diff --git a/-dE4T4oBgHgl3EQfDwsm/content/2301.04871v1.pdf b/-dE4T4oBgHgl3EQfDwsm/content/2301.04871v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d6ede5c586ea2288c84834be6999be5f9f78974a --- /dev/null +++ b/-dE4T4oBgHgl3EQfDwsm/content/2301.04871v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e8b6f1def5a202979203791c8fd4a1293f29f54abd6c4ad57aff640038c7db5c +size 426096 diff --git a/-dE4T4oBgHgl3EQfDwsm/vector_store/index.pkl b/-dE4T4oBgHgl3EQfDwsm/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ba97c6cf0ee610b94117be1856dbbe01cf37d405 --- /dev/null +++ b/-dE4T4oBgHgl3EQfDwsm/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6e6eeeeac62fe14354fb1a255af153e3c649b98d6ce03d4ad6e2da3fd47b5a1 +size 139634 diff --git a/.gitattributes b/.gitattributes index 6fbdca4170bf6a3cd95e001e9b93c8773f4c6add..f1669a3db941197f2023f0d4faaa5f562a5f893f 100644 --- a/.gitattributes +++ b/.gitattributes @@ -2050,3 +2050,87 @@ PNFOT4oBgHgl3EQf4TQo/content/2301.12949v1.pdf filter=lfs diff=lfs merge=lfs -tex s9AzT4oBgHgl3EQfPfs9/content/2301.01183v1.pdf filter=lfs diff=lfs merge=lfs -text m9E3T4oBgHgl3EQfKgnW/content/2301.04355v1.pdf filter=lfs diff=lfs merge=lfs -text m9E3T4oBgHgl3EQfKgnW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +d9E1T4oBgHgl3EQfeAT4/content/2301.03203v1.pdf filter=lfs diff=lfs merge=lfs -text +2tFQT4oBgHgl3EQfGDUx/content/2301.13243v1.pdf filter=lfs diff=lfs merge=lfs -text +htE3T4oBgHgl3EQf4Quq/content/2301.04771v1.pdf filter=lfs diff=lfs merge=lfs -text +z9AzT4oBgHgl3EQfRPsg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +2tFQT4oBgHgl3EQfGDUx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +F9E0T4oBgHgl3EQfRAC9/content/2301.02202v1.pdf filter=lfs diff=lfs merge=lfs -text +KtAyT4oBgHgl3EQf6Prq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +OdE2T4oBgHgl3EQfrAj4/content/2301.04046v1.pdf filter=lfs diff=lfs merge=lfs -text +LdAyT4oBgHgl3EQf6fqP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +UdE0T4oBgHgl3EQflgEz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +X9E5T4oBgHgl3EQfdQ8b/content/2301.05609v1.pdf filter=lfs diff=lfs merge=lfs -text +pNE3T4oBgHgl3EQf7wtN/content/2301.04801v1.pdf filter=lfs diff=lfs merge=lfs -text +CdE2T4oBgHgl3EQf9AmF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +BdAzT4oBgHgl3EQf___2/content/2301.01958v1.pdf filter=lfs diff=lfs merge=lfs -text +ZNE5T4oBgHgl3EQfdw-l/content/2301.05614v1.pdf filter=lfs diff=lfs merge=lfs -text +ytAzT4oBgHgl3EQfCvqr/content/2301.00965v1.pdf filter=lfs diff=lfs merge=lfs -text +OdE2T4oBgHgl3EQfrAj4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +v9AzT4oBgHgl3EQfsf3v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +btFPT4oBgHgl3EQfBDTK/content/2301.12984v1.pdf filter=lfs diff=lfs merge=lfs -text +ddE1T4oBgHgl3EQfLQO1/content/2301.02975v1.pdf filter=lfs diff=lfs merge=lfs -text +vdFPT4oBgHgl3EQfOTSJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +btAyT4oBgHgl3EQf-PpJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +pNE3T4oBgHgl3EQf7wtN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +X9E5T4oBgHgl3EQfdQ8b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ttE1T4oBgHgl3EQf3wUi/content/2301.03492v1.pdf filter=lfs diff=lfs merge=lfs -text +y9AyT4oBgHgl3EQfbPc2/content/2301.00257v1.pdf filter=lfs diff=lfs merge=lfs -text +WtE2T4oBgHgl3EQfDga8/content/2301.03626v1.pdf filter=lfs diff=lfs merge=lfs -text +pdE0T4oBgHgl3EQfqgHp/content/2301.02555v1.pdf filter=lfs diff=lfs merge=lfs -text +UtE1T4oBgHgl3EQfawTU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +S9FKT4oBgHgl3EQfkC7A/content/2301.11848v1.pdf filter=lfs diff=lfs merge=lfs -text +HNAyT4oBgHgl3EQfS_eb/content/2301.00097v1.pdf filter=lfs diff=lfs merge=lfs -text +btAyT4oBgHgl3EQf-PpJ/content/2301.00888v1.pdf filter=lfs diff=lfs merge=lfs -text +y9AyT4oBgHgl3EQfbPc2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +oNE0T4oBgHgl3EQfqQFw/content/2301.02550v1.pdf filter=lfs diff=lfs merge=lfs -text +L9FLT4oBgHgl3EQfMi8T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +lNE2T4oBgHgl3EQfdwfJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +S9FKT4oBgHgl3EQfkC7A/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ltE5T4oBgHgl3EQfHQ5_/content/2301.05438v1.pdf filter=lfs diff=lfs merge=lfs -text +F9E0T4oBgHgl3EQfRAC9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +c9FJT4oBgHgl3EQfRiy-/content/2301.11496v1.pdf filter=lfs diff=lfs merge=lfs -text +fdE5T4oBgHgl3EQfhQ8n/content/2301.05639v1.pdf filter=lfs diff=lfs merge=lfs -text +fdE5T4oBgHgl3EQfhQ8n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +s9E2T4oBgHgl3EQf1wgV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ltE5T4oBgHgl3EQfHQ5_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ZNE5T4oBgHgl3EQfdw-l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +pNAzT4oBgHgl3EQfOfvU/content/2301.01168v1.pdf filter=lfs diff=lfs merge=lfs -text +ttE1T4oBgHgl3EQf3wUi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +59FKT4oBgHgl3EQf-y48/content/2301.11959v1.pdf filter=lfs diff=lfs merge=lfs -text +oNE0T4oBgHgl3EQfqQFw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +itE2T4oBgHgl3EQfIAZX/content/2301.03674v1.pdf filter=lfs diff=lfs merge=lfs -text +59FKT4oBgHgl3EQf-y48/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +UtE1T4oBgHgl3EQfawTU/content/2301.03166v1.pdf filter=lfs diff=lfs merge=lfs -text +HNAyT4oBgHgl3EQfS_eb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +FtAyT4oBgHgl3EQf5Poe/content/2301.00799v1.pdf filter=lfs diff=lfs merge=lfs -text +BdAzT4oBgHgl3EQf___2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CNE2T4oBgHgl3EQfRwe0/content/2301.03785v1.pdf filter=lfs diff=lfs merge=lfs -text +pdE0T4oBgHgl3EQfqgHp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +2dAzT4oBgHgl3EQfDvol/content/2301.00980v1.pdf filter=lfs diff=lfs merge=lfs -text +VNE0T4oBgHgl3EQf2wJn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +c9FJT4oBgHgl3EQfRiy-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +mNE1T4oBgHgl3EQfOAOw/content/2301.03010v1.pdf filter=lfs diff=lfs merge=lfs -text +jNAyT4oBgHgl3EQfx_lt/content/2301.00676v1.pdf filter=lfs diff=lfs merge=lfs -text +A9E4T4oBgHgl3EQf5A6T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ytAzT4oBgHgl3EQfCvqr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XNE2T4oBgHgl3EQfYgch/content/2301.03854v1.pdf filter=lfs diff=lfs merge=lfs -text +lNE2T4oBgHgl3EQfdwfJ/content/2301.03910v1.pdf filter=lfs diff=lfs merge=lfs -text +WtE2T4oBgHgl3EQfDga8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +A9E4T4oBgHgl3EQf5A6T/content/2301.05319v1.pdf filter=lfs diff=lfs merge=lfs -text +aNA0T4oBgHgl3EQfF__0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XNE2T4oBgHgl3EQfYgch/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +X9AyT4oBgHgl3EQf9foH/content/2301.00873v1.pdf filter=lfs diff=lfs merge=lfs -text +btFPT4oBgHgl3EQfBDTK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +T9E3T4oBgHgl3EQfaQqr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +htE3T4oBgHgl3EQf4Quq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +cNE0T4oBgHgl3EQfWQCi/content/2301.02276v1.pdf filter=lfs diff=lfs merge=lfs -text +aNA0T4oBgHgl3EQfF__0/content/2301.02042v1.pdf filter=lfs diff=lfs merge=lfs -text +FtE4T4oBgHgl3EQfHAzF/content/2301.04900v1.pdf filter=lfs diff=lfs merge=lfs -text +7dE2T4oBgHgl3EQfPQbU/content/2301.03758v1.pdf filter=lfs diff=lfs merge=lfs -text +cdE5T4oBgHgl3EQffg9z/content/2301.05627v1.pdf filter=lfs diff=lfs merge=lfs -text +-dE4T4oBgHgl3EQfDwsm/content/2301.04871v1.pdf filter=lfs diff=lfs merge=lfs -text +1NAyT4oBgHgl3EQfofhG/content/2301.00507v1.pdf filter=lfs diff=lfs merge=lfs -text +FtE4T4oBgHgl3EQfHAzF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +pNAzT4oBgHgl3EQfOfvU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +T9E3T4oBgHgl3EQfaQqr/content/2301.04505v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/1NAyT4oBgHgl3EQfofhG/content/2301.00507v1.pdf b/1NAyT4oBgHgl3EQfofhG/content/2301.00507v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..82fa2672f50eb284bf980ab3e98fc2bb37c998b0 --- /dev/null +++ b/1NAyT4oBgHgl3EQfofhG/content/2301.00507v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c488e0b9d4e943ff59f1648c5faf90e8876105f77224f5d5d67542b5ff8fcff +size 229268 diff --git a/1NAyT4oBgHgl3EQfofhG/vector_store/index.pkl b/1NAyT4oBgHgl3EQfofhG/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..91ee5c4a7df452ec8e02aa0aa778ffe689392739 --- /dev/null +++ b/1NAyT4oBgHgl3EQfofhG/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ae778cea3f10ac0093a583cd7c9e573989024a2e095889c650089865a7ce8356 +size 80484 diff --git a/2dAzT4oBgHgl3EQfDvol/content/2301.00980v1.pdf b/2dAzT4oBgHgl3EQfDvol/content/2301.00980v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..601871bbc1a84ddfd1852c0490b47179b7b814d9 --- /dev/null +++ b/2dAzT4oBgHgl3EQfDvol/content/2301.00980v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:164ec6d21fa77ac37c4a89fb8afc5d4495825da9e71998b3e34d0fb89b0fc5f8 +size 282183 diff --git a/2dAzT4oBgHgl3EQfDvol/vector_store/index.pkl b/2dAzT4oBgHgl3EQfDvol/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..487dd83df734b6dd580d2fa7f8ca9c5fd6ae3a5b --- /dev/null +++ b/2dAzT4oBgHgl3EQfDvol/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc247f7cc828a1d9cb1c271d36da3f923500293c2e3b8e06f8f82fe0741b4fa1 +size 118429 diff --git a/2tFQT4oBgHgl3EQfGDUx/content/2301.13243v1.pdf b/2tFQT4oBgHgl3EQfGDUx/content/2301.13243v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..894b1907a62feb919e2408e2bad923ae08184ab4 --- /dev/null +++ b/2tFQT4oBgHgl3EQfGDUx/content/2301.13243v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bd2406dc103db5bb607377b5ebac79963ba4ae695e53588d0eef0bb284c09d00 +size 690989 diff --git a/2tFQT4oBgHgl3EQfGDUx/vector_store/index.faiss b/2tFQT4oBgHgl3EQfGDUx/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..95098f7c793cab64a3b21e8c236093a76be8427b --- /dev/null +++ b/2tFQT4oBgHgl3EQfGDUx/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d449761694772d0bddbf3f97e729218921530a181e6307007afa6a4bb38c553 +size 3080237 diff --git a/49FAT4oBgHgl3EQfFRw-/content/tmp_files/2301.08426v1.pdf.txt b/49FAT4oBgHgl3EQfFRw-/content/tmp_files/2301.08426v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..18001726d5c07e7be76a00f780b5d0d1917899df --- /dev/null +++ b/49FAT4oBgHgl3EQfFRw-/content/tmp_files/2301.08426v1.pdf.txt @@ -0,0 +1,1916 @@ +η-pairing on bipartite and non-bipartite lattices +Yutaro Misu1, Shun Tamura2, Yukio Tanaka2 and Shintaro Hoshino1 +1Department of Physics, Saitama University, Saitama 338-8570, Japan +2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan +(Dated: January 23, 2023) +The η-pairing is a type of Cooper pairing state in which the phase of the superconducting order +parameter is aligned in a staggered manner, in contrast to the usual BCS superconductors with a +spatially uniform phase. In this study, we search for a characteristic η-pairing state in a triangular +lattice where a simple staggered alignment of the phase is not possible. As an example, we consider +the attractive Hubbard model on both the square and triangular lattices under strong external +Zeeman field. +Using the mean-field approximation, we have identified several η-pairing states. +Additionally, we have examined the electromagnetic stability of the pairing state by calculating the +Meissner kernel. Odd-frequency pairing plays a crucial role in achieving diamagnetic response if the +electrons experience a staggered superconducting phase during the propagation of current. +I. +INTRODUCTION +The diversity of superconducting phenomena has been +attracting continued attention. +The superconducting +state of matter is characterized by the properties of +Cooper pairs, which can be classified based on their +space-time and spin structures. +With regard to their +space structure, Cooper pairs are typically classified as +s-wave, p-wave, or d-wave pairs depending on their rel- +ative coordinate structure. As for their center-of-mass +coordinate, while it is usually assumed to be zero in +most superconductors, it is possible to consider the exis- +tence of a finite center-of-mass momentum. One example +of this is the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) +state [1, 2], in which the Cooper pair has a small but finite +center-of-mass momentum under the influence of a mag- +netic field. More generally, the magnitude of the center- +of-mass momentum can be larger and of the order of the +reciprocal lattice vector ∼ π/a, where a is a lattice con- +stant. This type of pairing state is known as η-pairing, +a concept first proposed by C. N. Yang, which forms a +staggered alignment of the superconducting phase on a +bipartite lattice [3]. The spatially modulating order pa- +rameter is known also as the pair density wave, and has +been discussed in relation to cuprate superconductors [4]. +The actual realization of the η-pairing has been pro- +posed for the correlated electron systems such as the at- +tractive Hubbard (AH) model with the magnetic field +[5], the single- and two-channel Kondo lattices [6, 7], the +Penson-Kolb model [8], and also the non-equilibrium sit- +uation [9–14]. +Since the phase of the superconducting +order parameter can be regarded as the XY spin, the η- +pairing is analogous to an antiferromagnetic state of the +XY spin model. +Hence, the η-pairing state should be +strongly dependent on the underlying lattice structure +and we naively expect a variety of the η-pairing state +if we consider the geometrically frustrated lattice such +as the triangular lattice since the simple staggered state +cannot be realized. +In this paper, we deal with the AH model on the non- +bipartite lattice in order to search for possible new su- +perconducting states depending on the feature of the +non-bipartite lattice structure in equilibrium. +Already +in the normal state without superconductivity, it has +been pointed out that the non-bipartite lattice generates +a non-trivial state of matter. For example in the Kondo +lattice, a partial-Kondo-screening, which has a coexisting +feature of Kondo spin-singlet and antiferromagnetism, is +realized [15]. Also in the AH model at half-filling, charge- +density-wave (CDW) is suppressed due to the frustration +effect [16]. The η-pairing that appears in a photodoped +Hubbard model on the triangular lattice has been studied +recently [14]. In