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
370
+ page_content=' [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
371
+ page_content=' Wang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
372
+ page_content=' Richter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
373
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
374
+ page_content=' 861, 901 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
375
+ page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
376
+ page_content=' Brandt and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
377
+ page_content=' Coletti, Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
378
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
379
+ page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
380
+ page_content=' 54, 159 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf'}
KNAyT4oBgHgl3EQff_hn/content/tmp_files/2301.00350v1.pdf.txt ADDED
@@ -0,0 +1,894 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Rawat and Soni et. al. 2023
2
+ 1
3
+
4
+ Anisotropic Light-Matter Interactions in Single Crystal
5
+ Topological Insulator Bismuth Selenide
6
+ Divya Rawat, Aditya Singh, Niraj Kumar Singh and Ajay Soni*
7
+ School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, HP India
8
+ *Author to whom correspondence should be addressed: [email protected]
9
+
10
+ Anisotropy of light-matter interactions in materials give remarkable information about the
11
+ phonons and their interactions with electrons. We report the angle-resolved polarized Raman
12
+ spectroscopy of single-crystal of Bi2Se3 to obtain the elements of Raman tensor for understanding
13
+ the strength of polarization along different crystallographic orientations. Intensity variation in the
14
+ polar plots corresponding to 𝐸𝑔
15
+ 1 ~ 37 cm-1, 𝐴1𝑔
16
+ 1 ~71 cm-1, 𝐸𝑔
17
+ 2 ~ 130 cm-1, and 𝐴1𝑔
18
+ 2 ~ 173 cm-1
19
+ suggests the higher differential polarizability along cross-plane (bc-plane). The polar patterns and
20
+ the differences in elements of the Raman tensor provides the evidence of the fundamental electron-
21
+ phonon and anisotropic light matter interactions in Bi2Se3.
22
+
23
+ Keywords: Bismuth Selenide, Anisotropic behaviour, Polarization Raman spectroscopy, Raman
24
+ tensor, Electron-phonon interactions
25
+
26
+
27
+
28
+ Rawat and Soni et. al. 2023
29
+ 2
30
+
31
+ I.
32
+ INTRODUCTION
33
+ Light-matter interaction helps to understand the many body physics and fundamentals of
34
+ the electron and phonon coupling in materials.[1,2] Exploring the optical properties can provide
35
+ significant understanding of the (an)-isotropic interaction of light along with the electronic
36
+ susceptibility and permittivity (dielectric constant) of the materials. [3,4] Generally, the electric
37
+ field vector (𝐸⃗ ) of the incident and the scattered light are related through a complex matrix, known
38
+ as Raman tensor (Ʈ) associated with the polarizability (α) of materials along three crystallographic
39
+ orientations.[5] Recently, several layered materials such as MoS2 [6], WS2 , MoSe2 [5], PdTe2 [7]
40
+ have been studied using Raman spectroscopy by controlling the polarization vector of incident and
41
+ scattered light, to understand the dynamics of phonons along the different orientation of the crystal.
42
+ Layered chalcogenide materials have been known for their anisotropic carrier relaxation times,
43
+ which mainly arises due to their intriguing crystal structures and inherent anharmonicity.[8,9]
44
+ Additionally, the Raman studies on ternary chalcogenides, Bi2GeTe4, Sb2SnTe4 have shown that
45
+ electronic topological properties can also be coupled with phonons, which has been shown by the
46
+ anomalous thermal behaviour of the Raman modes associated with bonds involved heavy elements.
47
+ [8] Though several chalcogenide quantum materials have been explored extensively for their exotic
48
+ electronic phenomena such as Shubnikov-de Haas quantum oscillations, [10] weak
49
+ (anti)localization [11], thermoelectricity, superconductivity, charge-density waves and topological
50
+ quantum insulating properties, yet the coupling of their topological electrons with phonons is less
51
+ explored. [12-14] Bi2Se3 is one of the layered chalcogenides which has a fascinating layered crystal
52
+ structure of five atoms (quintuple layers) stacked with van der Waals (vdWs) gaps and a crystal
53
+ unit cell is composed of three quintuple layers. [15] Primarily, the topological studies on Bi2Se3 has
54
+ a focus on investigating surface and bulk electronic structures using magneto-transport and angle-
55
+ resolved photoemission spectroscopy studies, phonon dispersion, [16-19], but there are
56
+ imperceptible reports on the anisotropic response of the inelastic light scattering. Since the
57
+ topological quantum phenomena are associated with electrons, electron-phonon and electron-
58
+ photon interactions [3,20], thus the investigation of the anisotropy of the electron-phonon-photon
59
+ interaction, dynamics of phonon and evaluation of Raman-tensor are very important to explore. In
60
+ this regard, the polarized Raman spectroscopy can provide a significant information about the light
61
+ sensitive responses of single crystals along various orientations by controlling the polarization of
62
+ both the incident and scattered photons to acquire the evidences of electron-phonon interactions
63
+ and anisotropic behaviour. [21] In this work, we have discussed the angle resolved polarized Raman
64
+ spectroscopy (APRS) to corroborate the interaction between the polarized light (𝑘𝑖) and the
65
+
66
+ Rawat and Soni et. al. 2023
67
+ 3
68
+
69
+ crystallographic orientation of the single crystal Bi2Se3. The isotropic and anisotropic behaviour of
70
+ phonons are studied with the rotation of crystal along two different configurations in ab-plane
71
+ (𝑘𝑖||c-axis) and bc-plane (𝑘𝑖||a-axis), respectively. The observed anisotropic behaviour and
72
+ polarizability of in-plane (𝐸𝑔) and out-of-plane (𝐴1𝑔) modes are quantified from the Raman tensor’s
73
+ elements. Our results open the opportunities to understand the role of anisotropic light-matter and
74
+ electron-phonon interactions by both classical as well as quantum treatment of the Raman tensors
75
+ obtained from the APRS analysis. The experimental details of synthesis and characterization of the
76
+ single crystal are mentioned in supplemental materials.[22]
77
+
78
+
79
+ FIG. 1. (a) Electron microscopy image of the fractured cross section of layered Bi2Se3, (b)
80
+ Powder X-ray diffraction pattern of single crystal showing the typical orientation along the
81
+ c-axis, (inset: photograph of the grown sample), (c) Schematic of the crystal structure
82
+ comprises of quintuple layers stacked with a weak Van der Waals gap, (d) Normalized
83
+ Raman spectra and (e) Schematic of the atomic displacements of the 𝐸𝑔, and 𝐴1𝑔 modes.
84
+
85
+ The layered nature of the grown Bi2Se3 is shown in FESEM image (Fig. 1 (a)) and the XRD
86
+ pattern in Fig. 1 (b), which confirms the orientation of the grown sample along c-axis.[23] Rietveld
87
+ refinement of the XRD pattern of powdered Bi2Se3 provides the lattice parameters a =b ~ 4.13 Å,
88
+ c ~ 28.63 Å, and unit cell volume (V) ~ 425 Å3, (Fig. S1 of supplemental materials [22]). The
89
+ residual resistance ratio (RRR ~ 2.11) has been evaluated from the low temperature resistance
90
+ measurement (Fig. S2 of supplemental materials [22]), which shows a generate electron transport
91
+ in a high quality of single crystal. [22] Bi2Se3 crystallizes in a rhombohedral crystal structure with
92
+
93
+ (0)
94
+ (o)
95
+ (d)
96
+ ntensity (arb.units)
97
+ 2)
98
+ (b)
99
+ 20
100
+ 160
101
+ 200
102
+ Intensity (arb.units)
103
+ Ramanshift (cm*)
104
+ (e)
105
+ 600
106
+ (
107
+ 20 (deg)Rawat and Soni et. al. 2023
108
+ 4
109
+
110
+ space group R3̅m (166), which is comprised of quintuple layers (SeI-Bi-SeII-Bi-SeI) separated by
111
+ weak vdW gap represented in Fig. 1(c). Here, SeI and SeII represents the different chemical
112
+ environment of Se atoms in the unit cell. [24,25] The primitive unit cell of Bi2Se3 has fifteen zone-
113
+ center vibrational modes, three acoustic and twelve optical, which can be represented by: Г =
114
+ 2𝐸𝑔 + 2𝐴1𝑔 + 2𝐸𝑢 + 2𝐴1𝑢, where 𝐴1𝑔 and doubly degenerate 𝐸𝑔 are Raman active modes,
115
+ whereas 2𝐴1𝑢, 2𝐸𝑢 are the infra-red active modes.[24] The normalized room temperature Raman
116
+ spectra, having modes at ~ 37 cm-1 (𝐸𝑔
117
+ 1), ~ 71 cm-1 (𝐴1𝑔
118
+ 1 ), ~ 130 cm-1 (𝐸𝑔
119
+ 2), and ~ 173 cm-1 (𝐴1𝑔
120
+ 2 ), is
121
+ shown in Fig. 1(d) and the corresponding schematics of atomic displacements are illustrated in Fig.
122
+ 1(e). The modes 𝐴1𝑔
123
+ 1 (𝐴1𝑔
124
+ 2 ) and 𝐸𝑔
125
+ 1 (𝐸𝑔
126
+ 2) have a different polarizability as they involve the out-of-
127
+ plane and in-plane displacements in symmetric (anti-symmetric) stretching, respectively. Thus,
128
+ angle-resolved polarized spectra (APRS) is an important tool to provide the detailed information
129
+ on the interaction of the light along the different orientations of the crystal for estimation of
130
+ elements of Raman tensor.
131
+
132
+ FIG. 2. Schematic representation of the two configurations used for APRS studies on Bi2Se3
133
+ crystal, where polarized laser (ki) incidents along (a) c-axis (on ab-plane) and (b) normal to c-
134
+ axis (bc -plane). Here, ω and θ correspond to the angle between electric polarization vector (𝑒𝑖)
135
+ of incident light with a-axis (in ab-plane) and b-axis (in bc-plane), respectively.
136
+
137
+
138
+ (a)
139
+ (inab-plane)
140
+ (b)
141
+ (in bc-plane)
142
+ 532nm Laser
143
+ 532nmLaser
144
+ kill = (c-axis)
145
+ E(e)
146
+ Sn-
147
+ E(e)
148
+ D
149
+ x(a-axis)
150
+ y(b-axis)
151
+ xisRawat and Soni et. al. 2023
152
+ 5
153
+
154
+ Fig. 2 represents the two configurations used for the APRS measurements, where
155
+ crystallographic axes a, b, and c are taken as equivalent to x, y, and z axes of rotating stage. For the
156
+ first configuration (Fig. 2 (a)), the incident laser (ki) is parallel to the c-axis and electric polarization
157
+ vector (𝑒𝑖) is making an angle ω with the a-axis (in ab-plane). Hence, the scattering configuration
158
+ is defined as z(xx)𝑧̅, and the corresponding polarization vector of incident and scattered light are 𝑒𝑖⃗⃗
159
+ = 𝑒𝑠
160
+ ⃗⃗⃗ = (cos ω, sin ω, 0). For the second configuration (Fig. 2 (b)), the incident laser (ki) is parallel
161
+ to a-axis and electric polarization vector (𝑒𝑖) is making an angle θ with the b-axis (in bc-plane).