the equilibrium situation, the properties +of the AH model have been studied on bipartite lattices +[5], but the model on a non-bipartite lattice has not been +explored. +As shown in the rest of this paper, there are several +types of η-pairings on the triangular lattice of the AH +model under the Zeeman field. +One of the η-pairing +states is regarded as a 120◦-N´eel state. +Since the rel- +ative phase between the nearest neighbor sites is neither +parallel nor anti-parallel, the inter-atomic Josephson cur- +rent is spontaneously generated. This state can also be +regarded as a staggered flux state, where the flux is cre- +ated by the atomic-scale superconducting loop current. +While the staggered flux state has been studied so far +[17–23], the staggered flux in this paper is induced by +the Josephson effect associated with superconductivity +and has a different origin. +For the analysis of the AH model, we employ the mean- +field approximation in this paper. It has been suggested +that a simple η-pairing shows a paramagnetic Meissner +state [24]. Hence it is necessary to investigate the electro- +magnetic stability of the solution for superconductivity. +We evaluate the Meissner kernel whose sign corresponds +to the diamagnetic (minus) or paramagnetic (plus) re- +sponse of the whole system, where the physically sta- +ble state should show diamagnetism. We confirm that +if the mean-field η-pairing state has the lowest energy +compared to the other ordered states, the calculation of +the Meissner kernel shows the diamagnetic response. It +is also notable that the odd-frequency pairing amplitude, +which has an odd functional form with respect to the fre- +quency [6, 25–30], can contribute to the diamagnetism in +arXiv:2301.08426v1 [cond-mat.supr-con] 20 Jan 2023 + +2 +the η-pairing state. This is in contrast to the usual super- +conductivity with the uniform phase where the conven- +tional even-frequency pairing contributes to the diamag- +netism. It has been shown that the odd-frequency pairing +induced at the edge, interface or junctions [31–36] shows +a paramagnetic response [37–41]. In this paper, by con- +trast, we consider the odd-frequency pairing realized in +bulk, which shows a qualitatively different behavior. +This paper is organized as follows. +We explain the +model and method for the AH model in Sec. II, and the +Meissner kernel in Sec. III. The numerical results for the +AH model are shown in Sec. IV, and we summarize the +paper in Sec. V. +II. +ATTRACTIVE HUBBARD MODEL +A. +Hamiltonian +We consider the Hamiltonian of the AH model with +magnetic field h which induce Zeeman effect only (Zee- +man field) : +H = −t +� +⟨i,j⟩σ +c† +iσcjσ + H.c. + U +� +i +ni↑ni↓ +− µ +� +i +ni − h · +� +i +si, +(1) +where c† +iσ and ciσ are the creation and annihilation op- +erators of the i-th site with spin σ, respectively. +The +symbol ⟨i, j⟩ represents a pair of the nearest-neighbor +sites. +Here, the parameter t is the nearest-neighbor +single-electron hopping integral. U (= −|U|) is the on- +site attractive interaction. The spin operator is defined +as si = +1 +2 +� +σσ′ c† +iστσσ′ciσ′, where τ is the Pauli ma- +trix, and the number operator of electrons is denoted as +ni = ni↑ + ni↓ = � +σ c† +iσciσ. The electron concentration +is controlled by adjusting the chemical potential µ. +The AH model has been successfully used to elucidate +several important and fundamental issues in supercon- +ductors [42]. The model on a bipartite lattice at half fill- +ing is theoretically mapped onto the repulsive Hubbard +model by the following partial particle-hole transforma- +tion [43] +c† +i↑ → c† +i↑, c† +i↓ → ci↓eiQ·Ri. +(2) +The reciprocal vector Q satisfies the condition eiQ·Ri = +(−1)i that takes ±1 depending on Ri belonging to A or +B sublattice on the bipartite lattice. Then, the η-pairing +appears in the region that corresponds to a ferromagnet +with transverse magnetization in the repulsive model [5]. +In a mean-field theory, the phase diagram for the repul- +sive Hubbard model without the magnetic field is shown +in the left panel of Fig. 1 [44]. From this figure, we find +that the ferromagnet is located in the regime where the +repulsive interaction U > 0 is large and the electron con- +centration is not half-filled. Hence, the η-pairing phase +nc +t +|U| +m +0 +1 +0 +1 +PM +AFM +FM +FF +BCS +-pairing +η +Repulsive Hubbard ( +) +U > 0 +Attractive Hubbard ( +) +U < 0 +h = 0 +nc = 1.0 +Spin-polarized +normal state +FIG. 1. +Sketches of the phase diagrams for the repulsive +Hubbard model [44] (left panel) and AH model (right panel). +nc is the electron concentration and m is the magnetization. +When the interaction |U| is large, the ground state in the re- +pulsive Hubbard model is ferromagnet (FM), while the ground +state in the AH model is η-pairing. +is located in the regime where the attractive interaction +U < 0 is large and the magnetization is finite. The phase +diagram of the AH model at half filling is shown in the +right panel of Fig. 1. In principle, an attractive interac- +tion large enough to realize η-pairing could be realized in +artificial cold atom systems [45]. +The Cooper pair is formed by the two electrons +with (k ↑, +− k + q ↓) where q is the center-of-mass +momentum. The FFLO state and the η-pairing are dis- +tinguished by the magnitude of |q|. +In η-pairing, the +center-of-mass momentum of the Cooper pair is the or- +der of the reciprocal lattice vector, while the momentum +of the FFLO state is much smaller and the spatial mod- +ulation is slowly-varying compared to the atomic scale. +Although the large center-of-mass momentum is usually +not energetically favorable, a strong attractive interac- +tion can make it stable. +B. +Mean-field theory +By applying the mean-field approximation, we obtain +the mean-field Hamiltonian +HMF = −t +� +⟨i,j⟩σ +c† +iσcjσ + H.c. − µ +� +i +ni − h · +� +i +si +− +� +i +� +vini + Hi · si − ∆ic† +i↑c† +i↓ − ∆∗ +i ci↓ci↑ +� +. +(3) + +3 +The order parameters are given by the self-consistent +equations +vi ≡ |U| +2 ⟨ni⟩, +(4) +∆i ≡ −|U|⟨ci↓ci↑⟩, +(5) +mi = 1 +2 +� +σσ′ +⟨c† +iστσσ′ciσ′⟩, +Hi = +− 2|U|mi, +(6) +where ⟨A⟩ = Tr +� +Ae−HMF/T � +/Tr +� +e−HMF/T � +is a quan- +tum statistical average with the mean-field Hamiltonian +and T is temperature. +∆i is the order parameter for +s-wave singlet superconductivity (pair potential). +The +phase θi ∈ [0, 2π) of the pair potential ∆i = |∆i|eiθi is +dependent on the site index and will be represented by +the arrow in a two-dimensional space. The mean-fields +for the charge and spin are given by vi and Hi, respec- +tively, at each site. The derivation of the self-consistent +equations is summarized in Appendix A. We will consider +the AH model both on the two-dimensional square and +triangular lattices. +III. +MEISSNER KERNEL FOR A GENERAL +TIGHT-BINDING LATTICE +A. +Definition +As we explained in Sec. I, it is necessary to calculate +the Meissner kernel to determine whether the mean-field +solution for η-pairing is electromagnetically stable. In the +tight-binding model, the electromagnetic field appears as +Peierls phase: +Hkin = −t +� +⟨i,j⟩σ +eiAijc† +iσcjσ + H.c.. +(7) +The Meissner effect is examined by the weak external or- +bital magnetic field applied perpendicular to the plane, +while the η-pairing is stabilized only under a strong Zee- +man field. In order to make these compatible, we apply +the Zeeman field parallel to the plane h = (h, 0, 0), which +does not create the orbital motion of the tight-binding +electrons. +Thus, the weak magnetic field that triggers +the Meissner effect is applied perpendicular to the plane +in addition to the in-plane magnetic field. +While the +out-of-plane Zeeman effect is also induced by the weak +additional field, it is neglected since the dominant Zee- +man field already exists by the strong in-plane magnetic +field. +Let us formulate the Meissner response kernel on a +general tight-binding model. We apply the formulation in +Refs. [46–48] to the present case with sublattice degrees +of freedom. The current density operator between two +sites is defined as +jij = ∂Hkin +∂Aij +ˆδij += −it +� +σ +� +c† +iσcjσeiAij − c† +jσciσe−iAij� +ˆδij, +(8) +where δij = Ri − Rj is the inter-site lattice vector be- +tween i-th and j-th sites, and hat (ˆ) symbol means a unit +vector. In the linear response theory, the current oper- +ator which appears as a response to the static magnetic +field in equilibrium is written as +jij ≃ −it +� +σ +(c† +iσcjσ − c† +jσciσ)ˆδij ++ t +� +σ +(c† +iσcjσ + c† +jσciσ)ˆδijAij +≡ jpara +ij ++ jdia +ij . +(9) +The first term is called the paramagnetic term and the +second term is diamagnetic. +The Fourier-transformed +paramagnetic and diamagnetic current density operators +are written as jpara(q) and jdia(q). The linear response +kernel is then defined by ⟨jν(q)⟩ = � +µ Kνµ(q)Aµ(q), +where ν, µ = x, y is the direction. We evaluate the ker- +nel Kνµ(q → 0) ≡ Kνµ when investigating the stability +of superconductivity. This is called the Meissner kernel, +which is proportional to the superfluid density. +The Meissner kernel is separated into paramagnetic +and diamagnetic terms as Kνµ = (Kpara)νµ + (Kdia)νµ. +The paramagnetic kernel is given by +(Kpara)νµ = 1 +N +� 1/T +0 +dτ⟨jpara +ν +(q = 0, τ)jpara +µ +(q = 0)⟩, +(10) +where N = � +i 1 is the number of sites. The Heisenberg +representation with the imaginary time τ is defined as +A(τ) = eHτAe−Hτ. The form of the diamagnetic kernel +is obvious from Eq. (9). +We note that if the sign of the Meissner kernel K is +negative, the superconducting state is electromagneti- +cally stable and is also called a diamagnetic Meissner +state, which expels magnetic flux. On the other hand, if +the sign is positive, the superconducting state is called +the paramagnetic Meissner state, which attracts mag- +netic flux. For a stable thermodynamic superconducting +state, the negative value of K is required. +B. +Method of evaluation +The actual evaluation of the kernels is performed based +on the wave-vector representation. +Here, the physical +quantities are described by the operator cα +kσ where α dis- +tinguishes the sublattice. Note that the Brillouin zone is + +4 +folded by � +α 1 times. The diamagnetic kernel is rewrit- +ten as +(Kdia)νµ = 1 +N +� +α,β +� +kσ +� +m−1 +kαβ +� +νµ ⟨cα† +kσcβ +kσ⟩. +(11) +The inverse mass tensor m−1 +kαβ, which reflects the char- +acteristics of the lattice shape, are given by +� +m−1 +kαβ +� +νµ ≡ t +� +⟨iα,jβ⟩ +� +ˆδiαjβ +� +ν +� +ˆδiαjβ +� +µ e−ik·Riαjβ , +(12) +where iα is the i-th unit cell with sublattice α. +The +symbol ⟨iα, jβ⟩ represents a pair of the nearest-neighbor +sites and Riαjβ is the vector between the unit lattice with +the i-th sublattice α and the unit lattice with the j-th +sublattice β. +The paramagnetic term has the form of a current- +current correlation function. We can calculate this term +by using the Green’s function matrix +ˇGk(τ) ≡ −⟨Tτψk(τ)ψ† +k⟩ +(13) +where ψk = (cα +k↑, cα† +−k↓, · · · )T is the Nambu-spinor. Tτ is +time-ordering operator regrading τ. Each component of +the Green’s function matrix is given by the diagonal and +off-diagonal Green’s functions: +Gαβ +σσ′(k, τ) ≡ −⟨Tτcα +kσ(τ)cβ† +kσ′⟩, +(14) +¯Gαβ +σσ′(k, τ) ≡ −⟨Tτcα† +kσ(τ)cβ +k′σ′⟩, +(15) +F αβ +σσ′(k, τ) ≡ −⟨Tτcα +kσ(τ)cβ +−kσ′⟩, +(16) +F αβ† +σσ′ (k, τ) ≡ −⟨Tτcα† +−kσ(τ)cβ† +kσ′⟩. +(17) +The anomalous part of Green’s function [Eq. (16)] is also +called the pair amplitude. The paramagnetic kernel in +Eq. (10) can be divided into the normal (G) and anoma- +lous (F) Green’s function contributions as +(Kpara)νµ = − 1 +N +� � 1/T +0 +dτ (vkαβ)ν · (vkα′β′)µ × +� +¯Gαβ′ +σσ′(k, τ)Gα′β +σσ′(k, τ) + ¯Gαβ′ +σσ′(−k, τ)Gα′β +σσ′(−k, τ) +� +− 1 +N +� � 1/T +0 +dτ (vkαβ)ν · (v−kα′β′)µ × +� +F βα† +σ′σ (k, −τ)F α′β′ +σ,σ′ (k, τ) + F βα† +σ′σ (−k, −τ)F α′β′ +σ,σ′ (−k, τ) +� +≡ KG +para + KF +para. +(18) +The summation � is performed over the indices which appears only in the right-hand side. The velocity vector vkαβ +is defined by +(vkαβ)ν ≡ t +� +⟨iα,jβ⟩ +� +ˆδiαjβ +� +ν e−ik·Riαjβ . +(19) +In order to perform the integral with respect to τ in Eq. (18), we define the Fourier-transformed Green’s function as +gk(iωn) ≡ +� 1/T +0 +dτgk(τ)eiωnτ, +(20) +where gk represents one of Eqs. (14)-(17) and ωn = (2n + 1)πT is fermionic Mastubara frequency. Moreover, the +Fourier-transformed Green’s function matrix is given by using the matrix representation of mean-field Hamiltonian +Eq. (3) as +ˇGk(iωn) = +� +iωnˇ1 − ˇHMF +k +�−1 = ˇUk +� +iωnˇ1 − ˇΛk +�−1 ˇU † +k, +(21) +where ˇΛk and ˇUk are, respectively, a diagonal eigenvalue matrix and a unitary matrix satisfying ˇU † ˇHMF +k +ˇU = ˇΛk = +diag(λk1, λk2, . . .). From Eq. (21), Kpara can be calculated as +(Kpara)νµ = − 1 +N +� � +(vkαβ)ν · (vkα′β′)µ Uβ′σ′,ασ +kp +Uα′σ,βσ′ +kp′ ++ (vkαβ)ν · (v−kα′β′)µ Uβσ′,ασ +kp +Uα′σ,β′σ′ +kp′ +� f (λkp) − f (λkp′) +λkp − λkp′ ++ c.c. +(22) +where f(λkp) = +1 +eλkp/T +1 is the Fermi-Dirac distribution function and we have defined the coefficient Uασ,βσ′ +kp +≡ +� ˇUk +� +ασ,p +� +ˇU † +k +� +p,βσ′. +The anomalous part of Eq. (18) KF +para is further de- +composed into the contributions KEFP and KOFP from + +5 +the even-frequency pair (EFP) and odd-frequency pair +(OFP) amplitudes defined by +F EFP(k, iωn) ≡ F(k, iωn) + F(k, −iωn) +2 +, +(23) +F OFP(k, iωn) ≡ F(k, iωn) − F(k, −iωn) +2 +. +(24) +Then, we obtain KEFP and KOFP by using Eqs. (23) and +(24) as +KEFP,OFP +νµ += − 1 +2N +� +k +� +αβα′β′ +(vkαβ)ν · (v−kα′β′)µ +× +� +σσ′ +� +pp′ +Uβσ′,ασ +kp +Uα′σ,βσ′ +kp′ +× +�f (λkp) − f (λkp′) +λkp − λkp′ +∓ f (λkp) − f (−λkp′) +λkp + λkp′ +� ++ c.c., +(25) +where the minus (−) sign in the square bracket is taken +for EFP contribution and the plus (+) for OFP pairing. +These quantities are numerically calculated as shown in +the next section. Note that the cross term of the EFP +and OFP terms of Green’s functions vanishes after the +summation with respect to the Matsubara frequency. +C. +Paramagnetic Meissner response of a simple +η-pairing state +Before we show the results of the AH model, let us show +that a simple η-pairing state leads to the paramagnetic +response which would not arise from thermodynamically +stable states [24, 49]. We consider the simple bipartite +lattice with staggered ordering vector Q. The anomalous +contribution to the Meissner kernel may be written as [49] +KF +para,xx = −T +� +nkk′σσ′ +vx +kvx +k′F ∗ +σ′σ(k′, k, iωn)Fσσ′(k, k′, iωn). +(26) +This contribution must be negative (diamagnetic re- +sponse) in order to dominate over the paramagnetic con- +tribution. For a purely η-pairing state, we assume the +relation Fσσ′(k, k′) = Fσσ′(k)δk′,−k−Q, and obtain +KF +para,xx = −T +� +nkσσ′ +(vx +k)2F ∗ +σ′σ(k, iωn)Fσσ′(k, iωn), (27) +where we have used vx +−k−Q = vx +k valid for square lat- +tice, which is in contrast to the relation vx +−k = −vx +k +for the uniform pairing with additional minus sign [24]. +We separate the spin-singlet and triplet parts as Fσσ′ = +Fsiτ y +σσ′ + Ft · (τiτ y)σσ′, and then obtain +KF +para,xx = 2T +� +nk +(vx +k)2� +|Fs(k, iωn)|2 − |Ft(k, iωn)|2� +. +(28) +If we consider the simple η-pairing with only spin-singlet +part (Ft = 0), it leads to the paramagnetic response +(positive). +Thus, a simple s-wave spin-singlet η-pairing is unlikely +realized as a stable state. On the other hand, in the AH +model with magnetic field, the spin-triplet pair contribu- +tion is substantially generated by the Zeeman field, which +plays an important role for the diamagnetic response as +shown below. +IV. +NUMERICAL RESULT FOR AH MODEL +A. +Square lattice +1. +Prerequisites +Let us begin with the analysis of the AH model on +the square lattice. We consider the two-sublattice struc- +ture to describe the staggered ordered phase such as a +η-pairing. While the superconducting states in the at- +tractive model are interpreted in terms of the magnetic +phases of the repulsive model by the particle-hole trans- +formation in Eq. (2), the response functions such as the +Meissner kernel are specific to the attractive model and +have not been explored. +In the following, we choose the band width W = 1 +as the unit of energy. +We fix the value of the attrac- +tive interaction U = −1.375. The electron concentration +is fixed as nc = 1, and the temperature is taken to be +T = 1.0 × 10−3 unless otherwise specified. We will in- +vestigate the change of the Meissner kernel for η-pairing +as a function of magnetic field strength h = |h|. In this +paper, the mean-field solutions are calculated using the +60 × 60 mesh in k-space. The result of the Meissner ker- +nel for η-pairings is calculated with the mesh 300 × 300. +We also checked that the behaviors remain qualitatively +unchanged when these numbers are increased. The self- +consistent equations in Eqs. (4)-(6) are computed by +using an iterative method. +In the following subsec- +tion IV A 2, we restrict ourselves to the analysis of two- +sublattice mean-field solutions, and in IV A 3, we exam- +ine the solutions when the two-sublattice constraint is +relaxed. +2. +Two-sublattice solution +Before investigating the electromagnetic stability, we +clarify the regime where the η-pairing becomes the +ground state. In this paper, we assume that the inter- +nal energy in Eq. (1) is approximately equal to the free +energy in the low temperature region. The upper panel +of Fig. 2 shows the internal energy of several ordered +states measured from the normal-state energy as a func- +tion of the Zeeman field h. Here, the η-pairing solution +is obtained by solving the self-consistent equation with +imposing the constraint of the staggered phase of the pair + +6 +0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 +h +−3.0 +−2.5 +−2.0 +−1.5 +−1.0 +−0.5 +0.0 +Ei − Enormal +BCS +CDW +Normal +η-pairing +0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 +0.00 +0.04 +0.08 +D0 +FIG. 2. +(Upper panel) Magnetic-field dependence of the +internal energy for each state measured from the normal state +in the square lattice model. (Lower plane) Density of state +(DOS) at zero energy D0 for each state. +−1.5 +−1.0 +−0.5 +0.0 +0.5 +1.0 +1.5 +ω +0.0 +0.1 +0.2 +D(ω) +h = 1.25 +h = 1.375 +h = 1.5 +FIG. 3. Density of states for the η-pairing around magnetic +filed h = 1.375 in the square lattice model. +Here D(ω) is +normalized as +� +dωD(ω) = 1. +amplitude. A constraint is also used for the calculation +of the other types of order parameters. Our calculations +have not found any ordered states other than the types +shown in Fig. 2 even when a random initial condition is +employed. +We determine the thermodynamically stable ground +state by comparing the internal energies. In low magnetic +fields, BCS and CDW are degenerated ground states. On +the other hand, we find that the η-pairing becomes the +ground state in the magnetic field located in 1.063 < h < +1.875. The η-pairing solution itself is found in the wider +regime although the internal energy is not the lowest one. +It has been known that the attractive Hubbard model +under a magnetic field also shows the FFLO state [50], +but this possibility cannot be considered when we take +the two-sublattice condition. This point will be revisited +in the next subsection where the two-sublattice condition +is relaxed. +The lower panel of Fig. 2 shows the density of +state (DOS) at the Fermi level for each state. The re- +sult indicates that there is no energy gap in the η-pairing +state, in contrast to the conventional BCS pairing state. +There exists the regime where the DOS at the Fermi +level for η-pairing is larger than that of normal metal +(1.25 ≲ h ≲ 1.5). This is due to the van-Hove singular- +ity of the square lattice model as shown in FIG. 3. We +also perform the calculation for the cubic lattice where +the van-Hove singularity is absent at zero energy and con- +firm in this case that the DOS is smaller than the normal +state (see Appendix B). +The stability of the η-pairing depends upon the mag- +nitude of the magnetic field as seen in the Meissner re- +sponse kernel K (= Kxx = Kyy) (green symbol) in +Fig. 4(a). +The contributions from the paramagnetic +(Kpara, positive) and diamagnetic (Kdia, negative) parts +are also separately plotted in the figure. In the regime +with h ≤ 1.125 and 1.75 ≤ h, the η-pairing is electromag- +netically unstable, while it is stable in 1.125 < h < 1.75. +In Fig. 4, the yellow shaded rectangle indicates the regime +where the η-pairing becomes the ground state as seen +from Fig. 2. We find a narrow region where η-pairing is +regarded as the ground state but is not an electromagnet- +ically stable state around h = 1.125. From these results, +we see that the η-pairing is not necessarily electromag- +netically stable even if it becomes the ground state in +a two-sublattice calculation. As we shall see later, the +simple η-pairing in this narrow regime does not necessar- +ily exist if we relax the two-sublattice condition of the +mean-field solution. +We also show in Fig. 4(a) the contributions from the +even- and odd-frequency pairs defined in Eqs. (23) and +(24). The negative sign of the kernel, which means the re- +sponse is diamagnetic, is partly due to the odd-frequency +component of the pair amplitude, (KOFP < 0). +This +is in contrast to the FFLO state whose Meissner ker- +nel is also negative due to the even-frequency component +[51]. Hence, it implies that the mechanism of the dia- +magnetism is different between the FFLO and η-pairing +states. +In +addition +to +the +Meissner +kernel, +we +calcu- +late the local pair amplitudes which are shown in +FIG. 4(b). +Here the left- and right-panels represent +the spin-triplet and spin-singlet components of the lo- +cal pair amplitude, respectively. The triplet component +� +σσ′(τ µiτ y)σσ′Fσσ′(iωn) with µ = x has a finite imagi- +nary part and zero real part, which represents the odd- +frequency pair. The other µ = y, z components are zero. +On the other hand, the singlet component has a finite real +part and zero imaginary part and is the even-frequency +pair. We can see that the maximum value of the spin- +triplet component of the pair amplitude is largest at the +magnetic field h = 1.375, where the magnitude of KOFP +is largest. It is also notable that the magnitude of the +odd-frequency pair amplitude correlates with the magni- +tude of DOS at zero energy as seen by comparing Figs. 3 +and 4. +We comment on the singular behavior of KOFP at the +magnetic field h = 1.375, although it does not affect the +total Meissner kernel K. This anomalous feature is re- +lated to the van Hove singularity of the DOS at zero +energy as shown in FIG. 3, which shows a sharp peak at +the Fermi level. + +7 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +h +-1.0 +-0.5 +0.0 +0.5 +1.0 +K +Kdia +Kpara +K +KEFP +KOFP +(a) +(b) +AD0HichVO5TsNAEH3BnOEIR4NEg4iQKFC0QZxdEA0lVwCJIGSbTbKL9kbFIQioEW08A ++IH+EHKPgEagoaCmY35lIUM5bt2TfvjWd2x1bgiEgy9pLqMrp7ev6B9KDQ8MjmdGx8f3Ir4c2L9q+4e +HlhlxR3i8KIV0+GEQctO1H5g1TZU/OCMh5HwvT15HvBj16x4oixsUxK0U2qejGZjmbnfysZNFbFv+ +WKqEk7hw0YdLjg8SPIdmIjoOkIeDAFhx7gLCRP6DhHE2nS1onFiWESWqNnhVZHMerRWuWMtNqmrzh0h6 +Scxix7Zg/sjT2xR/bKPjrmutA5VC3n9LZaWh6cZG4md9/Vbn0lqj+qBJrlihjVdcqPZAI6oLW+s7KxW +nQr0Jila13qKYRbiTsEuK5SbG/3Y+39ZTZ2WFdtktKpPq/FPFYpbI18m8n6fX1LNEa1djSbx1M429Kz5 +xA4SuV8d/+am9ayvKVv6nux2Z38hl1/OLW4vZgvrV62p78cUZjBHk72CAjaxhSJlLuMWd7g3doyGcWlct +6hdqfhPmcAfM24+AbMryxg=}Eq. (25) +°3 +°2 +°1 +0 +1 +2 +3 +!n +0.0 +0.6 +1.2 +1.8 +2.4 +3.0 +3.6 +4.2 +4.8 +5.4 +6.0 +6.6 +Re[F " #(i!n) ° F # "(i!n)]/ +p +2 +2.0 +1.875 +1.75 +1.625 +1.5 +1.375 +1.25 +1.125 +1.0 +0.875 +0.75 +0.625 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +h +-1.0 +-0.5 +0.0 +0.5 +1.0 +K +Kdia +Kpara +K +KEFP +KOFP +OFP +EFP +°3 +°2 +°1 +0 +1 +2 +3 +!n +0.0 +0.6 +1.2 +1.8 +2.4 +3.0 +3.6 +4.2 +4.8 +5.4 +6.0 +6.6 +Im[F # #(i!n) ° F " "(i!n)]/ +p +2 +FIG. 4. +(a) Magnetic field dependence of the Meissner ker- +nel K(= Kxx = Kyy) for the η-pairing on the square lattice. +The yellow shaded rectangle indicates the range where the +η-pairing becomes the ground state in two-sublattice calcula- +tion. The number of the wavenumber k is taken as 300×300. +(b) Matsubara frequency dependence of the local pair ampli- +tude at several magnetic fields. The left panel represents the +imaginary part of [F↓↓(iωn) − F↑↑(iωn)] / +√ +2, and the right +panel represents the real part of [F↑↓(iωn) − F↓↑(iωn)] / +√ +2. +The values of the pair amplitudes are shifted by 0.6 at each +magnetic field for visual clarity, and the gray-dotted lines are +the zero axes for each magnetic field. +3. +Beyond two-sublattice +In order to clarify the stable ordered state where the +Meissner kernel is positive (paramagnetic), we investi- +gate mean-field solutions on finite-sized lattice where the +two-sublattice condition is not imposed. +We have nu- +merically solved the Eqs. (4)-(6) self-consistently by us- +ing the mean-field solutions of the η-pairing obtained for +two-sublattice as an initial condition. +Figure 5 shows the spatial distribution of the phase of +the gap function when the number of sites is 8 × 8. At +h = 0.5 in (a), where the η-pairing is not a ground state, +the uniform BCS pairing state is realized as expected. +With increasing the magnetic field, the longer-periodicity +structures are found as shown in Figs. 5(b), (c) and (d). +At h = 1.375 in (c), where the η-pairing solution has the +lowest energy and the electromagnetic response is well +diamagnetic, we obtain the staggered alignment of the +(a) h = 0.5 +(d) h = 1.875 +(c) h = 1.375 +(b) h = 1.125 +FIG. 5. +Spatial distribution of the phase of the supercon- +ducting order parameter at several magnetic fields. The cal- +culation is performed on the finite-sized lattice (8 × 8) with +open boundary condition. Small black dots are lattice points +and red arrows indicate the phase of the pair potential for +each lattice point. +phases. When the parameters are close to the edges of +the yellow-highlighted region in Fig. 4, the complex struc- +tures are formed as shown in (b) and (d). The behavior +in (b) is interpreted as due to the competing effect where +the simple uniform and staggered phases are energetically +close to each other. +We also investigate the case with the other choice of pa- +rameters: U = −1.25 and h = 1.25. In this case, we find +the staggered flux state where the phase of pair poten- +tial is characterized by 90◦-N´eel ordering as in Fig. 6(a). +This ordered state cannot be described in the mean-field +theory with two sublattices. +Owing to a non-colinear +90◦-N´eel ordering vector, the spontaneous clockwise or +counterclockwise loop currents arise by the inter-atomic +Josephson effect. The current density is calculated by +jij = −it +� +σ +⟨c† +iσcjσ − c† +jσciσ⟩ +(29) +which is identical to the expression of the paramagnetic +current in the linear response theory. We can also evalu- +ate the flux for each plaquette, which is define by +Φ = +� +(i,j)∈plaquette +jij +(30) +This expression is similar to the flux +� +C +j ·ds = +� +S +b·dS +(j = ∇ × b) defined in a continuum system, where b is +a flux density. The flux is aligned in a staggered manner + +8 +(a) +(b) +Current +Magnetic flux +FIG. 6. (a) Spatial distribution of the phase of the supercon- +ducting order parameter for the η-pairing with 90◦-N´eel state +on the finite-sized lattice under open boundary conditions. +(b) Spatial distributions of the spontaneous loop current and +the flux defined on each plaquette. The color of vectors dis- +plays the magnitude of current, and the color of dots in each +plaquette indicates the value of the magnetic flux defined in +Eq. (30). +on a dual lattice as indicated in Fig. 6(b). The staggered +flux originating from the normal part has been studied +before [20–23], while the staggered flux shown in Fig. 6(b) +has a different origin: it arises from the superconductiv- +ity associated with the off-diagonal part in the Nambu +representation. +We also comment on a feedback effect to the electro- +magnetic field from the supercurrent. +Since the char- +acteristic length scale for the magnetic field in layered +superconductor becomes long [52], each magnetic flux on +the plaquette is smeared out with this length. Hence we +expect that the net magnetic field is not created from the +staggered superconducting flux. +B. +Triangular lattice +1. +Mean-field solution +Now we search for the η-pairing reflecting the charac- +teristics of a geometrically frustrated triangular lattice +at the half-filling (nc = 1.0). We choose the parameters +U = −1.83 and T = 1.0 × 10−3. We consider the cases of +two- and three-sublattice structures. For a usual antifer- +romagnet, the typical ordered state in the