162
+ Correspondingly, the scattering configuration is defined as x(yy)𝑥̅ and the polarization vector of
163
+ incident and scattered light are 𝑒𝑖⃗⃗ = 𝑒𝑠
164
+ ⃗⃗⃗ = (0, cos θ, sin θ). Being isotropic in ab-plane, Bi2Se3 crystal
165
+ does not have any changes in intensity along a and b axes while the anisotropic light-matter
166
+ interactions along c axis and the details of Raman tensor is not reported in the literature.
167
+
168
+ FIG. 3. Angle dependent polarized Raman spectra (a-b) and corresponding polarized Raman
169
+ colour plot with the rotation of the Bi2Se3 sample in parallel configuration of polarized
170
+ incident (ei) and scattered (es) light along ab as well as bc-plane. Colour scale on the right
171
+ side shows the intensity variation of Raman modes.
172
+
173
+ Polarized Raman spectra with the rotation of crystal along both ab(/bc)-plane and
174
+ corresponding colour plot is shown in Fig. 3. The intensity of 𝐴1𝑔
175
+ 1 (𝐴1𝑔
176
+ 2 ) and 𝐸𝑔
177
+ 1 (𝐸𝑔
178
+ 2) modes are not
179
+ changing along ab-plane (Fig. 3 (a)), whereas a periodic alteration has been observed along bc-
180
+
181
+ (a)
182
+ linensity (ab.anits)
183
+ ab-plane
184
+ 0.0
185
+ Intensity (arb.units)
186
+ 150
187
+ 61
188
+ 006
189
+ 12
190
+ 600
191
+ 59.6
192
+ 300
193
+ 01.9
194
+ 30
195
+ 60
196
+ 06
197
+ 120
198
+ 150
199
+ 180
200
+ 210
201
+ 204060
202
+ 80100120146160180
203
+ 4.00
204
+ Ramanshift(cm
205
+ o (deg)
206
+ (b)
207
+ bc-plane
208
+ Intensity (ab.nits)
209
+ Intensity (arb.units)
210
+ 200
211
+ 2700
212
+ 2139
213
+ 1800
214
+ 1T
215
+ 900
216
+ 30
217
+ 60
218
+ 90
219
+ 120150
220
+ 180210
221
+ Ramanshift(cm)
222
+ 0 (deg)
223
+ 10012140106-189Rawat and Soni et. al. 2023
224
+ 6
225
+
226
+ plane (Fig. 3 (b)). The results indicate that there is an existence of anisotropy along the bc-plane as
227
+ compared to ab-plane, which can be examined clearly from polar plots. According to classical
228
+ treatment of Raman tensor, the inelastic process can be explained by the scattering from an extended
229
+ medium, where the variations of the polarization can be expressed as a derivative of the
230
+ susceptibility of the materials.[21] The contribution of such spatial symmetry to the Raman
231
+ scattering intensity (I) can be expressed as ⟨𝑒𝑖|Ʈ|𝑒𝑠⟩2, where Ʈ is the Raman tensor for a given
232
+ mode. [24] Thus, the elements of Raman tensor of 𝐴1𝑔 and double degenerate 𝐸𝑔 modes can be
233
+ represented as:
234
+ Ʈ (𝐴1𝑔) = [
235
+ ƞ𝑒𝑖∅ƞ
236
+ 0
237
+ 0
238
+ 0
239
+ ƞ𝑒𝑖∅ƞ
240
+ 0
241
+ 0
242
+ 0
243
+ 𝛽𝑒𝑖∅𝛽
244
+ ],
245
+ Ʈ (𝐸𝑔) = [
246
+ 𝛾𝑒𝑖∅𝛾
247
+ 0
248
+ 0
249
+ 0
250
+ −𝛾𝑒𝑖∅𝛾
251
+ 𝛿𝑒𝑖∅𝛿
252
+ 0
253
+ 𝛿𝑒𝑖∅𝛿
254
+ 0
255
+ ] ; [
256
+ 0
257
+ −𝛾𝑒𝑖∅𝛾
258
+ −𝛿𝑒𝑖∅𝛿
259
+ −𝛾𝑒𝑖∅𝛾
260
+ 0
261
+ 0
262
+ −𝛿𝑒𝑖∅𝛿
263
+ 0
264
+ 0
265
+ ],
266
+ Here the values corresponding to ƞ, β, γ, and δ indicate the amplitudes whereas ∅ƞ, ∅𝛽, ∅𝛾, and ∅𝛿
267
+ are the complex phases of the elements of Raman tensor. [21] Additionally, the magnitude of each
268
+ tensor element is related with the specific mode and the crystal symmetry of the material. The
269
+ calculated intensities for the estimation of the Ʈ (𝐸𝑔) has contributions from both the doubly
270
+ degenerate 𝐸𝑔 modes, thus added altogether. Using the Raman selection rule, |⟨𝑒𝑖|Ʈ∗|𝑒𝑠⟩|2, under
271
+ both ab(/bc)-plane, the scattering intensity of all modes have been calculated (Table I), which
272
+ clearly showed the distinct strength of interaction of polarized light with the crystal’s axes.
273
+ [5,6,26,27]
274
+ TABLE I. Mathematically derived intensity of modes using Raman selection rules.
275
+ S.no. Configuration Raman scattering intensity
276
+ 1. ab-plane 𝑰𝑨𝟏𝒈
277
+ ||
278
+ (ki||c-axis) = |ƞ|𝟐
279
+ 𝑰𝑬𝒈
280
+ || (ki||c-axis) = |𝜸|𝟐
281
+ 2. bc-plane 𝑰𝑨𝟏𝒈
282
+ ||
283
+ (ki||a-axis) = |ƞ|𝟐𝒔𝒊𝒏𝟒𝜽 + |𝜷|𝟐𝒄𝒐𝒔𝟒𝜽 +
284
+ 𝟏
285
+ 𝟐 |ƞ||𝜷|𝒔𝒊𝒏𝟐(𝟐𝜽)𝒄𝒐𝒔𝝋ƞ𝜷
286
+ 𝑰𝑬𝒈
287
+ || (ki||a-axis) = |𝜸|𝟐𝒄𝒐𝒔𝟒𝜽 + |𝜹|𝟐𝒔𝒊𝒏𝟐𝟐𝜽 − |𝜹||𝜸| 𝐬𝐢𝐧(𝟐𝜽) 𝒄𝒐𝒔𝟐𝜽  𝟐𝒄𝒐𝒔𝝋𝜸𝜹
288
+
289
+
290
+ Rawat and Soni et. al. 2023
291
+ 7
292
+
293
+
294
+ FIG. 4. Intensities of polar plots for 𝐴1𝑔
295
+ 1 , 𝐴1𝑔
296
+ 2 , 𝐸𝑔
297
+ 1, 𝐸𝑔
298
+ 2 modes in ab-plane (a-b), and in bc-plane
299
+ (c-f). Here, solid symbols and green line represent the experimental data fitting of the data using
300
+ equation in Table I, respectively.
301
+
302
+ Further, the understanding of the isotropic behaviour along ab-plane of the intensity of 𝐴1𝑔
303
+ and 𝐸𝑔 modes are depicted as circular shapes of the polar intensity plots (Fig. 4 (a-b)). On the other
304
+ hand, the shape of polar plots for 𝐴1𝑔 (Fig. 4 (c-d)) and 𝐸𝑔 (Fig. 4 (e-f)) modes along bc-plane are
305
+ different from ab-plane showing the anisotropy of the light matter interaction along crystallographic
306
+ orientation. The intensities of all modes are stronger along bc-plane in comparison to the ab-plane,
307
+ which advocates the higher differential polarizability along bc-plane. Similar observations on the
308
+ anisotropic light-matter interaction in bc-plane have been reported for Graphene, hBN, 2H- MoSe2,
309
+ MoS2.[5,6,28] Fascinatingly, the out of plane modes at ~ 71 cm-1 and ~ 173 cm-1, (Fig. 4 (c-d)),
310
+ have 𝐴1𝑔 symmetry but showing considerably different polar pattern at 90o and 270o rotations. The
311
+ anomalous polarization dependence of the Raman intensities appeared because of the difference in
312
+ Raman scattering cross-section through the second-order susceptibility or the electron–phonon
313
+ interactions.[21]
314
+ To understand the discrepancy, the microscopic quantum description of Raman tensor has
315
+ been adopted, which involved the electron-phonon interaction in addition to the electron-photon.
316
+ [29] Here, the total Raman intensity is described by the product of both the electron-photon and
317
+
318
+ in ab-plane
319
+ inbc-plane
320
+ (a)
321
+ 90
322
+ Ai
323
+ fcj
324
+ 120
325
+ 120
326
+ 06
327
+ 60
328
+ (e)
329
+ 120
330
+ 90
331
+ 1200
332
+ 60
333
+ AT
334
+ 3600
335
+ AI
336
+ 300
337
+ 50
338
+ (Sun
339
+ 800
340
+ 150
341
+ 30
342
+ 2400
343
+ 150
344
+ 30
345
+ 200
346
+ 150
347
+ 30
348
+ 400
349
+ 1200
350
+ 100
351
+ Intensity(arb.
352
+ 0480
353
+ 10
354
+ 0180
355
+ 40
356
+ 0/180
357
+ 400
358
+ 1200
359
+ 100
360
+ 008
361
+ 210
362
+ 330
363
+ 2400
364
+ 210
365
+ 330
366
+ 200
367
+ 210
368
+ 330
369
+ 1200
370
+ 240
371
+ 300
372
+ 3600
373
+ 240
374
+ 300
375
+ 240
376
+ 270
377
+ 270
378
+ 270
379
+ 300
380
+ (b)
381
+ 90
382
+ E
383
+ (p)
384
+ ()
385
+ 120
386
+ 60
387
+ 06
388
+ 120
389
+ 60
390
+ 2400
391
+ 120
392
+ 90
393
+ 360F
394
+ a
395
+ E
396
+ 1800/
397
+ (sun
398
+ 240
399
+ 150
400
+ 1800
401
+ 1200
402
+ 150
403
+ 30
404
+ 1200
405
+ 150
406
+ F
407
+ 30
408
+ 120
409
+ 600
410
+ Intensity(arb.