two-sublattice +case has a stripe pattern, while in the three-sublattice +case we expect a 120◦-N´eel state. Below we study the +superconducting η-pairing phases within the mean-field +theory. +We have found the four types of superconducting states +reflecting the characteristics of the triangular lattice, +which are referred to as the η-pairing I, II, III, and IV. +The schematic pictures for these four states are shown +in Fig. 7(a), where the arrow indicates the phase of the +superconducting order parameter at each site. We make +a few general remarks: the three-sublattice structure is +assumed for I, II, III, while the two sublattice is employed +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +1.5 +ni, mi +nA +nB +nC +mA +mB +mC +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +ni, mi +nA +nB +mA +mB +(a) +(b) +AD5XichVNa9tAEH20tRxmsRJCR6MTWFHhKzLmT3hx6SW8pqe2AbYykbOTF+kJaBxth6LnQW8m19Njkj/QP9NCf0HMOufTQ2bXzYyVEZJm37w3mtkdWaErYsn +Yn0zWHi0+Di3lF9+srK6VljfqMdBP7J5zQ7cIDq2zJi7wuc1KaTLj8OIm57l8obVe6/ijTMexSLwP8lhyNue6fjiVNimJKhT2GxFXvKh1Y1D0+bJdrnCvVF91CmUWJlpK846lYlTwsQOg/VMCy2cICNPjxw+JDkuzAR09VEBQwhYW0khEXkCR3nGCFP2j6xODFMQnv0dGjVnKA+rVXOWKt+opLd0TKIl6y3+wnu2K/2CX7y/7NzZXoHKqWIb2tsZaHnbUvz46uH1R59Jbo3qlSa5Y4xZ6uVDtoUZUF7bWz1cqjkO9CYp2td6imEW4m7JLiuWlxqc735rpab7SoV02Ce3q0xo8UIXi +9siXqbz75dWc0xrT6NpPLWzAz1rAbHDVO5Nx/e5eT3r75S9uZ3sWaf+ulx5W975uFOq7n8eT30Oz/ECr2iyd1HFAQ5Ro8wJfuACl4ZjfDW+GedjajYz+VOeYsqM7/8B8nDTJg=IV +AD5XichVNb9NAEH2paSmhtAmoEhKXqFGlHm +i0qQot1S9kFsQzYeURJHtbp1V/CV7g1JZkTgjcau4Io6QP8If4MBP4MyBSw+d3YR+KIo7lu3ZN+NZ3bHVuiKWDL2O7NkPFhebj6KPt47cn6Ri7/tBEHw8jmdTtwg6hlmTF3hc/rUkiXt8KIm57l8qY1OFbx5gcexSLwT+R5yLue6fji +TNimJKiX2+xEXlLt9OPQtHmyWypzb1wd93JFVmLaCvNOeYUMbNakM90MEpAtgYwgOHD0m+CxMxXW2UwRAS1kVCWESe0HGOMbKkHRKLE8MkdEBPh1btGerTWuWMtdqmr7h0R6QsYJv9Yt/ZX/aTdgfdrkwV6JzqFrO6W1NtTzsbXx6/v7 +fvSqP3hL9G1VqzRJnONS1Cqo91Ijqwtb6xUrFcag3QdG+1lsUswh3U3ZJsbzU+N3OX871tFjp0C6bhPb1aY3uqUJxB+TLVN7t80urOa1p9E0ntrZkZ61gNhKvd/x7e5WT3rb5S9up7seaexVyq/Lu2/2y9Wj5Op34VL7CFHZrsA1TwF +jXUKXOCb/iBieEYn40L48uUupSZ/SnPcMeMr1fF9NMZII +AD9HichVO7TuNAFD3BPEJ4BWiQaBABiQKiCe +LZUDHQgCSARFthmSUfySPUGgKBI130C32mKFhGjZL9gfoOATt6ChoI7k/CMYq5l+8651zfO3NtBY6IJGOPiS6ju6e3L9mfGhgcGh5Jj47tR34tHnB9h0/PLTMiDvC4wUpMPg5CbruXwA6u6oeIHZzyMhO/tyYuAH7tm2ROnwjYl +QaX0TDF061vFShSYNq8vZHPcbXxdNkrpDMsybVPtTq7lZNCybX80UQRJ/BhowYXHB4k+Q5MRHQdIQeGgLBj1AkLyRM6ztFAirQ1YnFimIRW6Vm1VEL9WitckZabdNXHLpDUk5hlj2w3+w/+8tu2D/23DFXedQtVzQ2pqeVAauZrYfp +W5dJbovKuiq1Z4hRrulZBtQcaUV3YWt9ZqThl6k1QtKL1FsUswp2YXVIsNzb+ufP5tp46K8u0yahFX1a59UobhV8mUs7+P5xdUc0drVaBxP7ey5njWf2Es97Xj9yUnvV1Zctvk93u7C9mcyvZpZ2lTP7HZXPqk5jENOZosleRxya2U +aDMV7jDPf4YZ8a18dP41aR2JVp/yjg+mXH7AkDw2R4=III +AD1HichVPLSsNAFD01Pmp960ZwIxbBhZSp+N +wpbnSnaKtgRZI4tmPzIplKpQqCuHEhbvUPxB/xB1z4Ca5duHhnWl9URpvSHLn3HNu7p25sQJHRJKxl0Sb0d7R2ZXsTvX09vUPDA4N5yO/Eto8Z/uOH+5aZsQd4fGcFNLhu0HITdy+I5VXlXxnRMeRsL3tuVpwPds+iJI2GbkqB8IXRr +6+cHg2mWYdrGm51sw0mjYRv+UKAg7hw0YFLjg8SPIdmIjo2kMWDAFh+6gRFpIndJzjHCnSVojFiWESWqZnkVZ7DdSjtcoZabVNX3HoDk5jkn2zB7YG3tij+yVfbTMVdM5VC2n9LbqWh4cDFyPbr3/q3LpLVH6UcXWLHGERV2roNoDjag +ubK1vrVScIvUmKFrSeotiFuFOzC4plhsb/9v5dFNPrZVF2mWT0JI+reo/VShumXwZy/t9fnE1R7R2NRrHUztb1bPmEzuI5X51/Jub0rO+pGzue7KbnfxMJjufmd2cTS+vXNSnPokxTGCKJnsBy1jDBnKU+Ri3uMO9kTfOjEvjqk5tSzT+l +BH8MePmE+ykzOM=I +A +B +C +AD1nichVM7TwJBEB +4H4gPRBsTGyMxsTBkMT47lMYSo+glYMzducCGe+VuMRCsTEmVsZW/4Dxj/gHLPwJ1hY2Fs4up0Ix1zudvab79ub2Z3VXZP5nJD3SFQZGR0bj03EJ6emZxKzybkT36l7Bi0Yjul4q +751GQ2LXDGTaq6HtUs3aSnei0n4qeX1POZYx/zpkvPLK1iszIzNI6QWvKs1n7uqH0+myJpIm2p38kETgoCyzvJSAlKcAEOGFAHCyjYwNE3QMfnyJkgICL2Bm0EPQYzJOoQ1x1NaRZ +GhIVrDbwVnxQC1cS7W9KXawL+Y+HqoXIV8kaeySd5JS/kg3wPXKsl1xC5NHUO1rqnifuFo6+hqosHDlU/1WhOXMow47MlWHurkREFYbUD1YKTgVrYxitSr2OMR1xM2SXBMsKjfdWvt +ZX02BlBXdZQ7QqT6sxJAvBraHPQ3nd5xeWs49zS6JhPLGzDdlrDrLdUO5vxd3cuOz1XWGbf53d75yspzNb6Y3DjVR27rT9TFYhGVYxc7ehiwcQB4KsqMf4BGeFW5Um6U2w41Ggluyj +z0mHL/AygEzY=BCS +AD5XichVNb9NAEH +2paSmhtAmoEhKXqFGlHmi0qQot1S9kFsQzYeURJHtbp1V/CV7g1JZkTgjcau4Io6QP8If4MBP4MyBSw+d3YR+KIo7lu3ZN+NZ3bHVuiKWDL2O7NkPFhebj6KPt47cn6Ri7/tBEHw8 +jmdTtwg6hlmTF3hc/rUkiXt8KIm57l8qY1OFbx5gcexSLwT+R5yLue6fjiTNimJKiX2+xEXlLt9OPQtHmyWypzb1wd93JFVmLaCvNOeYUMbNakM90MEpAtgYwgOHD0m+CxMxXW2UwR +AS1kVCWESe0HGOMbKkHRKLE8MkdEBPh1btGerTWuWMtdqmr7h0R6QsYJv9Yt/ZX/aTdgfdrkwV6JzqFrO6W1NtTzsbXx6/v7fvSqP3hL9G1VqzRJnONS1Cqo91Ijqwtb6xUrFcag3Qd +G+1lsUswh3U3ZJsbzU+N3OX871tFjp0C6bhPb1aY3uqUJxB+TLVN7t80urOa1p9E0ntrZkZ61gNhKvd/x7e5WT3rb5S9up7seaexVyq/Lu2/2y9Wj5Op34VL7CFHZrsA1TwFjXUKX +OCb/iBieEYn40L48uUupSZ/SnPcMeMr1fF9NMZII +AD1HichVPLSsNAFD +01Pmp960ZwIxbBhZSp+NwpbnSnaKtgRZI4tmPzIplKpQqCuHEhbvUPxB/xB1z4Ca5duHhnWl9URpvSHLn3HNu7p25sQJHRJKxl0Sb0d7R2ZXsTvX09vUPDA4N5yO/Eto8Z/uOH+5aZs +Qd4fGcFNLhu0HITdy+I5VXlXxnRMeRsL3tuVpwPds+iJI2GbkqB8IXRr6+cHg2mWYdrGm51sw0mjYRv+UKAg7hw0YFLjg8SPIdmIjo2kMWDAFh+6gRFpIndJzjHCnSVojFiWESWq +ZnkVZ7DdSjtcoZabVNX3HoDk5jkn2zB7YG3tij+yVfbTMVdM5VC2n9LbqWh4cDFyPbr3/q3LpLVH6UcXWLHGERV2roNoDjagubK1vrVScIvUmKFrSeotiFuFOzC4plhsb/9v5dFNPrZ +VF2mWT0JI+reo/VShumXwZy/t9fnE1R7R2NRrHUztb1bPmEzuI5X51/Jub0rO+pGzue7KbnfxMJjufmd2cTS+vXNSnPokxTGCKJnsBy1jDBnKU+Ri3uMO9kTfOjEvjqk5tSzT+lBH8Me +PmE+ykzOM=I +AD1HichVPLSsNAFD01Pmp960ZwIxbBhZSp+NwpbnSnaKtgRZI4tmPzIplKpQqCuHEhbvUPxB/xB1z4Ca5duHh +nWl9URpvSHLn3HNu7p25sQJHRJKxl0Sb0d7R2ZXsTvX09vUPDA4N5yO/Eto8Z/uOH+5aZsQd4fGcFNLhu0HITdy+I5VXlXxnRMeRsL3tuVpwPds+iJI2GbkqB8IXRr6+cHg2mWYdrGm51sw0mjYRv+UKAg7hw0YFLjg8SPIdmIjo2kMWDAFh+6gRFpIndJzjHCnSVojFiWESWqZnkVZ7DdSjtcoZabVNX3HoDk5jkn2zB7YG3tij+yVfbTMVdM5VC2n9LbqWh4cDFyPbr3/ +q3LpLVH6UcXWLHGERV2roNoDjagubK1vrVScIvUmKFrSeotiFuFOzC4plhsb/9v5dFNPrZVF2mWT0JI+reo/VShumXwZy/t9fnE1R7R2NRrHUztb1bPmEzuI5X51/Jub0rO+pGzue7KbnfxMJjufmd2cTS+vXNSnPokxTGCKJnsBy1jDBnKU+Ri3uMO9kTfOjEvjqk5tSzT+lBH8MePmE+ykzOM=I +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°0.05 +0.00 +0.05 +Ei ° E¥°pairing I +AD5XichVNa9tAEH20tRx +msRJCR6MTWFHhKzLmT3hx6SW8pqe2AbYykbOTF+kJaBxth6LnQW8m19Njkj/QP9NCf0HMOufTQ2bXzYyVEZJm37w3mtkdWaErYsnYn0zWHi0+Di3lF9+srK6VljfqMdBP7J5zQ7cIDq2zJi7wuc1 +KaTLj8OIm57l8obVe6/ijTMexSLwP8lhyNue6fjiVNimJKhT2GxFXvKh1Y1D0+bJdrnCvVF91CmUWJlpK846lYlTwsQOg/VMCy2cICNPjxw+JDkuzAR09VEBQwhYW0khEXkCR3nGCFP2j6xODFMQnv0 +dGjVnKA+rVXOWKt+opLd0TKIl6y3+wnu2K/2CX7y/7NzZXoHKqWIb2tsZaHnbUvz46uH1R59Jbo3qlSa5Y4xZ6uVDtoUZUF7bWz1cqjkO9CYp2td6imEW4m7JLiuWlxqc735rpab7SoV02Ce3q0xo +8UIXi9siXqbz75dWc0xrT6NpPLWzAz1rAbHDVO5Nx/e5eT3r75S9uZ3sWaf+ulx5W975uFOq7n8eT30Oz/ECr2iyd1HFAQ5Ro8wJfuACl4ZjfDW+GedjajYz+VOeYsqM7/8B8nDTJg=IV +0.0 +1.8 +3.6 +5.4 +7.2 +9.0 +10.8 +12.6 +14.4 +16.2 +18.0 +19.8 +21.6 +23.4 +°3 +°2 +°1 +0 +Ei ° Enormal +BCS +normal +¥-pairing I +¥-pairing IV +¥-pairing III +¥-pairing II +(c) +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°0.05 +0.00 +0.05 +Ei ° E¥°pairing I +0.0 +1.8 +3.6 +5.4 +7.2 +9.0 +10.8 +12.6 +14.4 +16.2 +18.0 +19.8 +21.6 +23.4 +°3 +°2 +°1 +0 +Ei ° Enormal +BCS +normal +¥-pairing I +¥-pairing IV +¥-pairing III +¥-pairing II +-pairing II +η +-pairing IV +η +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°0.05 +0.00 +0.05 +Ei ° E¥°pairing I +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +1.5 +ni, mi +nA +nB +nC +mA +mB +mC +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +1.5 +ni, mi +nA +nB +nC +mA +mB +mC +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +ni, mx +i +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +ni, mx +i +0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +0.0 +0.5 +1.0 +ni, mx +i +x +y +FIG. 7. +(a) Schematics for the four η-pairings in the tri- +angular lattice model. The arrows indicate the phase of the +pair potential. The size of the circles shows the amount of +the electron density for each sublattice. (b) Magnetic field +dependence of the internal energies measured from the nor- +mal state (upper panel). The lower panel shows the inter- +nal energy measured from the η-pairing I. (c) Magnetic field +dependence of the number of electrons and magnetization on +each sublattice for the η-pairing II (upper panel) and IV (lower +panel). +for IV. The type-I has a non-colinear structure, and in the +other η-pairings the vectors are aligned in a colinear man- +ner. We also note that CDW accompanies the η-pairings +II and III, where the number of local filling is indicated +by the size of the filled circle symbols in Fig. 7(a). +Figure 7(b) shows the internal energy of the ordered +states measured from the normal state (Upper panel) and +from the η-pairing I (Lower panel). From the lower panel +of Fig. 7(b), we can identify the ground state. With in- +creasing the magnetic field, the ground state changes as +BCS → η-pairing II→ η-pairing I → η-pairing IV→ η- +pairing I → normal. Figure 7(c) shows the particle den- + +9 +(a) +(b) +Iloop +h +0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +-0.2 +-0.1 +0.0 +0.1 +Iloop +FIG. 8. (a) Schematic picture of the staggered flux state on +the triangular lattice. The straight arrows display the phase +of the pair potential at each site, and the circle arrows indicate +the staggered loop current. (b) Magnetic field dependence of +the magnitude of loop current. The yellow shaded rectangle +indicates the range where the η-pairing I becomes the ground +state. +sity and x-direction magnetization mx +i of each sublattice +for η-pairing II (Upper panel) and η-pairing IV (Lower +panel). The values of my +i and mz +i are zero because the +Zeeman field h is applied along the x-direction. Below, +we explain the characteristic features for each η-pairing +state. +η-pairing-I state.— The η-pairing I has 120◦ N´eel or- +dering vector (Green pentagon in Fig. 7(b)). The spon- +taneous supercurrent appears in this non-colinear state +as schematically shown in Fig. 8(a). This superconduct- +ing state forms a staggered flux state, where the flux is +aligned on a honeycomb dual lattice, which is similar to +the η-pairing with 90◦-N´eel ordering vector on the square +lattice shown in Fig. 6(b). Figure 8(b) displays the val- +ues of spontaneous loop current density as a function of +the magnetic field. +η-pairing-II state.— The η-pairing II has the struc- +ture with up-up-down colinear phases plus CDW (Red +hexagon in Fig. 7(b)). There is the relation nA = nB < +nC for the electron filling at each sublattice shown in +Fig. 7(c). +We note that this site-dependent feature is +characteristic for the II (and IV) state. The phases of the +pair potential at A and B sublattices are “ferromagnetic”, +while the phase at C sublattice is “antiferromagnetic”. +The resulting ordered state is regarded as the emergence +of the honeycomb lattice formed by equivalent A and B +sublattices. +η-pairing-III state.— This is the η-pairing with a stag- +gered ordering vector and CDW (Magenta square in +Fig. 7(b)). +The order parameter ∆ at C sublattice is +zero, but the others (A,B) are finite. The electron-rich +sublattices A and B form a simple bipartite η-pairing +state on an emergent honeycomb lattice. Since this state +does not become a ground state anywhere for the present +choice of U = −1.83, we do not further investigate this +state in the following. +η-pairing-IV state.— This is the η-pairing with a sim- +ple stripe alignment (Cyan rhombus in Fig. 7(b)). This +η-pairing is accompanied by CDW around h = 1.9 shown +0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°1.5 +°1.0 +°0.5 +0.0 +0.5 +1.0 +1.5 +Kxx, Kyy +(a) -pairing Ⅰ +η +Eq. (25) +0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +-1.5 +-1.0 +-0.5 +0.0 +0.5 +1.0 +1.5 +Kxx, Kyy +(b) -pairing Ⅱ +η +0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°1.5 +°1.0 +°0.5 +0.0 +0.5 +1.0 +1.5 +Kyy +0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°1.5 +°1.0 +°0.5 +0.0 +0.5 +1.0 +1.5 +Kxx +(c1) -pairing Ⅳ +η +(c2) -pairing Ⅳ +η +0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 +h +°1.5 +°1.0 +°0.5 +0.0 +0.5 +1.0 +1.5 +Kyy +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +h +-1.0 +-0.5 +0.0 +0.5 +1.0 +K +Kdia +Kpara +K +KEFP +KOFP +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +h +-1.0 +-0.5 +0.0 +0.5 +1.0 +K +Kdia +Kpara +K +KEFP +KOFP +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +h +-1.0 +-0.5 +0.0 +0.5 +1.0 +K +Kdia +Kpara +K +KEFP +KOFP +AD0HichVO5TsNAEH3BnOEIR4NEg4iQKFC0QZxdEA0lVwCJIGSbTbKL9kbFIQio +EW08A+IH+EHKPgEagoaCmY35lIUM5bt2TfvjWd2x1bgiEgy9pLqMrp7ev6B9KDQ8MjmdGx8f3Ir4c +2L9q+4eHlhlxR3i8KIV0+GEQctO1H5g1TZU/OCMh5HwvT15HvBj16x4oixsUxK0U2qejGZjmb +nfysZNFbFv+WKqEk7hw0YdLjg8SPIdmIjoOkIeDAFhx7gLCRP6DhHE2nS1onFiWESWqNnhVZHMer +RWuWMtNqmrzh0h6Scxix7Zg/sjT2xR/bKPjrmutA5VC3n9LZaWh6cZG4md9/Vbn0lqj+qBJrlihjV +dcqPZAI6oLW+s7KxWnQr0Jila13qKYRbiTsEuK5SbG/3Y+39ZTZ2WFdtktKpPq/FPFYpbI18m8n +6fX1LNEa1djSbx1M429Kz5xA4SuV8d/+am9ayvKVv6nux2Z38hl1/OLW4vZgvrV62p78cUZjBHk72C +AjaxhSJlLuMWd7g3doyGcWlct6hdqfhPmcAfM24+AbMryxg=} +FIG. 9. Magnetic field dependence of the Meissner kernels +Kxx and Kyy for the η-pairings I, II, IV on the triangular lat- +tice. The yellow shaded rectangle indicates the regime where +each η-pairing becomes the ground state. The symbols are +the same as those in Fig. 4(a). For the η-pairing IV, Kxx and +Kyy are separately plotted in (c1) and (c2). +in Fig. 7(c). As shown below, this stripe phase show an +anisotropic behavior in linear response coefficients, while +the other η-pairing states are isotropic. +2. +Meissner response +Now we discuss the Meissner response. Figure 9(a,b,c) +shows the Meissner kernels Kxx, Kyy for the η-pairing I, +II and IV. The yellow-highlighted parts indicate the re- +gion where each η-pairing becomes the ground state as +identified from Fig. 7(b). +The result for the η-pairing +III is not shown because it does not become a ground +state at U = −1.83. We confirm that the Meissner re- +sponse is basically diamagnetic if the η-pairing becomes +the ground state as shown in Figs. 9(a,b,c). Thus the en- +ergetic stability and diamagnetic response are reasonably +correlated. In the following, we discuss the properties of +the Meissner kernel for each state. +The Meissner kernels for both η-pairing I and η-pairing +II shown in Figs. 9(a) and (b) satisfy the relation Kxx = +Kyy, which means an isotropic linear response. For the η- +pairing I, the Meissner kernel becomes positive in the re- +gions h < 1.2, 1.95 < h < 2.12, while the kernel becomes +negative in the ground state region (Fig. 9(a)). Although +the local current density is finite for the η-pairing I state, +it does not affect the expression of the Meissner kernel in +Eq. (10) since the total current j(q = 0) is zero. +Next we disucuss the η-pairing IV state. The Meiss- + +10 +ner kernel jumps at h = 1.8 due to the emergence of +the CDW order parameter as shown in Fig. 9(c1,c2). It +is notable that the η-pairing IV with the stripe pattern +shows a difference between x and y directions as shown +in Figs. 9(c1,c2), respectively. This characteristic behav- +ior can be intuitively understood from Fig. 7(a), where +the current along the x-axis flows with experiencing a +staggered pair potential, whereas the current in the y- +direction feels an uniform pair potential. In the Meissner +response, Kxx shows a characteristic behavior of the η- +pairing, while Kyy is qualitatively the same as the kernel +of BCS. Thus, as shown in Fig. 9(c1), the diamagnetic +response in the x-axis direction is related to to the odd- +frequency pair, whereas the diamagnetic response in the +y-axis direction, shown in Fig. 9(c2), is related to even- +frequency pair. +V. +SUMMARY AND OUTLOOK +We have studied the square and the triangular lattice +of the attractive Hubbard model by using the mean-field +theory. +Several types of η-pairing have been found in +the triangular lattice where a simple bipartite pattern +is not allowed. +Using the formulation of the Meissner +kernel for a general tight-binding lattice, we have inves- +tigated the electromagnetic stability of η-pairings. We +have confirmed that the electromagnetic stability of the +η-pairing correlates with the internal energy. In a narrow +parameter range, we also find that the η-pairing state can +show an unphysical paramagnetic response if we assume +the two or three sublattice structure in the mean-field +calculation. +In this case, another solution with longer +periodicity needs to be sought. +When the current path experiences the staggered +phase of the superconducting order parameter, the odd- +frequency component of the pair amplitude contributes +to the diamagnetic response. This is in contrast to the +conventional BCS case in which the even-frequency com- +ponent of the pair amplitude contributes to the diamag- +netism. +We have further clarified that one of the η- +pairing states on the triangular lattice has a stripe pat- +tern and shows an anisotropic Meissner response. In this +case, the odd-frequency pair contributes diamagnetically +or paramagnetically depending on the direction of cur- +rent. +We comment on some issues which are not explored in +this paper. We expect that the η-pairing without a simple +staggered phase will appear on pyrochlore, kagome and +quasicrystalline lattice, whose phase-alignment could be +qualitatively different from the triangular lattice. In ad- +dition, there is another model that shows η-pairing in +equilibrium. A two-channel Kondo lattice (TCKL) is an +example of a model in which η-pairing appears even in +the absence of a Zeeman field [24]. Our preliminary cal- +culation for the TCKL shows a number of ordered states +which have similar energies. +These additional studies +provide more insight into the exotic superconductivity +(a) +(b) +(c) +°1 +0 +1 +!n +0.0 +0.6 +1.2 +1.8 +2.4 +3.0 +3.6 +4.2 +4.8 +5.4 +6.0 +Re[F " #(i!n) ° F # "(i!n)]/ +p +2 +h=1.417 +h=1.375 +h=1.333 +h=1.25 +h=1.167 +h=1.083 +h=1.0 +h=0.917 +h=0.833 +h=0.75 +h=0.667 +°0.2°0.1 0.0 +0.1 +0.2 +!n +0.0 +0.6 +1.2 +1.8 +2.4 +3.0 +3.6 +4.2 +4.8 +5.4 +6.0 +Re[F " #(i!n) ° F # "(i!n)]/ +p +2 +1.417 +1.375 +1.333 +1.25 +1.167 +1.083 +1.0 +0.917 +0.833 +0.75 +0.667 +°1.0 °0.5 +0.0 +0.5 +1.0 +! +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +2.0 +D¥°pairing ° Dnormal +°0.2°0.1 0.0 +0.1 +0.2 +!n +0.0 +0.6 +1.2 +1.8 +2.4 +3.0 +3.6 +4.2 +4.8 +5.4 +6.0 +Im[F # #(i!n) ° F " "(i!n)]/ +p +2 +FIG. 10. (a) The difference between the DOSs of the η-pairing +and normal states in the cubic lattice model. The values of +the DOS are shifted by 0.2 for each magnetic field, and the +gray dotted lines are the zero axes for each magnetic field. +We also show the Matsubara frequency dependence of (b) the +imaginary part of [F↓↓(iωn) − F↑↑(iωn)] / +√ +2 and (c) the real +part of [F↑↓(iωn) − F↓↑(iωn)] / +√ +2 for each magnetic field. The +values of the pair amplitudes are shifted by 0.6. +characteristic for the η-pairing. +ACKNOWLEDGEMENT +This work was supported by KAKENHI Grants No. +18H01176, No. 19H01842, and No. 21K03459. +Appendix A: Self-consistent equations in mean-field +theory +We derive self-consistent equations for the general in- +teracting Hamiltonian. Let us begin with the Hamilto- +nian +H = +� +12 +ε12c† +1c2 + +� +1234 +U1234c† +1c† +2c4c3 +(A1) +where site-spin indices are written as 1 = (i1, σ1). The +mean-field Hamiltonian is introduced as +HMF = +� +12 +� +E12c† +1c2 + ∆12c† +1c† +2 + ∆∗ +12c2c1 +� +. +(A2) +We assume ⟨H ⟩ = ⟨HMF⟩ where the statistical average +is taken with HMF. Then the self-consistent equation is +obtained as +E12 = ∂⟨H ⟩ +∂⟨c† +1c2⟩ += ε12 + +� +34 +(U1324 + U3142 − U1342 − U3124)⟨c† +3c4⟩ +(A3) +∆12 = ∂⟨H ⟩ +∂⟨c† +1c† +2⟩ += +� +34 +U1234⟨c4c3⟩ +(A4) + +11 +where the Wick’s theorem is used for the derivation. Al- +though the variational principle for the free energy also +gives the same equation, the above formalism gives a sim- +ple procedure to derive the self-consistent equations. +Appendix B: Attractive Hubbard model on Cubic +lattice +We analyze the η-pairing on the cubic lattice, whose +DOS does not have a van Hove singularity near zero en- +ergy. Here we choose the parameter U = −1.375 and +the electron concentration is half-filled. As a result, the +DOS for the η-pairing around zero energy for each mag- +netic filed on the cubic lattice is smaller than the DOS of +the normal state as shown in Fig. 10(a). For reference, +we also show in Figs. +10(b) and (c) the pair amplitude +similar to Fig. 4(b) in the main text. In addition, the +odd-frequency pair amplitude increases when DOS near +zero energy is enhanced as seen from Figs. 10(a) and (b). +[1] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964). +[2] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. +47, 1136 (1964). +[3] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989). +[4] For a review, see, D.F. Agterberg, J.C.S. Davis, S.D. +Edkins, E. Fradkin, D.J. Van Harlingen, S.A. Kivelson, +P.A. Lee, L. Radzihovsky, J.M. Tranquada, and Y. Wang, +Ann. Rev. Condens. Matter Phys., 11, 231 (2020). +[5] R. R. P. Singh and R. T. Scalettar, Phys. Rev. Lett. 66, +3203 (1991). +[6] P. Coleman, E. Miranda, and A. Tsvelik, Phys. Rev. Lett. +70, 2960 (1993). +[7] S. Hoshino and Y. Kuramoto, Phys. Rev. Lett. 112, +167204 (2014). +[8] W. R. Czart, K. J. Kapcia, R. Micnas, S. Robaszkiewicz, +Physica A: Statistical Mechanics and its Applications. +585, 126403 (2022) +[9] T. Kaneko, T. Shirakawa, S. Sorella, and S. Yunoki, +Phys. Rev. Lett. 122, 077002 (2019). +[10] P. Werner, J. Li, D. Golez and M. Eckstein, Phys. Rev. +B 100, 155130 (2019). +[11] J. Li, D. Golez, P. Werner, and M. Eckstein, Phys. Rev. +B 102, 165136 (2020). +[12] M. Nakagawa, +N. Tsuji, +N. Kawakami, +M. Ueda, +arXiv:2103.13624 (2021). +[13] X. M. Yang and Z. Song, Phys. Rev. B 105, 195132 +(2022). +[14] L. Jiajun, M. M¨uller, A. J. Kim, A. M. L¨auchli, and P. +Werner, arXiv:2202.10176 (2022). +[15] Y. Motome, K. Nakamikawa, Y. Yamaji, and M. Uda- +gawa, Phys. Rev. Lett. 105, 036403 (2010). +[16] R. R. dos Santos Phys. Rev. B 48, 3976 (1993). +[17] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 +(1988). +[18] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. +Nayak, Phys. Rev. B 63, 094503 (2001). +[19] D. K. Morr, Phys. Rev. Lett. 89, 106401 (2002). +[20] S. Zhou and Z. Wang, Phys. Rev. B 70, 020501(R) +(2004). +[21] H. Yokoyama, S. Tamura, and M. Ogata, J. Phys. Soc. +Jpn. 85, 124707 (2016). +[22] K. Kobayashi, H. Yokoyama, and Y. Toga, J. Phys.: +Conf. Ser. 1054, 012016 (2018). +[23] S. Fukuda, K. Yamazaki, H. Tsuchiura, and M. Ogata, +J. Phys.: Conf. Ser. 1293, 012026 (2019). +[24] S. Hoshino, Phys. Rev. B 90, 115154 (2014). +[25] V.L. Berezinskii, ZhETF Pis Red. 20, 628 (1974), [JETP +Lett. 20, 287 (1974)]. +[26] T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 66, +1533 (1991). +[27] A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13125 +(1992). +[28] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. +81, 011013 (2012). +[29] J. Linder and A.V. Balatsky, Rev. Mod. Phys. 91, 045005 +(2019). +[30] J. Cayao, C. Triola and M. Black-Schaffer, Eur. Phys. J.: +Spec. Top. 229, 545 (2020) +[31] H. Walter, W. Prusseit, R. Semerad, H. Kinder, W. Ass- +mann, H. Huber, H. Burkhardt, D. Rainer, and J. A. +Sauls, Phys. Rev. Lett. 80, 3598 (1998). +[32] Y. Tanaka, Y. Asano, A. A. Golubov, and S. Kashiwaya, +Phys. Rev. B 72, 140503 (2005). +[33] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. +Phys. 77, 1321 (2005). +[34] Ya. V. Fominov, Y. Tanaka, Y. Asano, and M. Eschrig, +Phys. Rev. B 91, 144514 (2015) +[35] Y. Tanaka and A. A. Golubov, Phys. Rev. Lett. 98, +037003 (2007) +[36] Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. +B 76, 054522 (2007) +[37] S. Higashitani, J. Phys. Soc. Jpn. 66, 2556 (1997). +[38] T. Yokoyama, Y. Tanaka, and N. Nagaosa, Phys. Rev. +Lett. 106, 246601 (2011). +[39] S.-I. Suzuki and Y. Asano, Phys. Rev. B 91, 214510 +(2015). +[40] A. Di Bernardo, Z. Salman, X. L. Wang, M. Amado, M. +Egilmez, M. G. Flokstra, A. Suter, S. L. Lee, J. H. Zhao, +T. Prokscha, E. Morenzoni, M. G. Blamire, J. Linder, +and J. W. A. Robinson, Phys. Rev. X 5, 041021 (2015). +[41] J. A. Krieger, A. Pertsova, S. R. Giblin, M. Dbeli, T. +Prokscha, C. W. Schneider, A. Suter, T. Hesjedal, A. V. +Balatsky, and Z. Salman, Phys. Rev. Lett. 125, 026802 +(2020). +[42] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. +Mod. Phys. 62, 113 (1990). +[43] H. Shiba, Prog. Theor. Phys. 48, 2171 (1972). + +12 +[44] Y. Claveau, B. Arnaud, S. D. Matteo, Eur. J. Phys. 35, +035023 (2014). +[45] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. +80, 885 (2008). +[46] D.J. Scalapino, S. R. White, and S. C. Zhang, Phys. Rev. +Lett. 68, 2830 (1992). +[47] D. J. Scalapino, S. R. White, and S. C. Zhang, Phys. +Rev. B 47, 7995 (1993). +[48] T. Kostyrko, R. Micnas, and K. A. Chao, Phys. Rev. B +49, 6158 (1994). +[49] S. Hoshino, K. Yada, and Y. Tanaka, Phys. Rev. B 93, +224511 (2016). +[50] A. Tsuruta, S. Hyodo, and K. Miyake, J. Phys. Soc. Jpn. +83, 063706 (2014). +[51] D. Chakraborty and A. M. Black-Schaffer, Phys. Rev. B +106, 024511 (2022). +[52] J. Pearl, App. Phys. Lett. 5, 65 (1964). + diff --git a/49FAT4oBgHgl3EQfFRw-/content/tmp_files/load_file.txt b/49FAT4oBgHgl3EQfFRw-/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b78fbf3f4355b1781796f2325f78234c91429355 --- /dev/null +++ b/49FAT4oBgHgl3EQfFRw-/content/tmp_files/load_file.txt @@ -0,0 +1,1534 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf,len=1533 +page_content='η-pairing on bipartite and non-bipartite lattices Yutaro Misu1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Shun Tamura2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yukio Tanaka2 and Shintaro Hoshino1 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Saitama University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Saitama 338-8570,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Japan 2Department of Applied Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nagoya University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nagoya 464-8603,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Japan (Dated: January 23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2023) The η-pairing is a type of Cooper pairing state in which the phase of the superconducting order parameter is aligned in a staggered manner,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' in contrast to the usual BCS superconductors with a spatially uniform phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this study, we search for a characteristic η-pairing state in a triangular lattice where a simple staggered alignment of the phase is not possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' As an example, we consider the attractive Hubbard model on both the square and triangular lattices under strong external Zeeman field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Using the mean-field approximation, we have identified several η-pairing states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Additionally, we have examined the electromagnetic stability of the pairing state by calculating the Meissner kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Odd-frequency pairing plays a crucial role in achieving diamagnetic response if the electrons experience a staggered superconducting phase during the propagation of current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' INTRODUCTION The diversity of superconducting phenomena has been attracting continued attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The superconducting state of matter is characterized by the properties of Cooper pairs, which can be classified based on their space-time and spin structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' With regard to their space structure, Cooper pairs are typically classified as s-wave, p-wave, or d-wave pairs depending on their rel- ative coordinate structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' As for their center-of-mass coordinate, while it is usually assumed to be zero in most superconductors, it is possible to consider the exis- tence of a finite center-of-mass momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' One example of this is the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) state [1, 2], in which the Cooper pair has a small but finite center-of-mass momentum under the influence of a mag- netic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' More generally, the magnitude of the center- of-mass momentum can be larger and of the order of the reciprocal lattice vector ∼ π/a, where a is a lattice con- stant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This type of pairing state is known as η-pairing, a concept first proposed by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yang, which forms a staggered alignment of the superconducting phase on a bipartite lattice [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The spatially modulating order pa- rameter is known also as the pair density wave, and has been discussed in relation