411
+ 600
412
+ 0180
413
+ 0480
414
+ 0180
415
+ 120
416
+ 600
417
+ 600
418
+ 240
419
+ 210
420
+ 330
421
+ 1200
422
+ 210
423
+ 1200
424
+ 1800
425
+ 210
426
+ 330
427
+ 360
428
+ 240
429
+ 300
430
+ 1800
431
+ 270
432
+ 240
433
+ 270
434
+ 300
435
+ 2400 L
436
+ 240
437
+ 270
438
+ 300Rawat and Soni et. al. 2023
439
+ 8
440
+
441
+ electron-phonon interactions. Hence, the Raman tensor (Ʈ𝑖𝑗
442
+ 𝑘 ) associated with all modes can be given
443
+ by:
444
+ Ʈ𝑖𝑗
445
+ 𝑘 = 1
446
+ 𝑉 ∑
447
+
448
+ ⟨𝛹𝑣(𝑞 )|𝑒 𝑠. ∇⃗⃗ |𝛹𝑐′(𝑞 )⟩ ⟨𝛹𝑐′(𝑞 )|𝐻𝑒𝑝
449
+ 𝑘 |𝛹𝑐(𝑞 )⟩⟨𝛹𝑐(𝑞 )|𝑒 𝑖. 𝛻⃗ |𝛹𝑣(𝑞 )⟩
450
+ (𝐸𝐿 − 𝐸𝑐𝑣(𝑞 ) − 𝑖𝛤𝑐)(𝐸𝐿 − ћ𝜔𝑝ℎ
451
+ 𝑘 − 𝐸𝑐′𝑣(𝑞 ) − 𝑖𝛤𝑐′)
452
+ 𝑞′
453
+ 𝑣,𝑐,𝑐′
454
+
455
+ Here, the numerator consists of the product of three matrix elements, (i) the electron-phonon (e-ph)
456
+ matrix elements (⟨𝛹𝑐′(𝑞 )|𝐻𝑒𝑝
457
+ 𝑘 |𝛹𝑐(𝑞 )⟩) and two electron-photon matrix elements for incident and
458
+ scattered light (ii) (⟨𝛹𝑐(𝑞 )|𝑒 𝑖. 𝛻⃗ |𝛹𝑣(𝑞 )⟩, (iii) ⟨𝛹𝑣(𝑞 )|𝑒 𝑠. ∇⃗⃗ |𝛹𝑐′(𝑞 )⟩), where 𝑒 𝑖 and 𝑒 𝑠 are the
459
+ polarization vectors of incident and scattered light, respectively.[29] The summation is over the
460
+ electronics branches in conduction (𝑐, 𝑐’) and valance (𝑣) bands along with all wave vectors with
461
+ first Brillouin zone. 𝛤𝑐 and 𝛤𝑐′ are the broadening factor associated with the lifetime of photo-excited
462
+ states. The inclusion of e-ph matrix element gives the major differences among both the out of plane
463
+ 𝐴1𝑔 modes. Thus, different patterns of polar plots for 𝐴1𝑔
464
+ 1 , and 𝐴1𝑔
465
+ 2 modes indicate electron-phonon
466
+ interactions in Bi2Se3, similar to the observations in other anisotropic layered chalcogenides like
467
+ WS2, ReS2, GaTe, PdSe2 and black phosphorus.[21,29-31] In contrast to the 𝐴1𝑔 modes, the polar
468
+ plots of 𝐸𝑔 modes show four-lobbed polar pattern (Fig. 4 (e-f)) with the rotation of the crystal,
469
+ which indicates the maximum strength of anisotropic nature in bc-plane. To understand the
470
+ behaviour of polar plots related to 𝐸𝑔 modes, the spectra have been captured by controlling the
471
+ polarization of incident light (ei). This configuration is done by rotating half wave plate from 0o to
472
+ 360o while keeping sample stage and analyzer fixed (Fig. S3 of supplemental materials. [22]) Here,
473
+ the intensity of both 𝐴1𝑔 modes (Fig. S3 (a-b) of supplemental materials [22]) showed analogous
474
+ polar pattern with polarization angle, whereas 𝐸𝑔 modes (Fig. S3 (c) of supplemental materials [22])
475
+ exhibited a low dependency on the rotation of the half wave plate. This discrepancy of the 𝐸𝑔 modes
476
+ between the rotation of crystallographic axis and incident laser suggest the anisotropic behaviour
477
+ along bc-plane. [5,6] Anisotropic light-matter interaction has been understood by estimating the
478
+ amplitude and phase difference of Raman tensor’s element, which mainly contain the information
479
+ of differential polarizability along different orientation. To estimate the Raman tensor elements of
480
+ all modes, we have fitted the experimental data (in Fig 4) using the intensity’s expressions given in
481
+ Table I and the obtained details are presented in Table II.
482
+
483
+ Rawat and Soni et. al. 2023
484
+ 9
485
+
486
+ TABLE II. Estimated Raman tensor elements obtained from the fitting of experimental data (Fig 4).
487
+ Modes Raman tensor
488
+ ab-plane bc-plane
489
+
490
+ 𝑨𝟏𝒈
491
+ 𝟏 [
492
+ 𝟑𝟎
493
+ 𝟎
494
+ 𝟎
495
+ 𝟎
496
+ 𝟑𝟎
497
+ 𝟎
498
+ 𝟎
499
+ 𝟎
500
+ 𝜷
501
+ ] [
502
+ 𝟑𝟓
503
+ 𝟎
504
+ 𝟎
505
+ 𝟎
506
+ 𝟑𝟓
507
+ 𝟎
508
+ 𝟎
509
+ 𝟎
510
+ 𝟓𝟕𝒆𝒊𝟎.𝟑𝟕𝝅
511
+ ]
512
+
513
+ 𝑨𝟏𝒈
514
+ 𝟐 [
515
+ 𝟏𝟕
516
+ 𝟎
517
+ 𝟎
518
+ 𝟎
519
+ 𝟏𝟕
520
+ 𝟎
521
+ 𝟎
522
+ 𝟎
523
+ 𝜷
524
+ ] [
525
+ 𝟐𝟏
526
+ 𝟎
527
+ 𝟎
528
+ 𝟎
529
+ 𝟐𝟏
530
+ 𝟎
531
+ 𝟎
532
+ 𝟎
533
+ 𝟒𝟏𝒆𝒊𝟎.𝟐𝟒𝝅
534
+ ]
535
+
536
+ 𝑬𝒈𝟏 [
537
+ 𝟖
538
+ −𝟖
539
+ 𝛅
540
+ −𝟖
541
+ −𝟖
542
+ 𝛅
543
+ 𝛅
544
+ 𝛅
545
+ 𝟎
546
+ ] [
547
+ 𝟖
548
+ −𝟖
549
+ −𝟏𝟑𝒆𝒊𝟎.𝟑𝟗𝝅
550
+ −𝟖
551
+ −𝟖
552
+ 𝟏𝟑𝒆𝒊𝟎.𝟑𝟗𝝅
553
+ −𝟏𝟑𝒆𝒊𝟎.𝟑𝟗𝝅
554
+ 𝟏𝟑𝒆𝒊𝟎.𝟑𝟗𝝅
555
+ 𝟎
556
+ ]
557
+
558
+ 𝑬𝒈𝟐 [
559
+ 𝟏𝟔
560
+ −𝟏𝟔
561
+ 𝛅
562
+ −𝟏𝟔
563
+ −𝟏𝟔
564
+ 𝛅
565
+ 𝛅
566
+ 𝛅
567
+ 𝟎
568
+ ] [
569
+ 𝟏𝟒
570
+ −𝟏𝟒
571
+ −𝟑𝟖𝒆𝒊𝟎.𝟑𝟐𝝅
572
+ −𝟏𝟒
573
+ −𝟏𝟒
574
+ 𝟑𝟖𝒆𝒊𝟎.𝟑𝟐𝝅
575
+ −𝟑𝟖𝒆𝒊𝟎.𝟑𝟐𝝅
576
+ 𝟑𝟖𝒆𝒊𝟎.𝟑𝟐𝝅
577
+ 𝟎
578
+ ]
579
+
580
+
581
+ In ab-plane, all modes show isotropic behaviour (Fig 4a and 4b), hence for Ʈ (𝐴1𝑔) and Ʈ (𝐸𝑔), the
582
+ component of Raman tensor, ƞ (𝐴1𝑔
583
+ 1 ~ 30 and 𝐴1𝑔
584
+ 2 ~ 17) and γ (𝐸𝑔
585
+ 1~ 8 and 𝐸𝑔
586
+ 2 ~ 16), have been
587
+ evaluated from the fitting of polar plots. As the propagation vector ki of incident light is along the
588
+ c-axis, there is no polarization along c-axis, thus, 𝛽 for out of plane 𝐴1𝑔 mode is not evaluated while
589
+ 𝛽 is zero for in-plane 𝐸𝑔 modes. Here, the phase factor (∅ƞ) is zero due to isotropic responses in ab-
590
+ plane. On the other hand, in bc-plane (Fig. 4c and 4d), the component of Raman tensor, ƞ (𝐴1𝑔
591
+ 1 ~ 35
592
+ and 𝐴1𝑔
593
+ 2 ~ 21) and 𝛽 (𝐴1𝑔
594
+ 1 ~ 57 and 𝐴1𝑔
595
+ 2 ~ 41) have been evaluated and the phase factor between ƞ
596
+ and 𝛽 (∅ƞ𝛽) is ~ 67.3o (0.37𝜋) for (𝐴1𝑔
597
+ 1 ) and ~ 44o (0.24𝜋) for (𝐴1𝑔
598
+ 2 ), which is arising due to the
599
+ anisotropic responses. Additionally, the elements of Raman tensor for in-plane modes are 𝛾 (𝐸𝑔
600
+ 1 ~
601
+ 8 and 𝐸𝑔
602
+ 2 ~ 14) and 𝛿 (𝐸𝑔
603
+ 1 ~ 13 and 𝐸𝑔
604
+ 2 ~ 38) and the phase factor between 𝛾 and 𝛿 (∅𝛾𝛿) is ~ 71o
605
+ (0.39𝜋) for (𝐸𝑔
606
+ 1) and ~ 58.4o (0.32𝜋) for (𝐸𝑔
607
+ 2). Overall, for out of plane 𝐴1𝑔 modes, 𝛽 > ƞ, (57 >
608
+ 35 for 𝐴1𝑔
609
+ 1 and 41 > 21 for 𝐴1𝑔
610
+ 2 ), which indicates that differential polarizability is significantly
611
+ higher and anisotropic along c-axis (schematic Fig 1e). By comparing the tensor matrices of out of
612
+ plane modes, it is clearly evident that symmetric stretching (𝐴1𝑔
613
+ 1 ) induces larger dipole moment
614
+ (higher polarizability) than anti- symmetric stretching (𝐴1𝑔
615
+ 2 ) and the situation is completely
616
+ otherwise for in-plane modes 𝐸𝑔
617
+ 1 and 𝐸𝑔
618
+ 2 as confirmed by the smaller magnitude of Raman tensor
619
+ elements in Table II. For both the ab- and bc-plane, the comparison of relative magnitude of Raman
620
+ tensor elements for of 𝐴1𝑔
621
+ 1 (|ƞ𝑏𝑐−𝑝𝑙𝑎𝑛𝑒 ƞ𝑎𝑏−𝑝𝑙𝑎𝑛𝑒
622
+
623
+ |~ 1.16) and 𝐸𝑔
624
+ 2 (|𝛾𝑏𝑐−𝑝𝑙𝑎𝑛𝑒 𝛾𝑎𝑏−𝑝𝑙𝑎𝑛𝑒
625
+
626
+ |~ 1.14),
627
+
628
+ Rawat and Soni et. al. 2023
629
+ 10
630
+
631
+ which authenticate the estimated elements of the Raman tensor. [6] Comparing the APRS estimated
632
+ Raman tensor elements with studies on MoSe2, MoS2, WSe2, PdTe2, it is clear that the laser
633
+ polarization dependence Raman spectra demonstrates the anisotropic light-matter interactions in
634
+ Bi2Se3.