to cuprate superconductors [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The actual realization of the η-pairing has been pro- posed for the correlated electron systems such as the at- tractive Hubbard (AH) model with the magnetic field [5], the single- and two-channel Kondo lattices [6, 7], the Penson-Kolb model [8], and also the non-equilibrium sit- uation [9–14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Since the phase of the superconducting order parameter can be regarded as the XY spin, the η- pairing is analogous to an antiferromagnetic state of the XY spin model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hence, the η-pairing state should be strongly dependent on the underlying lattice structure and we naively expect a variety of the η-pairing state if we consider the geometrically frustrated lattice such as the triangular lattice since the simple staggered state cannot be realized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this paper, we deal with the AH model on the non- bipartite lattice in order to search for possible new su- perconducting states depending on the feature of the non-bipartite lattice structure in equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Already in the normal state without superconductivity, it has been pointed out that the non-bipartite lattice generates a non-trivial state of matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For example in the Kondo lattice, a partial-Kondo-screening, which has a coexisting feature of Kondo spin-singlet and antiferromagnetism, is realized [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Also in the AH model at half-filling, charge- density-wave (CDW) is suppressed due to the frustration effect [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The η-pairing that appears in a photodoped Hubbard model on the triangular lattice has been studied recently [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the equilibrium situation, the properties of the AH model have been studied on bipartite lattices [5], but the model on a non-bipartite lattice has not been explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' As shown in the rest of this paper, there are several types of η-pairings on the triangular lattice of the AH model under the Zeeman field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' One of the η-pairing states is regarded as a 120◦-N´eel state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Since the rel- ative phase between the nearest neighbor sites is neither parallel nor anti-parallel, the inter-atomic Josephson cur- rent is spontaneously generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This state can also be regarded as a staggered flux state, where the flux is cre- ated by the atomic-scale superconducting loop current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' While the staggered flux state has been studied so far [17–23], the staggered flux in this paper is induced by the Josephson effect associated with superconductivity and has a different origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For the analysis of the AH model, we employ the mean- field approximation in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' It has been suggested that a simple η-pairing shows a paramagnetic Meissner state [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hence it is necessary to investigate the electro- magnetic stability of the solution for superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We evaluate the Meissner kernel whose sign corresponds to the diamagnetic (minus) or paramagnetic (plus) re- sponse of the whole system, where the physically sta- ble state should show diamagnetism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We confirm that if the mean-field η-pairing state has the lowest energy compared to the other ordered states, the calculation of the Meissner kernel shows the diamagnetic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' It is also notable that the odd-frequency pairing amplitude, which has an odd functional form with respect to the fre- quency [6, 25–30], can contribute to the diamagnetism in arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='08426v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='supr-con] 20 Jan 2023 2 the η-pairing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This is in contrast to the usual super- conductivity with the uniform phase where the conven- tional even-frequency pairing contributes to the diamag- netism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' It has been shown that the odd-frequency pairing induced at the edge, interface or junctions [31–36] shows a paramagnetic response [37–41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this paper, by con- trast, we consider the odd-frequency pairing realized in bulk, which shows a qualitatively different behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We explain the model and method for the AH model in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' II, and the Meissner kernel in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The numerical results for the AH model are shown in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' IV, and we summarize the paper in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' ATTRACTIVE HUBBARD MODEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hamiltonian We consider the Hamiltonian of the AH model with magnetic field h which induce Zeeman effect only (Zee- man field) : H = −t � ⟨i,j⟩σ c† iσcjσ + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' + U � i ni↑ni↓ − µ � i ni − h · � i si, (1) where c† iσ and ciσ are the creation and annihilation op- erators of the i-th site with spin σ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The symbol ⟨i, j⟩ represents a pair of the nearest-neighbor sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Here, the parameter t is the nearest-neighbor single-electron hopping integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' U (= −|U|) is the on- site attractive interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The spin operator is defined as si = 1 2 � σσ′ c† iστσσ′ciσ′, where τ is the Pauli ma- trix, and the number operator of electrons is denoted as ni = ni↑ + ni↓ = � σ c† iσciσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The electron concentration is controlled by adjusting the chemical potential µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The AH model has been successfully used to elucidate several important and fundamental issues in supercon- ductors [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The model on a bipartite lattice at half fill- ing is theoretically mapped onto the repulsive Hubbard model by the following partial particle-hole transforma- tion [43] c† i↑ → c† i↑, c† i↓ → ci↓eiQ·Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (2) The reciprocal vector Q satisfies the condition eiQ·Ri = (−1)i that takes ±1 depending on Ri belonging to A or B sublattice on the bipartite lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Then, the η-pairing appears in the region that corresponds to a ferromagnet with transverse magnetization in the repulsive model [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In a mean-field theory, the phase diagram for the repul- sive Hubbard model without the magnetic field is shown in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 1 [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' From this figure, we find that the ferromagnet is located in the regime where the repulsive interaction U > 0 is large and the electron con- centration is not half-filled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hence, the η-pairing phase nc t |U| m 0 1 0 1 PM AFM FM FF BCS pairing η Repulsive Hubbard ( ) U > 0 Attractive Hubbard ( ) U < 0 h = 0 nc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 Spin-polarized normal state FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Sketches of the phase diagrams for the repulsive Hubbard model [44] (left panel) and AH model (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' nc is the electron concentration and m is the magnetization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' When the interaction |U| is large, the ground state in the re- pulsive Hubbard model is ferromagnet (FM), while the ground state in the AH model is η-pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' is located in the regime where the attractive interaction U < 0 is large and the magnetization is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The phase diagram of the AH model at half filling is shown in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In principle, an attractive interac- tion large enough to realize η-pairing could be realized in artificial cold atom systems [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The Cooper pair is formed by the two electrons with (k ↑, − k + q ↓) where q is the center-of-mass momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The FFLO state and the η-pairing are dis- tinguished by the magnitude of |q|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In η-pairing, the center-of-mass momentum of the Cooper pair is the or- der of the reciprocal lattice vector, while the momentum of the FFLO state is much smaller and the spatial mod- ulation is slowly-varying compared to the atomic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Although the large center-of-mass momentum is usually not energetically favorable, a strong attractive interac- tion can make it stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Mean-field theory By applying the mean-field approximation, we obtain the mean-field Hamiltonian HMF = −t � ⟨i,j⟩σ c† iσcjσ + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' − µ � i ni − h · � i si − � i � vini + Hi · si − ∆ic† i↑c† i↓ − ∆∗ i ci↓ci↑ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (3) 3 The order parameters are given by the self-consistent equations vi ≡ |U| 2 ⟨ni⟩, (4) ∆i ≡ −|U|⟨ci↓ci↑⟩, (5) mi = 1 2 � σσ′ ⟨c† iστσσ′ciσ′⟩, Hi = − 2|U|mi, (6) where ⟨A⟩ = Tr � Ae−HMF/T � /Tr � e−HMF/T � is a quan- tum statistical average with the mean-field Hamiltonian and T is temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' ∆i is the order parameter for s-wave singlet superconductivity (pair potential).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The phase θi ∈ [0, 2π) of the pair potential ∆i = |∆i|eiθi is dependent on the site index and will be represented by the arrow in a two-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The mean-fields for the charge and spin are given by vi and Hi, respec- tively, at each site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The derivation of the self-consistent equations is summarized in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We will consider the AH model both on the two-dimensional square and triangular lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' MEISSNER KERNEL FOR A GENERAL TIGHT-BINDING LATTICE A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Definition As we explained in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' I, it is necessary to calculate the Meissner kernel to determine whether the mean-field solution for η-pairing is electromagnetically stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the tight-binding model, the electromagnetic field appears as Peierls phase: Hkin = −t � ⟨i,j⟩σ eiAijc† iσcjσ + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='. (7) The Meissner effect is examined by the weak external or- bital magnetic field applied perpendicular to the plane, while the η-pairing is stabilized only under a strong Zee- man field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In order to make these compatible, we apply the Zeeman field parallel to the plane h = (h, 0, 0), which does not create the orbital motion of the tight-binding electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Thus, the weak magnetic field that triggers the Meissner effect is applied perpendicular to the plane in addition to the in-plane magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' While the out-of-plane Zeeman effect is also induced by the weak additional field, it is neglected since the dominant Zee- man field already exists by the strong in-plane magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Let us formulate the Meissner response kernel on a general tight-binding model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We apply the formulation in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [46–48] to the present case with sublattice degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The current density operator between two sites is defined as jij = ∂Hkin ∂Aij ˆδij = −it � σ � c† iσcjσeiAij − c† jσciσe−iAij� ˆδij, (8) where δij = Ri − Rj is the inter-site lattice vector be- tween i-th and j-th sites, and hat (ˆ) symbol means a unit vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the linear response theory, the current oper- ator which appears as a response to the static magnetic field in equilibrium is written as jij ≃ −it � σ (c† iσcjσ − c† jσciσ)ˆδij + t � σ (c† iσcjσ + c† jσciσ)ˆδijAij ≡ jpara ij + jdia ij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (9) The first term is called the paramagnetic term and the second term is diamagnetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The Fourier-transformed paramagnetic and diamagnetic current density operators are written as jpara(q) and jdia(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The linear response kernel is then defined by ⟨jν(q)⟩ = � µ Kνµ(q)Aµ(q), where ν, µ = x, y is the direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We evaluate the ker- nel Kνµ(q → 0) ≡ Kνµ when investigating the stability of superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This is called the Meissner kernel, which is proportional to the superfluid density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The Meissner kernel is separated into paramagnetic and diamagnetic terms as Kνµ = (Kpara)νµ + (Kdia)νµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The paramagnetic kernel is given by (Kpara)νµ = 1 N � 1/T 0 dτ⟨jpara ν (q = 0, τ)jpara µ (q = 0)⟩, (10) where N = � i 1 is the number of sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The Heisenberg representation with the imaginary time τ is defined as A(τ) = eHτAe−Hτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The form of the diamagnetic kernel is obvious from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We note that if the sign of the Meissner kernel K is negative, the superconducting state is electromagneti- cally stable and is also called a diamagnetic Meissner state, which expels magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' On the other hand, if the sign is positive, the superconducting state is called the paramagnetic Meissner state, which attracts mag- netic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For a stable thermodynamic superconducting state, the negative value of K is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Method of evaluation The actual evaluation of the kernels is performed based on the wave-vector representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Here, the physical quantities are described by the operator cα kσ where α dis- tinguishes the sublattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Note that the Brillouin zone is 4 folded by � α 1 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The diamagnetic kernel is rewrit- ten as (Kdia)νµ = 1 N � α,β � kσ � m−1 kαβ � νµ ⟨cα† kσcβ kσ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (11) The inverse mass tensor m−1 kαβ, which reflects the char- acteristics of the lattice shape, are given by � m−1 kαβ � νµ ≡ t � ⟨iα,jβ⟩ � ˆδiαjβ � ν � ˆδiαjβ � µ e−ik·Riαjβ , (12) where iα is the i-th unit cell with sublattice α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The symbol ⟨iα, jβ⟩ represents a pair of the nearest-neighbor sites and Riαjβ is the vector between the unit lattice with the i-th sublattice α and the unit lattice with the j-th sublattice β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The paramagnetic term has the form of a current- current correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We can calculate this term by using the Green’s function matrix ˇGk(τ) ≡ −⟨Tτψk(τ)ψ† k⟩ (13) where ψk = (cα k↑, cα† −k↓, · · · )T is the Nambu-spinor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tτ is time-ordering operator regrading τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Each component of the Green’s function matrix is given by the diagonal and off-diagonal Green’s functions: Gαβ σσ′(k, τ) ≡ −⟨Tτcα kσ(τ)cβ† kσ′⟩, (14) ¯Gαβ σσ′(k, τ) ≡ −⟨Tτcα† kσ(τ)cβ k′σ′⟩, (15) F αβ σσ′(k, τ) ≡ −⟨Tτcα kσ(τ)cβ −kσ′⟩, (16) F αβ† σσ′ (k, τ) ≡ −⟨Tτcα† −kσ(τ)cβ† kσ′⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (17) The anomalous part of Green’s function [Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (16)] is also called the pair amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The paramagnetic kernel in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (10) can be divided into the normal (G) and anoma- lous (F) Green’s function contributions as (Kpara)νµ = − 1 N � � 1/T 0 dτ (vkαβ)ν · (vkα′β′)µ × � ¯Gαβ′ σσ′(k, τ)Gα′β σσ′(k, τ) + ¯Gαβ′ σσ′(−k, τ)Gα′β σσ′(−k, τ) � − 1 N � � 1/T 0 dτ (vkαβ)ν · (v−kα′β′)µ × � F βα† σ′σ (k, −τ)F α′β′ σ,σ′ (k, τ) + F βα† σ′σ (−k, −τ)F α′β′ σ,σ′ (−k, τ) � ≡ KG para + KF para.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (18) The summation � is performed over the indices which appears only in the right-hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The velocity vector vkαβ is defined by (vkαβ)ν ≡ t � ⟨iα,jβ⟩ � ˆδiαjβ � ν e−ik·Riαjβ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (19) In order to perform the integral with respect to τ in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (18), we define the Fourier-transformed Green’s function as gk(iωn) ≡ � 1/T 0 dτgk(τ)eiωnτ, (20) where gk represents one of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (14)-(17) and ωn = (2n + 1)πT is fermionic Mastubara frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Moreover, the Fourier-transformed Green’s function matrix is given by using the matrix representation of mean-field Hamiltonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (3) as ˇGk(iωn) = � iωnˇ1 − ˇHMF k �−1 = ˇUk � iωnˇ1 − ˇΛk �−1 ˇU † k, (21) where ˇΛk and ˇUk are, respectively, a diagonal eigenvalue matrix and a unitary matrix satisfying ˇU † ˇHMF k ˇU = ˇΛk = diag(λk1, λk2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (21), Kpara can be calculated as (Kpara)νµ = − 1 N � � (vkαβ)ν · (vkα′β′)µ Uβ′σ′,ασ kp Uα′σ,βσ′ kp′ + (vkαβ)ν · (v−kα′β′)µ Uβσ′,ασ kp Uα′σ,β′σ′ kp′ � f (λkp) − f (λkp′) λkp − λkp′ + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (22) where f(λkp) = 1 eλkp/T +1 is the Fermi-Dirac distribution function and we have defined the coefficient Uασ,βσ′ kp ≡ � ˇUk � ασ,p � ˇU † k � p,βσ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The anomalous part of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (18) KF para is further de- composed into the contributions KEFP and KOFP from 5 the even-frequency pair (EFP) and odd-frequency pair (OFP) amplitudes defined by F EFP(k, iωn) ≡ F(k, iωn) + F(k, −iωn) 2 , (23) F OFP(k, iωn) ≡ F(k, iωn) − F(k, −iωn) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (24) Then, we obtain KEFP and KOFP by using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (23) and (24) as KEFP,OFP νµ = − 1 2N � k � αβα′β′ (vkαβ)ν · (v−kα′β′)µ × � σσ′ � pp′ Uβσ′,ασ kp Uα′σ,βσ′ kp′ × �f (λkp) − f (λkp′) λkp − λkp′ ∓ f (λkp) − f (−λkp′) λkp + λkp′ � + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=', (25) where the minus (−) sign in the square bracket is taken for EFP contribution and the plus (+) for OFP pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' These quantities are numerically calculated as shown in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Note that the cross term of the EFP and OFP terms of Green’s functions vanishes after the summation with respect to the Matsubara frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Paramagnetic Meissner response of a simple η-pairing state Before we show the results of the AH model, let us show that a simple η-pairing state leads to the paramagnetic response which would not arise from thermodynamically stable states [24, 49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We consider the simple bipartite lattice with staggered ordering vector Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The anomalous contribution to the Meissner kernel may be written as [49] KF para,xx = −T � nkk′σσ′ vx kvx k′F ∗ σ′σ(k′, k, iωn)Fσσ′(k, k′, iωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (26) This contribution must be negative (diamagnetic re- sponse) in order to dominate over the paramagnetic con- tribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For a purely η-pairing state, we assume the relation Fσσ′(k, k′) = Fσσ′(k)δk′,−k−Q, and obtain KF para,xx = −T � nkσσ′ (vx k)2F ∗ σ′σ(k, iωn)Fσσ′(k, iωn), (27) where we have used vx −k−Q = vx k valid for square lat- tice, which is in contrast to the relation vx −k = −vx k for the uniform pairing with additional minus sign [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We separate the spin-singlet and triplet parts as Fσσ′ = Fsiτ y σσ′ + Ft · (τiτ y)σσ′, and then obtain KF para,xx = 2T � nk (vx k)2� |Fs(k, iωn)|2 − |Ft(k, iωn)|2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (28) If we consider the simple η-pairing with only spin-singlet part (Ft = 0), it leads to the paramagnetic response (positive).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Thus, a simple s-wave spin-singlet η-pairing is unlikely realized as a stable state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' On the other hand, in the AH model with magnetic field, the spin-triplet pair contribu- tion is substantially generated by the Zeeman field, which plays an important role for the diamagnetic response as shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' NUMERICAL RESULT FOR AH MODEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Square lattice 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Prerequisites Let us begin with the analysis of the AH model on the square lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We consider the two-sublattice struc- ture to describe the staggered ordered phase such as a η-pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' While the superconducting states in the at- tractive model are interpreted in terms of the magnetic phases of the repulsive model by the particle-hole trans- formation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (2), the response functions such as the Meissner kernel are specific to the attractive model and have not been explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the following, we choose the band width W = 1 as the unit of energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We fix the value of the attrac- tive interaction U = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The electron concentration is fixed as nc = 1, and the temperature is taken to be T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 × 10−3 unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We will in- vestigate the change of the Meissner kernel for η-pairing as a function of magnetic field strength h = |h|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this paper, the mean-field solutions are calculated using the 60 × 60 mesh in k-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The result of the Meissner ker- nel for η-pairings is calculated with the mesh 300 × 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also checked that the behaviors remain qualitatively unchanged when these numbers are increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The self- consistent equations in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (4)-(6) are computed by using an iterative method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the following subsec- tion IV A 2, we restrict ourselves to the analysis of two- sublattice mean-field solutions, and in IV A 3, we exam- ine the solutions when the two-sublattice constraint is relaxed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Two-sublattice solution Before investigating the electromagnetic stability, we clarify the regime where the η-pairing becomes the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this paper, we assume that the inter- nal energy in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (1) is approximately equal to the free energy in the low temperature region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The upper panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2 shows the internal energy of several ordered states measured from the normal-state energy as a func- tion of the Zeeman field h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Here, the η-pairing solution is obtained by solving the self-consistent equation with imposing the constraint of the staggered phase of the pair 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 h −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 Ei − Enormal BCS CDW Normal η-pairing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='08 D0 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (Upper panel) Magnetic-field dependence of the internal energy for each state measured from the normal state in the square lattice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (Lower plane) Density of state (DOS) at zero energy D0 for each state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 ω 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 D(ω) h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Density of states for the η-pairing around magnetic filed h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 in the square lattice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Here D(ω) is normalized as � dωD(ω) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A constraint is also used for the calculation of the other types of order parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Our calculations have not found any ordered states other than the types shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2 even when a random initial condition is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We determine the thermodynamically stable ground state by comparing the internal energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In low magnetic fields, BCS and CDW are degenerated ground states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' On the other hand, we find that the η-pairing becomes the ground state in the magnetic field located in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='063 < h < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The η-pairing solution itself is found in the wider regime although the internal energy is not the lowest one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' It has been known that the attractive Hubbard model under a magnetic field also shows the FFLO state [50], but this possibility cannot be considered when we take the two-sublattice condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This point will be revisited in the next subsection where the two-sublattice condition is relaxed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The lower panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2 shows the density of state (DOS) at the Fermi level for each state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The re- sult indicates that there is no energy gap in the η-pairing state, in contrast to the conventional BCS pairing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' There exists the regime where the DOS at the Fermi level for η-pairing is larger than that of normal metal (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 ≲ h ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This is due to the van-Hove singular- ity of the square lattice model as shown in FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also perform the calculation for the cubic lattice where the van-Hove singularity is absent at zero energy and con- firm in this case that the DOS is smaller than the normal state (see Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The