635
+ In Summary, the Raman tensor for all modes of single crystal Bi2Se3 corresponds to 𝐸𝑔
636
+ 1 ~
637
+ 37 cm-1, 𝐴1𝑔
638
+ 1 ~70 cm-1, 𝐸𝑔2 ~ 129 cm-1, and 𝐴1𝑔
639
+ 2 ~ 172 cm-1 have been systematically studied by APRS
640
+ measurements along both ab(/bc)-plane under parallel polarization (𝑒𝑖 ∥ 𝑒𝑠) scattering
641
+ configuration. We have estimated the amplitude and phase difference of the tensor elements by
642
+ fitting the experimental results with the intensity expression obtained by applying Raman selection
643
+ rule. The different shapes of polar plot of the similar vibrational symmetry (𝐴1𝑔) represents the
644
+ different interaction of electrons with phonons, which provide the evidence of electron-phonon
645
+ coupling. Among two different orientations (ab(/bc)-plane) of single crystal, strong polarization
646
+ dependence has been observed along bc-plane for both 𝐴1𝑔 and 𝐸𝑔 modes, which is showing the
647
+ anisotropic light matter interaction in Bi2Se3.
648
+ Acknowledgement
649
+ We would like to thank IIT Mandi for the instruments and research facilities. A.S would like to
650
+ acknowledge DST-SERB for funding (Grant No. CRG/2018/002197).
651
+ References
652
+
653
+ [1]
654
+ C. Grazianetti, C. Martella, and E. Cinquanta, Optical Materials: X 12, 100088 (2021).
655
+ [2]
656
+ Y. Xu et al., Advanced Optical Materials 6, 1800444 (2018).
657
+ [3]
658
+ Y. Xia et al., Nature Physics 5, 398 (2009).
659
+ [4]
660
+ J. Singh, Optical properties of condensed matter and applications (John Wiley & Sons,
661
+ 2006), Vol. 6.
662
+ [5]
663
+ M. Jin et al., The Journal of Physical Chemistry Letters 11, 4311 (2020).
664
+ [6]
665
+ Y. Ding et al., Optics Letters 45 (2020).
666
+ [7]
667
+ L. Pi et al., Advanced Functional Materials 29, 1904932 (2019).
668
+ [8]
669
+ N. K. Singh et al., Physical Review B 105, 045134 (2022).
670
+ [9]
671
+ J. P. Heremans, Nature Physics 11, 990 (2015).
672
+ [10]
673
+ Z. Ren et al., Physical Review B 82, 241306 (2010).
674
+ [11]
675
+ N. K. Singh, A. Kashyap, and A. Soni, Applied Physics Letters 119, 223903 (2021).
676
+ [12]
677
+ J. E. Moore, Nature 464, 194 (2010).
678
+
679
+ Rawat and Soni et. al. 2023
680
+ 11
681
+
682
+ [13]
683
+ J. Pandey and A. Soni, Physical Review Research 2, 033118 (2020).
684
+ [14]
685
+ S. Acharya, J. Pandey, and A. Soni, Applied Physics Letters 109, 133904 (2016).
686
+ [15]
687
+ W. Richter and C. R. Becker, physica status solidi b 84, 619 (1977).
688
+ [16]
689
+ Y. Kim et al., Applied Physics Letters 100, 071907 (2012).
690
+ [17]
691
+ A. C. Ferrari and D. M. Basko, Nature nanotechnology 8, 235 (2013).
692
+ [18]
693
+ S. R. Park et al., Physical Review Letters 108, 046805 (2012).
694
+ [19]
695
+ S. Sharma et al., Physical Review B 105, 115120 (2022).
696
+ [20]
697
+ M. Z. Hasan and C. L. Kane, Reviews of Modern Physics 82, 3045 (2010).
698
+ [21]
699
+ J. Kim, J.-U. Lee, and H. Cheong, Journal of Physics: Condensed Matter 32, 343001
700
+ (2020).
701
+ [22]
702
+ See Supplementary Material..... for Synthesis, characterization and details of Raman
703
+ tensor.
704
+ [23]
705
+ K. Mazumder and P. M. Shirage, Journal of Alloys and Compounds 888, 161492 (2021).
706
+ [24]
707
+ J. Zhang et al., Nano Letters 11, 2407 (2011).
708
+ [25]
709
+ A. Soni et al., Nano Letters 12, 1203 (2012).
710
+ [26]
711
+ Y. Ding et al., The Journal of Physical Chemistry Letters 11, 10094 (2020).
712
+ [27]
713
+ J. R. Ferraro, K. Nakamoto, and C. W. Brown, in Introductory Raman Spectroscopy,
714
+ edited by J. R. Ferraro, K. Nakamoto, and C. W. Brown (Academic Press, San Diego, 2003), pp.
715
+ 1.
716
+ [28]
717
+ J. Ribeiro-Soares et al., Physical Review B 90, 115438 (2014).
718
+ [29]
719
+ G. C. Resende et al., 2D Materials 8, 025002 (2020).
720
+ [30]
721
+ Y. Ding et al., Science China Materials 63, 1848 (2020).
722
+ [31]
723
+ S. Huang et al., ACS Nano 10, 8964 (2016).
724
+
725
+
726
+
727
+
728
+ 1
729
+
730
+ Supplemental Material
731
+ Anisotropic Light-Matter Interactions in Single Crystal
732
+ Topological Insulator Bismuth Selenide
733
+ Divya Rawat, Aditya Singh, Niraj Kumar Singh and Ajay Soni*
734
+ School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, HP India
735
+ *Author to whom correspondence should be addressed: [email protected]
736
+
737
+ In this supplemental file, we are providing the details of the synthesis, characterization techniques
738
+ and selected data complementing the main text.
739
+
740
+ (a) Synthesis and characterization details.
741
+ Single crystal of Bi2Se3 was synthesized using dual zone vertical Bridgman furnace, by taking a
742
+ stoichiometric amounts of bismuth ingot and selenium shots (both 99.999% pure) in a quartz
743
+ ampoule, which was then vacuum sealed at 10-5 mbar. The ampoule was kept in a box furnace at
744
+ 1123 K for 15 hr for homogenization followed by hanging it in Bridgman furnace. The temperature
745
+ of the hot zone and cold zone were kept at 1003 K and 953 K, respectively. The translation rate of
746
+ the motor for the vertical motion of quartz tube from hot zone to cold zone was fixed at 2 mm/hr.
747
+ X-ray diffraction (XRD) was carried out using rotating anode Rigaku SmartLab diffractometer
748
+ equipped with CuKα radiation (λ = 1.5406 Å) and in Bragg-Brentano geometry. Rietveld
749
+ refinement of the Powder-XRD pattern was done to determine the crystal structure, lattice
750
+ parameter, and phase purity. Resistance measurement was performed in the temperature range of
751
+ 2 to 300 K using Quantum Design make physical properties measurement system (PPMS). Raman
752
+ spectroscopy measurements were carried out using a Horiba LabRAM HR Evolution Raman
753
+ spectrometer having 532 nm laser excitation, 1800 grooves/mm with the help of a Peltier cooled
754
+ (CCD) detector. Ultra-low frequency filters were used to access low-frequency spectra, very close
755
+ to laser line. To control the polarization state, a (λ/2) half-waveplate and an analyzer were used
756
+ before objective lens and spectrometer to select the desired polarization component of the incident
757
+
758
+ 2
759
+
760
+ and scattered light, respectively. To study the light-matter interaction on the crystallographic axis
761
+ of Bi2Se3, the sample was kept on the stage rotating from ~ 0o to ~ 360o with a step of ~ 20o. The
762
+ linearly polarized laser was directed on the sample and the scattered radiation was collected to the
763
+ detector in backscattering geometry.
764
+ (b) Rietveld refinement analysis.
765
+
766
+
767
+ FIG. S1:- Rietveld refined XRD pattern of single crystal Bi2Se3. Black closed circle represents
768
+ the experimental data point, Solid red line represents the refined data.
769
+
770
+ The as-synthesized Bi2Se3 crystal was ground into fine powder for XRD analysis. The phase purity
771
+ of Bi2Se3 sample has been confirmed by Rietveld refinements of the powder XRD pattern. [1]The
772
+ Fig. S1 shows the Rietveld refined XRD data. Goodness of fitting was showed by the extracting
773
+ parameter, χ2 ~ 2.9.
774
+
775
+
776
+
777
+ Observed
778
+ Simulated
779
+ Intensity (arb.units.)
780
+ Difference
781
+ Braggposition
782
+ 10
783
+ 20
784
+ 30
785
+ 40
786
+ 50
787
+ 60
788
+ 70
789
+ 80
790
+ 90
791
+ 20 (deg)3
792
+
793
+ c) Resistance data of single crystal Bi2Se3:
794
+
795
+
796
+ FIG.S2:- Four-probe resistance measurement with the variation of the temperature.
797
+
798
+ The electronic transport of the Bi2Se3 has been examined by the four probe resistance (R) and the
799
+ temperature dependence is consistent with the behavior of degenerate semiconductors. The
800
+ longitudinal resistance (R) is fitted using a phenomenological model: R = R0 + λe−θ /T + $T2, where
801
+ the λ and $ appear for phonon scattering and electron-electron scattering, respectively.[2,3] The
802
+ fitting parameter are evaluated and λ ~ 12× 10−3and $ ~ 1.74 × 10−7 𝐾−2, where smaller value of
803
+ $ suggests negligible electron-electron scattering in Bi2Se3. The residual resistance ratio (RRR ~
804
+ 2.11) shows a high quality of the single crystal.
805
+ (d) APRS spectra of Bi2Se3 in bc-plane with the rotation of polarization vector of incident
806
+ light while keeping the sample fixed.
807
+
808
+ 0.035
809
+ Experimental data pount
810
+ 9
811
+ Fittingdata
812
+ 0.020
813
+ 0
814
+ 50
815
+ 100
816
+ 150
817
+ 200
818
+ 250
819
+ Temperature (K)4
820
+
821
+
822
+ FIG. S3:- (a) APRS spectra and Polar plot of (b) 𝐴1𝑔
823
+ 1 (c) 𝐴1𝑔
824
+ 2 (d) 𝐸𝑔
825
+ 2 of Bi2Se3 single crystal
826
+ with the rotation of half-wave plate by keeping the sample fixed in bc-plane. Solid symbols
827
+ represent the experimental data point.
828
+ APRS measurements has been performed in in parallel configuration (𝑒𝑖 ∥ 𝑒𝑠), where polarization
829
+ vector of incident light has varied by rotating the half-wave plate, while keeping the stage of
830
+ sample and analyzer fixed. Here, the intensity of both 𝐴1𝑔 modes showed expected two-lobed
831
+ analogous polar pattern polar pattern with polarization angle. 𝐸𝑔 mode showed a low dependency
832
+ on the rotation of the half wave plate, showed isotropic interaction on the rotation of polarization
833
+ vector of incident light. [4]
834
+ References
835
+ [1]
836
+ N. K. Singh, A. Kashyap, and A. Soni, Applied Physics Letters 119, 223903 (2021).
837
+ [2]
838
+ T. Kino, T. Endo, and S. Kawata, Journal of the Physical Society of Japan 36, 698 (1974).
839
+ [3]
840
+ N. K. Singh et al., Physical Review B 105, 045134 (2022).
841
+ [4]
842
+ J. Kim, J.-U. Lee, and H. Cheong, Journal of Physics: Condensed Matter 32, 343001 (2020).
843
+
844
+ (b)
845
+ 120
846
+ 90
847
+ (a)
848
+ Ata
849
+ 00
850
+ 150
851
+ 180
852
+ 210
853
+ 330
854
+ 240
855
+ 270
856
+ 300
857
+ (arb.units)
858
+ E
859
+ 120
860
+ 90
861
+ E:
862
+ (c)
863
+ 00
864
+ 00
865
+ 150
866
+ 40°
867
+ Intensity
868
+ 1803
869
+ 800
870
+ 210
871
+ 900
872
+ 240
873
+ 300
874
+ 1000
875
+ 120
876
+ 90
877
+ (d)
878
+ 150
879
+ 10
880
+ 1400
881
+ 180
882
+ 1800
883
+ 210
884
+ 330
885
+ 30
886
+ 60
887
+ 90
888
+ 120
889
+ 150
890
+ 180
891
+ 240
892
+ 270
893
+ 300
894
+ Ramanshift(cm1)
KNAyT4oBgHgl3EQff_hn/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf,len=374
2
+ page_content='Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
3
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
4
+ page_content=' 2023 1 Anisotropic Light-Matter Interactions in Single Crystal Topological Insulator Bismuth Selenide Divya Rawat, Aditya Singh, Niraj Kumar Singh and Ajay Soni* School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, HP India Author to whom correspondence should be addressed: ajay@iitmandi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
5
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
6
+ page_content='in Anisotropy of light-matter interactions in materials give remarkable information about the phonons and their interactions with electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
7
+ page_content=' We report the angle-resolved polarized Raman spectroscopy of single-crystal of Bi2Se3 to obtain the elements of Raman tensor for understanding the strength of polarization along different crystallographic orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
8
+ page_content=' Intensity variation in the polar plots corresponding to 𝐸𝑔 1 ~ 37 cm-1, 𝐴1𝑔 1 ~71 cm-1, 𝐸𝑔 2 ~ 130 cm-1, and 𝐴1𝑔 2 ~ 173 cm-1 suggests the higher differential polarizability along cross-plane (bc-plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
9
+ page_content=' The polar patterns and the differences in elements of the Raman tensor provides the evidence of the fundamental electron- phonon and anisotropic light matter interactions in Bi2Se3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
10
+ page_content=' Keywords: Bismuth Selenide, Anisotropic behaviour, Polarization Raman spectroscopy, Raman tensor, Electron-phonon interactions Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
11
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
12
+ page_content=' 2023 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
13
+ page_content=' INTRODUCTION Light-matter interaction helps to understand the many body physics and fundamentals of the electron and phonon coupling in materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
14
+ page_content=' [1,2] Exploring the optical properties can provide significant understanding of the (an)-isotropic interaction of light along with the electronic susceptibility and permittivity (dielectric constant) of the materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
15
+ page_content=' [3,4] Generally, the electric field vector (𝐸⃗ ) of the incident and the scattered light are related through a complex matrix, known as Raman tensor (Ʈ) associated with the polarizability (α) of materials along three crystallographic orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
16
+ page_content=' [5] Recently, several layered materials such as MoS2 [6], WS2 , MoSe2 [5], PdTe2 [7] have been studied using Raman spectroscopy by controlling the polarization vector of incident and scattered light, to understand the dynamics of phonons along the different orientation of the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
17
+ page_content=' Layered chalcogenide materials have been known for their anisotropic carrier relaxation times, which mainly arises due to their intriguing crystal structures and inherent anharmonicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
18
+ page_content=' [8,9] Additionally, the Raman studies on ternary chalcogenides, Bi2GeTe4, Sb2SnTe4 have shown that electronic topological properties can also be coupled with phonons, which has been shown by the anomalous thermal behaviour of the Raman modes associated with bonds involved heavy elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
19
+ page_content=' [8] Though several chalcogenide quantum materials have been explored extensively for their exotic electronic phenomena such as Shubnikov-de Haas quantum oscillations, [10] weak (anti)localization [11], thermoelectricity, superconductivity, charge-density waves and topological quantum insulating properties, yet the coupling of their topological electrons with phonons is less explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
20
+ page_content=' [12-14] Bi2Se3 is one of the layered chalcogenides which has a fascinating layered crystal structure of five atoms (quintuple layers) stacked with van der Waals (vdWs) gaps and a crystal unit cell is composed of three quintuple layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
21
+ page_content=' [15] Primarily, the topological studies on Bi2Se3 has a focus on investigating surface and bulk electronic structures using magneto-transport and angle- resolved photoemission spectroscopy studies, phonon dispersion, [16-19], but there are imperceptible reports on the anisotropic response of the inelastic light scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
22
+ page_content=' Since the topological quantum phenomena are associated with electrons, electron-phonon and electron- photon interactions [3,20], thus the investigation of the anisotropy of the electron-phonon-photon interaction, dynamics of phonon and evaluation of Raman-tensor are very important to explore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
23
+ page_content=' In this regard, the polarized Raman spectroscopy can provide a significant information about the light sensitive responses of single crystals along various orientations by controlling the polarization of both the incident and scattered photons to acquire the evidences of electron-phonon interactions and anisotropic behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
24
+ page_content=' [21] In this work, we have discussed the angle resolved polarized Raman spectroscopy (APRS) to corroborate the interaction between the polarized light (𝑘𝑖) and the Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
25
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
26
+ page_content=' 2023 3 crystallographic orientation of the single crystal Bi2Se3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
27
+ page_content=' The isotropic and anisotropic behaviour of phonons are studied with the rotation of crystal along two different configurations in ab-plane (𝑘𝑖||c-axis) and bc-plane (𝑘𝑖||a-axis), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
28
+ page_content=' The observed anisotropic behaviour and polarizability of in-plane (𝐸𝑔) and out-of-plane (𝐴1𝑔) modes are quantified from the Raman tensor’s elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
29
+ page_content=' Our results open the opportunities to understand the role of anisotropic light-matter and electron-phonon interactions by both classical as well as quantum treatment of the Raman tensors obtained from the APRS analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
30
+ page_content=' The experimental details of synthesis and characterization of the single crystal are mentioned in supplemental materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
31
+ page_content=' [22] FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
32
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
33
+ page_content=' (a) Electron microscopy image of the fractured cross section of layered Bi2Se3, (b) Powder X-ray diffraction pattern of single crystal showing the typical orientation along the c-axis, (inset: photograph of the grown sample), (c) Schematic of the crystal structure comprises of quintuple layers stacked with a weak Van der Waals gap, (d) Normalized Raman spectra and (e) Schematic of the atomic displacements of the 𝐸𝑔, and 𝐴1𝑔 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
34
+ page_content=' The layered nature of the grown Bi2Se3 is shown in FESEM image (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
35
+ page_content=' 1 (a)) and the XRD pattern in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
36
+ page_content=' 1 (b), which confirms the orientation of the grown sample along c-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
37
+ page_content=' [23] Rietveld refinement of the XRD pattern of powdered Bi2Se3 provides the lattice parameters a =b ~ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
38
+ page_content='13 Å, c ~ 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
39
+ page_content='63 Å, and unit cell volume (V) ~ 425 Å3, (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
40
+ page_content=' S1 of supplemental materials [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
41
+ page_content=' The residual resistance ratio (RRR ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
42
+ page_content='11) has been evaluated from the low temperature resistance measurement (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
43
+ page_content=' S2 of supplemental materials [22]), which shows a generate electron transport in a high quality of single crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
44
+ page_content=' [22] Bi2Se3 crystallizes in a rhombohedral crystal structure with (0) (o) (d) ntensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
45
+ page_content='units) 2) (b) 20 160 200 Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
46
+ page_content='units) Ramanshift (cm*) (e) 600 ( 20 (deg)Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
47
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
48
+ page_content=' 2023 4 space group R3̅m (166), which is comprised of quintuple layers (SeI-Bi-SeII-Bi-SeI) separated by weak vdW gap represented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
49
+ page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
50
+ page_content=' Here, SeI and SeII represents the different chemical environment of Se atoms in the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
51
+ page_content=' [24,25] The primitive unit cell of Bi2Se3 has fifteen zone- center vibrational modes, three acoustic and twelve optical, which can be represented by: Г = 2𝐸𝑔 + 2𝐴1𝑔 + 2𝐸𝑢 + 2𝐴1𝑢, where 𝐴1𝑔 and doubly degenerate 𝐸𝑔 are Raman active modes, whereas 2𝐴1𝑢, 2𝐸𝑢 are the infra-red active modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
52
+ page_content=' [24] The normalized room temperature Raman spectra, having modes at ~ 37 cm-1 (𝐸𝑔 1), ~ 71 cm-1 (𝐴1𝑔 1 ), ~ 130 cm-1 (𝐸𝑔 2), and ~ 173 cm-1 (𝐴1𝑔 2 ), is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
53
+ page_content=' 1(d) and the corresponding schematics of atomic displacements are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
54
+ page_content=' 1(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
55
+ page_content=' The modes 𝐴1𝑔 1 (𝐴1𝑔 2 ) and 𝐸𝑔 1 (𝐸𝑔 2) have a different polarizability as they involve the out-of- plane and in-plane displacements in symmetric (anti-symmetric) stretching, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
56
+ page_content=' Thus, angle-resolved polarized spectra (APRS) is an important tool to provide the detailed information on the interaction of the light along the different orientations of the crystal for estimation of elements of Raman tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
57
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
58
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
59
+ page_content=' Schematic representation of the two configurations used for APRS studies on Bi2Se3 crystal, where polarized laser (ki) incidents along (a) c-axis (on ab-plane) and (b) normal to c- axis (bc -plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
60
+ page_content=' Here, ω and θ correspond to the angle between electric polarization vector (𝑒𝑖) of incident light with a-axis (in ab-plane) and b-axis (in bc-plane), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
61
+ page_content=' (a) (inab-plane) (b) (in bc-plane) 532nm Laser 532nmLaser kill = (c-axis) E(e) Sn- E(e) D x(a-axis) y(b-axis) xisRawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
62
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
63
+ page_content=' 2023 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
64
+ page_content=' 2 represents the two configurations used for the APRS measurements, where crystallographic axes a, b, and c are taken as equivalent to x, y, and z axes of rotating stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
65
+ page_content=' For the first configuration (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
66
+ page_content=' 2 (a)), the incident laser (ki) is parallel to the c-axis and electric polarization vector (𝑒𝑖) is making an angle ω with the a-axis (in ab-plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
67
+ page_content=' Hence, the scattering configuration is defined as z(xx)𝑧̅, and the corresponding polarization vector of incident and scattered light are 𝑒𝑖⃗⃗ = 𝑒𝑠 ⃗⃗⃗ = (cos ω, sin ω, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
68
+ page_content=' For the second configuration (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
69
+ page_content=' 2 (b)), the incident laser (ki) is parallel to a-axis and electric polarization vector (𝑒𝑖) is making an angle θ with the b-axis (in bc-plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
70
+ page_content=' Correspondingly, the scattering configuration is defined as x(yy)𝑥̅ and the polarization vector of incident and scattered light are 𝑒𝑖⃗⃗ = 𝑒𝑠 ⃗⃗⃗ = (0, cos θ, sin θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
71
+ page_content=' Being isotropic in ab-plane, Bi2Se3 crystal does not have any changes in intensity along a and b axes while the anisotropic light-matter interactions along c axis and the details of Raman tensor is not reported in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
72
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
73
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
74
+ page_content=' Angle dependent polarized Raman spectra (a-b) and corresponding polarized Raman colour plot with the rotation of the Bi2Se3 sample in parallel configuration of polarized incident (ei) and scattered (es) light along ab as well as bc-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
75
+ page_content=' Colour scale on the right side shows the intensity variation of Raman modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
76
+ page_content=' Polarized Raman spectra with the rotation of crystal along both ab(/bc)-plane and corresponding colour plot is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
77
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
78
+ page_content=' The intensity of 𝐴1𝑔 1 (𝐴1𝑔 2 ) and 𝐸𝑔 1 (𝐸𝑔 2) modes are not changing along ab-plane (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
79
+ page_content=' 3 (a)), whereas a periodic alteration has been observed along bc- (a) linensity (ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
80
+ page_content='anits) ab-plane 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
81
+ page_content='0 Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
82
+ page_content='units) 150 61 006 12 600 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
83
+ page_content='6 300 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
84
+ page_content='9 30 60 06 120 150 180 210 204060 80100120146160180 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
85
+ page_content='00 Ramanshift(cm o (deg) (b) bc-plane Intensity (ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
86
+ page_content='nits) Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
87
+ page_content='units) 200 2700 2139 1800 1T 900 30 60 90 120150 180210 Ramanshift(cm) 0 (deg) 10012140106-189Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
88
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
89
+ page_content=' 2023 6 plane (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
90
+ page_content=' 3 (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
91
+ page_content=' The results indicate that there is an existence of anisotropy along the bc-plane as compared to ab-plane, which can be examined clearly from polar plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
92
+ page_content=' According to classical treatment of Raman tensor, the inelastic process can be explained by the scattering from an extended medium, where the variations of the polarization can be expressed as a derivative of the susceptibility of the materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
93
+ page_content=' [21] The contribution of such spatial symmetry to the Raman scattering intensity (I) can be expressed as ⟨𝑒𝑖|Ʈ|𝑒𝑠⟩2, where Ʈ is the Raman tensor for a given mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
94
+ page_content=' [24] Thus, the elements of Raman tensor of 𝐴1𝑔 and double degenerate 𝐸𝑔 modes can be represented as: Ʈ (𝐴1𝑔) = [ ƞ𝑒𝑖∅ƞ 0 0 0 ƞ𝑒𝑖∅ƞ 0 0 0 𝛽𝑒𝑖∅𝛽 ], Ʈ (𝐸𝑔) = [ 𝛾𝑒𝑖∅𝛾 0 0 0 −𝛾𝑒𝑖∅𝛾 𝛿𝑒𝑖∅𝛿 0 𝛿𝑒𝑖∅𝛿 0 ] ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
95
+ page_content=' [ 0 −𝛾𝑒𝑖∅𝛾 −𝛿𝑒𝑖∅𝛿 −𝛾𝑒𝑖∅𝛾 0 0 −𝛿𝑒𝑖∅𝛿 0 0 ], Here the values corresponding to ƞ, β, γ, and δ indicate the amplitudes whereas ∅ƞ, ∅𝛽, ∅𝛾, and ∅𝛿 are the complex phases of the elements of Raman tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
96
+ page_content=' [21] Additionally, the magnitude of each tensor element is related with the specific mode and the crystal symmetry of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
97
+ page_content=' The calculated intensities for the estimation of the Ʈ (𝐸𝑔) has contributions from both the doubly degenerate 𝐸𝑔 modes, thus added altogether.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
98
+ page_content=' Using the Raman selection rule, |⟨𝑒𝑖|Ʈ∗|𝑒𝑠⟩|2, under both ab(/bc)-plane, the scattering intensity of all modes have been calculated (Table I), which clearly showed the distinct strength of interaction of polarized light with the crystal’s axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
99
+ page_content=' [5,6,26,27] TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
100
+ page_content=' Mathematically derived intensity of modes using Raman selection rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
101
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
102
+ page_content='no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
103
+ page_content=' Configuration Raman scattering intensity 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
104
+ page_content=' ab-plane 𝑰𝑨𝟏𝒈 || (ki||c-axis) = |ƞ|𝟐 𝑰𝑬𝒈 || (ki||c-axis) = |𝜸|𝟐 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
105
+ page_content=' bc-plane 𝑰𝑨𝟏𝒈 || (ki||a-axis) = |ƞ|𝟐𝒔𝒊𝒏𝟒𝜽 + |𝜷|𝟐𝒄𝒐𝒔𝟒𝜽 + 𝟏 𝟐 |ƞ||𝜷|𝒔𝒊𝒏𝟐(𝟐𝜽)𝒄𝒐𝒔𝝋ƞ𝜷 𝑰𝑬𝒈 || (ki||a-axis) = |𝜸|𝟐𝒄𝒐𝒔𝟒𝜽 + |𝜹|𝟐𝒔𝒊𝒏𝟐𝟐𝜽 − |𝜹||𝜸| 𝐬𝐢𝐧(𝟐𝜽) 𝒄𝒐𝒔𝟐𝜽 \uf0b4 𝟐𝒄𝒐𝒔𝝋𝜸𝜹 Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
106
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
107
+ page_content=' 2023 7 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
108
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
109
+ page_content=' Intensities of polar plots for 𝐴1𝑔 1 , 𝐴1𝑔 2 , 𝐸𝑔 1, 𝐸𝑔 2 modes in ab-plane (a-b), and in bc-plane (c-f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
110
+ page_content=' Here, solid symbols and green line represent the experimental data fitting of the data using equation in Table I, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
111
+ page_content=' Further, the understanding of the isotropic behaviour along ab-plane of the intensity of 𝐴1𝑔 and 𝐸𝑔 modes are depicted as circular shapes of the polar intensity plots (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
112
+ page_content=' 4 (a-b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
113
+ page_content=' On the other hand, the shape of polar plots for 𝐴1𝑔 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
114
+ page_content=' 4 (c-d)) and 𝐸𝑔 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
115
+ page_content=' 4 (e-f)) modes along bc-plane are different from ab-plane showing the anisotropy of the light matter interaction along crystallographic orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
116
+ page_content=' The intensities of all modes are stronger along bc-plane in comparison to the ab-plane, which advocates the higher differential polarizability along bc-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
117
+ page_content=' Similar observations on the anisotropic light-matter interaction in bc-plane have been reported for Graphene, hBN, 2H- MoSe2, MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
118
+ page_content=' [5,6,28] Fascinatingly, the out of plane modes at ~ 71 cm-1 and ~ 173 cm-1, (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
119
+ page_content=' 4 (c-d)), have 𝐴1𝑔 symmetry but showing considerably different polar pattern at 90o and 270o rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
120
+ page_content=' The anomalous polarization dependence of the Raman intensities appeared because of the difference in Raman scattering cross-section through the second-order susceptibility or the electron–phonon interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
121
+ page_content=' [21] To understand the discrepancy, the microscopic quantum description of Raman tensor has been adopted, which involved the electron-phonon interaction in addition to the electron-photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
122
+ page_content=' [29] Here, the total Raman intensity is described by the product of both the electron-photon and in ab-plane inbc-plane (a) 90 Ai fcj 120 120 06 60 (e) 120 90 1200 60 AT 3600 AI 300 50 (Sun 800 150 30 2400 150 30 200 150 30 400 1200 100 Intensity(arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
123
+ page_content=' 0480 10 0180 40 0/180 400 1200 100 008 210 330 2400 210 330 200 210 330 1200 240 300 3600 240 300 240 270 270 270 300 (b) 90 E (p) () 120 60 06 120 60 2400 120 90 360F a E 1800/ (sun 240 150 1800 1200 150 30 1200 150 F 30 120 600 Intensity(arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
124
+ page_content=' 600 0180 0480 0180 120 600 600 240 210 330 1200 210 1200 1800 210 330 360 240 300 1800 270 240 270 300 2400 L 240 270 300Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
125
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
126
+ page_content=' 2023 8 electron-phonon interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
127
+ page_content=' Hence, the Raman tensor (Ʈ𝑖𝑗 𝑘 ) associated with all modes can be given by: Ʈ𝑖𝑗 𝑘 = 1 𝑉 ∑ ∑ ⟨𝛹𝑣(𝑞 )|𝑒 𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
128
+ page_content=' ∇⃗⃗ |𝛹𝑐′(𝑞 )⟩ ⟨𝛹𝑐′(𝑞 )|𝐻𝑒𝑝 𝑘 |𝛹𝑐(𝑞 )⟩⟨𝛹𝑐(𝑞 )|𝑒 𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
129
+ page_content=' 𝛻⃗ |𝛹𝑣(𝑞 )⟩ (𝐸𝐿 − 𝐸𝑐𝑣(𝑞 ) − 𝑖𝛤𝑐)(𝐸𝐿 − ћ𝜔𝑝ℎ 𝑘 − 𝐸𝑐′𝑣(𝑞 ) − 𝑖𝛤𝑐′) 𝑞′ 𝑣,𝑐,𝑐′ Here, the numerator consists of the product of three matrix elements, (i) the electron-phonon (e-ph) matrix elements (⟨𝛹𝑐′(𝑞 )|𝐻𝑒𝑝 𝑘 |𝛹𝑐(𝑞 )⟩) and two electron-photon matrix elements for incident and scattered light (ii) (⟨𝛹𝑐(𝑞 )|𝑒 𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
130
+ page_content=' 𝛻⃗ |𝛹𝑣(𝑞 )⟩, (iii) ⟨𝛹𝑣(𝑞 )|𝑒 𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
131
+ page_content=' ∇⃗⃗ |𝛹𝑐′(𝑞 )⟩), where 𝑒 𝑖 and 𝑒 𝑠 are the polarization vectors of incident and scattered light, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
132
+ page_content=' [29] The summation is over the electronics branches in conduction (𝑐, 𝑐’) and valance (𝑣) bands along with all wave vectors with first Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
133
+ page_content=' 𝛤𝑐 and 𝛤𝑐′ are the broadening factor associated with the lifetime of photo-excited states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
134
+ page_content=' The inclusion of e-ph matrix element gives the major differences among both the out of plane 𝐴1𝑔 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
135
+ page_content=' Thus, different patterns of polar plots for 𝐴1𝑔 1 , and 𝐴1𝑔 2 modes indicate electron-phonon interactions in Bi2Se3, similar to the observations in other anisotropic layered chalcogenides like WS2, ReS2, GaTe, PdSe2 and black phosphorus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
136
+ page_content=' [21,29-31] In contrast to the 𝐴1𝑔 modes, the polar plots of 𝐸𝑔 modes show four-lobbed polar pattern (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
137
+ page_content=' 4 (e-f)) with the rotation of the crystal, which indicates the maximum strength of anisotropic nature in bc-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
138
+ page_content=' To understand the behaviour of polar plots related to 𝐸𝑔 modes, the spectra have been captured by controlling the polarization of incident light (ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
139
+ page_content=' This configuration is done by rotating half wave plate from 0o to 360o while keeping sample stage and analyzer fixed (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
140
+ page_content=' S3 of supplemental materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
141
+ page_content=' [22]) Here, the intensity of both 𝐴1𝑔 modes (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
142
+ page_content=' S3 (a-b) of supplemental materials [22]) showed analogous polar pattern with polarization angle, whereas 𝐸𝑔 modes (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
143
+ page_content=' S3 (c) of supplemental materials [22]) exhibited a low dependency on the rotation of the half wave plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
144
+ page_content=' This discrepancy of the 𝐸𝑔 modes between the rotation of crystallographic axis and incident laser suggest the anisotropic behaviour along bc-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
145
+ page_content=' [5,6] Anisotropic light-matter interaction has been understood by estimating the amplitude and phase difference of Raman tensor’s element, which mainly contain the information of differential polarizability along different orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
146
+ page_content=' To estimate the Raman tensor elements of all modes, we have fitted the experimental data (in Fig 4) using the intensity’s expressions given in Table I and the obtained details are presented in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
147
+ page_content=' Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
148
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
149
+ page_content=' 2023 9 TABLE II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
150
+ page_content=' Estimated Raman tensor elements obtained from the fitting of experimental data (Fig 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
151
+ page_content=' Modes Raman tensor ab-plane bc-plane 𝑨𝟏𝒈 𝟏 [ 𝟑𝟎 𝟎 𝟎 𝟎 𝟑𝟎 𝟎 𝟎 𝟎 𝜷 ] [ 𝟑𝟓 𝟎 𝟎 𝟎 𝟑𝟓 𝟎 𝟎 𝟎 𝟓𝟕𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
152
+ page_content='𝟑𝟕𝝅 ] 𝑨𝟏𝒈 𝟐 [ 𝟏𝟕 𝟎 𝟎 𝟎 𝟏𝟕 𝟎 𝟎 𝟎 𝜷 ] [ 𝟐𝟏 𝟎 𝟎 𝟎 𝟐𝟏 𝟎 𝟎 𝟎 𝟒𝟏𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
153
+ page_content='𝟐𝟒𝝅 ] 𝑬𝒈𝟏 [ 𝟖 −𝟖 𝛅 −𝟖 −𝟖 𝛅 𝛅 𝛅 𝟎 ] [ 𝟖 −𝟖 −𝟏𝟑𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
154
+ page_content='𝟑𝟗𝝅 −𝟖 −𝟖 𝟏𝟑𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
155
+ page_content='𝟑𝟗𝝅 −𝟏𝟑𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
156
+ page_content='𝟑𝟗𝝅 𝟏𝟑𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
157
+ page_content='𝟑𝟗𝝅 𝟎 ] 𝑬𝒈𝟐 [ 𝟏𝟔 −𝟏𝟔 𝛅 −𝟏𝟔 −𝟏𝟔 𝛅 𝛅 𝛅 𝟎 ] [ 𝟏𝟒 −𝟏𝟒 −𝟑𝟖𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
158
+ page_content='𝟑𝟐𝝅 −𝟏𝟒 −��𝟒 𝟑𝟖𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
159
+ page_content='𝟑𝟐𝝅 −𝟑𝟖𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
160
+ page_content='𝟑𝟐𝝅 𝟑𝟖𝒆𝒊𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
161
+ page_content='𝟑𝟐𝝅 𝟎 ] In ab-plane, all modes show isotropic behaviour (Fig 4a and 4b), hence for Ʈ (𝐴1𝑔) and Ʈ (𝐸𝑔), the component of Raman tensor, ƞ (𝐴1𝑔 1 ~ 30 and 𝐴1𝑔 2 ~ 17) and γ (𝐸𝑔 1~ 8 and 𝐸𝑔 2 ~ 16), have been evaluated from the fitting of polar plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
162
+ page_content=' As the propagation vector ki of incident light is along the c-axis, there is no polarization along c-axis, thus, 𝛽 for out of plane 𝐴1𝑔 mode is not evaluated while 𝛽 is zero for in-plane 𝐸𝑔 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
163
+ page_content=' Here, the phase factor (∅ƞ) is zero due to isotropic responses in ab- plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
164
+ page_content=' On the other hand, in bc-plane (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
165
+ page_content=' 4c and 4d), the component of Raman tensor, ƞ (𝐴1𝑔 1 ~ 35 and 𝐴1𝑔 2 ~ 21) and 𝛽 (𝐴1𝑔 1 ~ 57 and 𝐴1𝑔 2 ~ 41) have been evaluated and the phase factor between ƞ and 𝛽 (∅ƞ𝛽) is ~ 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
166
+ page_content='3o (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
167
+ page_content='37𝜋) for (𝐴1𝑔 1 ) and ~ 44o (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
168
+ page_content='24𝜋) for (𝐴1𝑔 2 ), which is arising due to the anisotropic responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
169
+ page_content=' Additionally, the elements of Raman tensor for in-plane modes are 𝛾 (𝐸𝑔 1 ~ 8 and 𝐸𝑔 2 ~ 14) and 𝛿 (𝐸𝑔 1 ~ 13 and 𝐸𝑔 2 ~ 38) and the phase factor between 𝛾 and 𝛿 (∅𝛾𝛿) is ~ 71o (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
170
+ page_content='39𝜋) for (𝐸𝑔 1) and ~ 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
171
+ page_content='4o (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
172
+ page_content='32𝜋) for (𝐸𝑔 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
173
+ page_content=' Overall, for out of plane 𝐴1𝑔 modes, 𝛽 > ƞ, (57 > 35 for 𝐴1𝑔 1 and 41 > 21 for 𝐴1𝑔 2 ), which indicates that differential polarizability is significantly higher and anisotropic along c-axis (schematic Fig 1e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
174
+ page_content=' By comparing the tensor matrices of out of plane modes, it is clearly evident that symmetric stretching (𝐴1𝑔 1 ) induces larger dipole moment (higher polarizability) than anti- symmetric stretching (𝐴1𝑔 2 ) and the situation is completely otherwise for in-plane modes 𝐸𝑔 1 and 𝐸𝑔 2 as confirmed by the smaller magnitude of Raman tensor elements in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
175
+ page_content=' For both the ab- and bc-plane, the comparison of relative magnitude of Raman tensor elements for of 𝐴1𝑔 1 (|ƞ𝑏𝑐−𝑝𝑙𝑎𝑛𝑒 ƞ𝑎𝑏−𝑝𝑙𝑎𝑛𝑒 ⁄ |~ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
176
+ page_content='16) and 𝐸𝑔 2 (|𝛾𝑏𝑐−𝑝𝑙𝑎𝑛𝑒 𝛾𝑎𝑏−𝑝𝑙𝑎𝑛𝑒 ⁄ |~ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
177
+ page_content='14), Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
178
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
179
+ page_content=' 2023 10 which authenticate the estimated elements of the Raman tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
180
+ page_content=' [6] Comparing the APRS estimated Raman tensor elements with studies on MoSe2, MoS2, WSe2, PdTe2, it is clear that the laser polarization dependence Raman spectra demonstrates the anisotropic light-matter interactions in Bi2Se3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
181
+ page_content=' In Summary, the Raman tensor for all modes of single crystal Bi2Se3 corresponds to 𝐸𝑔 1 ~ 37 cm-1, 𝐴1𝑔 1 ~70 cm-1, 𝐸𝑔2 ~ 129 cm-1, and 𝐴1𝑔 2 ~ 172 cm-1 have been systematically studied by APRS measurements along both ab(/bc)-plane under parallel polarization (𝑒𝑖 ∥ 𝑒𝑠) scattering configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
182
+ page_content=' We have estimated the amplitude and phase difference of the tensor elements by fitting the experimental results with the intensity expression obtained by applying Raman selection rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
183
+ page_content=' The different shapes of polar plot of the similar vibrational symmetry (𝐴1𝑔) represents the different interaction of electrons with phonons, which provide the evidence of electron-phonon coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
184
+ page_content=' Among two different orientations (ab(/bc)-plane) of single crystal, strong polarization dependence has been observed along bc-plane for both 𝐴1𝑔 and 𝐸𝑔 modes, which is showing the anisotropic light matter interaction in Bi2Se3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
185
+ page_content=' Acknowledgement We would like to thank IIT Mandi for the instruments and research facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
186
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
187
+ page_content='S would like to acknowledge DST-SERB for funding (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
188
+ page_content=' CRG/2018/002197).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
189
+ page_content=' References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
190
+ page_content=' Grazianetti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
191
+ page_content=' Martella, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
192
+ page_content=' Cinquanta, Optical Materials: X 12, 100088 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
193
+ page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
194
+ page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
195
+ page_content=', Advanced Optical Materials 6, 1800444 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
196
+ page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
197
+ page_content=' Xia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
198
+ page_content=', Nature Physics 5, 398 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
199
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
200
+ page_content=' Singh, Optical properties of condensed matter and applications (John Wiley & Sons, 2006), Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
201
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
202
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
203
+ page_content=' Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
204
+ page_content=', The Journal of Physical Chemistry Letters 11, 4311 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
205
+ page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
206
+ page_content=' Ding et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
207
+ page_content=', Optics Letters 45 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
208
+ page_content=' [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
209
+ page_content=' Pi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
210
+ page_content=', Advanced Functional Materials 29, 1904932 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
211
+ page_content=' [8] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
212
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
213
+ page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
214
+ page_content=', Physical Review B 105, 045134 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
215
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
216
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
217
+ page_content=' Heremans, Nature Physics 11, 990 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
218
+ page_content=' [10] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
219
+ page_content=' Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
220
+ page_content=', Physical Review B 82, 241306 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
221
+ page_content=' [11] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
222
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
223
+ page_content=' Singh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
224
+ page_content=' Kashyap, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
225
+ page_content=' Soni, Applied Physics Letters 119, 223903 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
226
+ page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
227
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
228
+ page_content=' Moore, Nature 464, 194 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
229
+ page_content=' Rawat and Soni et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
230
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
231
+ page_content=' 2023 11 [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
232
+ page_content=' Pandey and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
233
+ page_content=' Soni, Physical Review Research 2, 033118 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
234
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
235
+ page_content=' Acharya, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
236
+ page_content=' Pandey, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
237
+ page_content=' Soni, Applied Physics Letters 109, 133904 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
238
+ page_content=' [15] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
239
+ page_content=' Richter and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
240
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
241
+ page_content=' Becker, physica status solidi b 84, 619 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
242
+ page_content=' [16] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
243
+ page_content=' Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
244
+ page_content=', Applied Physics Letters 100, 071907 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
245
+ page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
246
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
247
+ page_content=' Ferrari and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
248
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
249
+ page_content=' Basko, Nature nanotechnology 8, 235 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
250
+ page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
251
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
252
+ page_content=' Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
253
+ page_content=', Physical Review Letters 108, 046805 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
254
+ page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
255
+ page_content=' Sharma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
256
+ page_content=', Physical Review B 105, 115120 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
257
+ page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
258
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
259
+ page_content=' Hasan and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
260
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
261
+ page_content=' Kane, Reviews of Modern Physics 82, 3045 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
262
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
263
+ page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
264
+ page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
265
+ page_content=' Lee, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
266
+ page_content=' Cheong, Journal of Physics: Condensed Matter 32, 343001 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
267
+ page_content=' [22] See Supplementary Material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
268
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
269
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
270
+ page_content=' for Synthesis, characterization and details of Raman tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
271
+ page_content=' [23] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
272
+ page_content=' Mazumder and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
273
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
274
+ page_content=' Shirage, Journal of Alloys and Compounds 888, 161492 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
275
+ page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
276
+ page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
277
+ page_content=', Nano Letters 11, 2407 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
278
+ page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
279
+ page_content=' Soni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
280
+ page_content=', Nano Letters 12, 1203 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
281
+ page_content=' [26] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
282
+ page_content=' Ding et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
283
+ page_content=', The Journal of Physical Chemistry Letters 11, 10094 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
284
+ page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
285
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
286
+ page_content=' Ferraro, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
287
+ page_content=' Nakamoto, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
288
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
289
+ page_content=' Brown, in Introductory Raman Spectroscopy, edited by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
290
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
291
+ page_content=' Ferraro, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
292
+ page_content=' Nakamoto, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
293
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
294
+ page_content=' Brown (Academic Press, San Diego, 2003), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
295
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
296
+ page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
297
+ page_content=' Ribeiro-Soares et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
298
+ page_content=', Physical Review B 90, 115438 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
299
+ page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
300
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
301
+ page_content=' Resende et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
302
+ page_content=', 2D Materials 8, 025002 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
303
+ page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
304
+ page_content=' Ding et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
305
+ page_content=', Science China Materials 63, 1848 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
306
+ page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
307
+ page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
308
+ page_content=', ACS Nano 10, 8964 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
309
+ page_content=' 1 Supplemental Material Anisotropic Light-Matter Interactions in Single Crystal Topological Insulator Bismuth Selenide Divya Rawat, Aditya Singh, Niraj Kumar Singh and Ajay Soni* School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, HP India Author to whom correspondence should be addressed: ajay@iitmandi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
310
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
311
+ page_content='in In this supplemental file, we are providing the details of the synthesis, characterization techniques and selected data complementing the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
312
+ page_content=' (a) Synthesis and characterization details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
313
+ page_content=' Single crystal of Bi2Se3 was synthesized using dual zone vertical Bridgman furnace, by taking a stoichiometric amounts of bismuth ingot and selenium shots (both 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
314
+ page_content='999% pure) in a quartz ampoule, which was then vacuum sealed at 10-5 mbar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
315
+ page_content=' The ampoule was kept in a box furnace at 1123 K for 15 hr for homogenization followed by hanging it in Bridgman furnace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
316
+ page_content=' The temperature of the hot zone and cold zone were kept at 1003 K and 953 K, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
317
+ page_content=' The translation rate of the motor for the vertical motion of quartz tube from hot zone to cold zone was fixed at 2 mm/hr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
318
+ page_content=' X-ray diffraction (XRD) was carried out using rotating anode Rigaku SmartLab diffractometer equipped with CuKα radiation (λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
319
+ page_content='5406 Å) and in Bragg-Brentano geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
320
+ page_content=' Rietveld refinement of the Powder-XRD pattern was done to determine the crystal structure, lattice parameter, and phase purity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
321
+ page_content=' Resistance measurement was performed in the temperature range of 2 to 300 K using Quantum Design make physical properties measurement system (PPMS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
322
+ page_content=' Raman spectroscopy measurements were carried out using a Horiba LabRAM HR Evolution Raman spectrometer having 532 nm laser excitation, 1800 grooves/mm with the help of a Peltier cooled (CCD) detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
323
+ page_content=' Ultra-low frequency filters were used to access low-frequency spectra, very close to laser line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
324
+ page_content=' To control the polarization state, a (λ/2) half-waveplate and an analyzer were used before objective lens and spectrometer to select the desired polarization component of the incident 2 and scattered light, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
325
+ page_content=' To study the light-matter interaction on the crystallographic axis of Bi2Se3, the sample was kept on the stage rotating from ~ 0o to ~ 360o with a step of ~ 20o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
326
+ page_content=' The linearly polarized laser was directed on the sample and the scattered radiation was collected to the detector in backscattering geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
327
+ page_content=' (b) Rietveld refinement analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
328
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
329
+ page_content=' S1:- Rietveld refined XRD pattern of single crystal Bi2Se3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
330
+ page_content=' Black closed circle represents the experimental data point, Solid red line represents the refined data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
331
+ page_content=' The as-synthesized Bi2Se3 crystal was ground into fine powder for XRD analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
332
+ page_content=' The phase purity of Bi2Se3 sample has been confirmed by Rietveld refinements of the powder XRD pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
333
+ page_content=' [1]The Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
334
+ page_content=' S1 shows the Rietveld refined XRD data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
335
+ page_content=' Goodness of fitting was showed by the extracting parameter, χ2 ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
336
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
337
+ page_content=' Observed Simulated Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
338
+ page_content='units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
339
+ page_content=') Difference Braggposition 10 20 30 40 50 60 70 80 90 20 (deg)3 c) Resistance data of single crystal Bi2Se3: FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
340
+ page_content='S2:- Four-probe resistance measurement with the variation of the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
341
+ page_content=' The electronic transport of the Bi2Se3 has been examined by the four probe resistance (R) and the temperature dependence is consistent with the behavior of degenerate semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
342
+ page_content=' The longitudinal resistance (R) is fitted using a phenomenological model: R = R0 + λe−θ /T + $T2, where the λ and $ appear for phonon scattering and electron-electron scattering, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
343
+ page_content=' [2,3] The fitting parameter are evaluated and λ ~ 12× 10−3and $ ~ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
344
+ page_content='74 × 10−7 𝐾−2, where smaller value of $ suggests negligible electron-electron scattering in Bi2Se3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
345
+ page_content=' The residual resistance ratio (RRR ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
346
+ page_content='11) shows a high quality of the single crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
347
+ page_content=' (d) APRS spectra of Bi2Se3 in bc-plane with the rotation of polarization vector of incident light while keeping the sample fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
348
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
349
+ page_content='035 Experimental data pount 9 Fittingdata 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
350
+ page_content='020 0 50 100 150 200 250 Temperature (K)4 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
351
+ page_content=' S3:- (a) APRS spectra and Polar plot of (b) 𝐴1𝑔 1 (c) 𝐴1𝑔 2 (d) 𝐸𝑔 2 of Bi2Se3 single crystal with the rotation of half-wave plate by keeping the sample fixed in bc-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
352
+ page_content=' Solid symbols represent the experimental data point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
353
+ page_content=' APRS measurements has been performed in in parallel configuration (𝑒𝑖 ∥ 𝑒𝑠), where polarization vector of incident light has varied by rotating the half-wave plate, while keeping the stage of sample and analyzer fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
354
+ page_content=' Here, the intensity of both 𝐴1𝑔 modes showed expected two-lobed analogous polar pattern polar pattern with polarization angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
355
+ page_content=' 𝐸𝑔 mode showed a low dependency on the rotation of the half wave plate, showed isotropic interaction on the rotation of polarization vector of incident light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
356
+ page_content=' [4] References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
357
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
358
+ page_content=' Singh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
359
+ page_content=' Kashyap, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
360
+ page_content=' Soni, Applied Physics Letters 119, 223903 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
361
+ page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
362
+ page_content=' Kino, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
363
+ page_content=' Endo, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
364
+ page_content=' Kawata, Journal of the Physical Society of Japan 36, 698 (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
365
+ page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
366
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
367
+ page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
368
+ page_content=', Physical Review B 105, 045134 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
369
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
370
+ page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
371
+ page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
372
+ page_content=' Lee, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
373
+ page_content=' Cheong, Journal of Physics: Condensed Matter 32, 343001 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
374
+ page_content=' (b) 120 90 (a) Ata 00 150 180 210 330 240 270 300 (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
375
+ page_content='units) E 120 90 E: (c) 00 00 150 40° Intensity 1803 800 210 900 240 300 1000 120 90 (d) 150 10 1400 180 1800 210 330 30 60 90 120 150 180 240 270 300 Ramanshift(cm1)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf'}
LtAzT4oBgHgl3EQfyv51/content/2301.01758v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a5f0848d2657ebfdc765d42e98d9ee8a19711d383cdb72a9b0e66d12dff6789
3
+ size 6149433
LtAzT4oBgHgl3EQfyv51/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b06af7eb66032297260ee9684776e27d5f50c97a2d5c62cfa74b2d66d78f57b
3
+ size 4784173
LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec402a28cec9432d96f1280e93a4236023adf4d1c61cee1ea0c452003dcac251
3
+ size 471168
LtE1T4oBgHgl3EQfZAR1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccbc9503e6a42fee1f6ffec5047198bcd31e1bc45a1e7c249faa46dae96a881
3
+ size 1966125
LtE1T4oBgHgl3EQfZAR1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aa3287dd743ed66a7d41579a215ea4c87892f0ce52e6657db6a0b17fcdae5fa
3
+ size 77497
LtFQT4oBgHgl3EQfUjZg/content/2301.13297v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a200020cedcf66b28159c67036c95a77ccbbc750750e8f4b7a7d0ff4ed46bed3
3
+ size 3283853
LtFQT4oBgHgl3EQfUjZg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d67a692b129c1881b727b5d416704212c4f03c6771d7891f7af4a78383de1f
3
+ size 5242925
LtFQT4oBgHgl3EQfUjZg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83f1deeb6844d77bda10bb9450f717ebe912dc4ceccb079b391ededf07c8ff78
3
+ size 182288
MdE2T4oBgHgl3EQfBQZc/content/tmp_files/2301.03600v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
MdE2T4oBgHgl3EQfBQZc/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE1T4oBgHgl3EQfZQTY/content/2301.03149v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59af0963b2d75e36608bfa7399b1eee2defbcdbc3c1b6372db4560ddf9f49a6f
3
+ size 1956910