stability of the η-pairing depends upon the mag- nitude of the magnetic field as seen in the Meissner re- sponse kernel K (= Kxx = Kyy) (green symbol) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The contributions from the paramagnetic (Kpara, positive) and diamagnetic (Kdia, negative) parts are also separately plotted in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the regime with h ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='125 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 ≤ h, the η-pairing is electromag- netically unstable, while it is stable in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='125 < h < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4, the yellow shaded rectangle indicates the regime where the η-pairing becomes the ground state as seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We find a narrow region where η-pairing is regarded as the ground state but is not an electromagnet- ically stable state around h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' From these results, we see that the η-pairing is not necessarily electromag- netically stable even if it becomes the ground state in a two-sublattice calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' As we shall see later, the simple η-pairing in this narrow regime does not necessar- ily exist if we relax the two-sublattice condition of the mean-field solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4(a) the contributions from the even- and odd-frequency pairs defined in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (23) and (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The negative sign of the kernel, which means the re- sponse is diamagnetic, is partly due to the odd-frequency component of the pair amplitude, (KOFP < 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This is in contrast to the FFLO state whose Meissner ker- nel is also negative due to the even-frequency component [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hence, it implies that the mechanism of the dia- magnetism is different between the FFLO and η-pairing states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In addition to the Meissner kernel, we calcu- late the local pair amplitudes which are shown in FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Here the left- and right-panels represent the spin-triplet and spin-singlet components of the lo- cal pair amplitude, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The triplet component � σσ′(τ µiτ y)σσ′Fσσ′(iωn) with µ = x has a finite imagi- nary part and zero real part, which represents the odd- frequency pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The other µ = y, z components are zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' On the other hand, the singlet component has a finite real part and zero imaginary part and is the even-frequency pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We can see that the maximum value of the spin- triplet component of the pair amplitude is largest at the magnetic field h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375, where the magnitude of KOFP is largest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' It is also notable that the magnitude of the odd-frequency pair amplitude correlates with the magni- tude of DOS at zero energy as seen by comparing Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We comment on the singular behavior of KOFP at the magnetic field h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375, although it does not affect the total Meissner kernel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This anomalous feature is re- lated to the van Hove singularity of the DOS at zero energy as shown in FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 3, which shows a sharp peak at the Fermi level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Kdia ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Kpara ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='KEFP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='KOFP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD0HichVO5TsNAEH3BnOEIR4NEg4iQKFC0QZxdEA0lVwCJIGSbTbKL9kbFIQioEW08A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='+IH+EHKPgEagoaCmY35lIUM5bt2TfvjWd2x1bgiEgy9pLqMrp7ev6B9KDQ8MjmdGx8f3Ir4c2L9q+4e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='HlhlxR3i8KIV0+GEQctO1H5g1TZU/OCMh5HwvT15HvBj16x4oixsUxK0U2qejGZjmbnfysZNFbFv+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='WKqEk7hw0YdLjg8SPIdmIjoOkIeDAFhx7gLCRP6DhHE2nS1onFiWESWqNnhVZHMerRWuWMtNqmrzh0h6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Scxix7Zg/sjT2xR/bKPjrmutA5VC3n9LZaWh6cZG4md9/Vbn0lqj+qBJrlihjVdcqPZAI6oLW+s7KxW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='nQr0Jila13qKYRbiTsEuK5SbG/3Y+39ZTZ2WFdtktKpPq/FPFYpbI18m8n6fX1LNEa1djSbx1M429Kz5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='xA4SuV8d/+am9ayvKVv6nux2Z38hl1/OLW4vZgvrV62p78cUZjBHk72CAjaxhSJlLuMWd7g3doyGcWlct ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6hdqfhPmcAfM24+AbMryxg=}Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (25) °3 °2 °1 0 1 2 3 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 Re[F " #(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n) ° F # "(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n)]/ p 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='875 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='625 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='125 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='875 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 K Kdia Kpara K KEFP KOFP OFP EFP °3 °2 °1 0 1 2 3 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 Im[F # #(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n) ° F " "(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n)]/ p 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (a) Magnetic field dependence of the Meissner ker- nel K(= Kxx = Kyy) for the η-pairing on the square lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The yellow shaded rectangle indicates the range where the η-pairing becomes the ground state in two-sublattice calcula- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The number of the wavenumber k is taken as 300×300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (b) Matsubara frequency dependence of the local pair ampli- tude at several magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The left panel represents the imaginary part of [F↓↓(iωn) − F↑↑(iωn)] / √ 2, and the right panel represents the real part of [F↑↓(iωn) − F↓↑(iωn)] / √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The values of the pair amplitudes are shifted by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 at each magnetic field for visual clarity, and the gray-dotted lines are the zero axes for each magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Beyond two-sublattice In order to clarify the stable ordered state where the Meissner kernel is positive (paramagnetic), we investi- gate mean-field solutions on finite-sized lattice where the two-sublattice condition is not imposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We have nu- merically solved the Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (4)-(6) self-consistently by us- ing the mean-field solutions of the η-pairing obtained for two-sublattice as an initial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Figure 5 shows the spatial distribution of the phase of the gap function when the number of sites is 8 × 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' At h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 in (a), where the η-pairing is not a ground state, the uniform BCS pairing state is realized as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' With increasing the magnetic field, the longer-periodicity structures are found as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 5(b), (c) and (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' At h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 in (c), where the η-pairing solution has the lowest energy and the electromagnetic response is well diamagnetic, we obtain the staggered alignment of the (a) h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 (d) h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='875 (c) h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 (b) h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='125 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Spatial distribution of the phase of the supercon- ducting order parameter at several magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The cal- culation is performed on the finite-sized lattice (8 × 8) with open boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Small black dots are lattice points and red arrows indicate the phase of the pair potential for each lattice point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' When the parameters are close to the edges of the yellow-highlighted region in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4, the complex struc- tures are formed as shown in (b) and (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The behavior in (b) is interpreted as due to the competing effect where the simple uniform and staggered phases are energetically close to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also investigate the case with the other choice of pa- rameters: U = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 and h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this case, we find the staggered flux state where the phase of pair poten- tial is characterized by 90◦-N´eel ordering as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This ordered state cannot be described in the mean-field theory with two sublattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Owing to a non-colinear 90◦-N´eel ordering vector, the spontaneous clockwise or counterclockwise loop currents arise by the inter-atomic Josephson effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The current density is calculated by jij = −it � σ ⟨c† iσcjσ − c† jσciσ⟩ (29) which is identical to the expression of the paramagnetic current in the linear response theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We can also evalu- ate the flux for each plaquette, which is define by Φ = � (i,j)∈plaquette jij (30) This expression is similar to the flux � C j ·ds = � S b·dS (j = ∇ × b) defined in a continuum system, where b is a flux density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The flux is aligned in a staggered manner 8 (a) (b) Current Magnetic flux FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (a) Spatial distribution of the phase of the supercon- ducting order parameter for the η-pairing with 90◦-N´eel state on the finite-sized lattice under open boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (b) Spatial distributions of the spontaneous loop current and the flux defined on each plaquette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The color of vectors dis- plays the magnitude of current, and the color of dots in each plaquette indicates the value of the magnetic flux defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' on a dual lattice as indicated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The staggered flux originating from the normal part has been studied before [20–23], while the staggered flux shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 6(b) has a different origin: it arises from the superconductiv- ity associated with the off-diagonal part in the Nambu representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also comment on a feedback effect to the electro- magnetic field from the supercurrent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Since the char- acteristic length scale for the magnetic field in layered superconductor becomes long [52], each magnetic flux on the plaquette is smeared out with this length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hence we expect that the net magnetic field is not created from the staggered superconducting flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Triangular lattice 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Mean-field solution Now we search for the η-pairing reflecting the charac- teristics of a geometrically frustrated triangular lattice at the half-filling (nc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We choose the parameters U = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='83 and T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 × 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We consider the cases of two- and three-sublattice structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For a usual antifer- romagnet, the typical ordered state in the two-sublattice case has a stripe pattern, while in the three-sublattice case we expect a 120◦-N´eel state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Below we study the superconducting η-pairing phases within the mean-field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We have found the four types of superconducting states reflecting the characteristics of the triangular lattice, which are referred to as the η-pairing I, II, III, and IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The schematic pictures for these four states are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(a), where the arrow indicates the phase of the superconducting order parameter at each site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We make a few general remarks: the three-sublattice structure is assumed for I, II, III, while the two sublattice is employed 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 ni, mi nA nB nC mA mB mC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 ni,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' mi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='nA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='nB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='mA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='mB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD5XichVNa9tAEH20tRxmsRJCR6MTWFHhKzLmT3hx6SW8pqe2AbYykbOTF+kJaBxth6LnQW8m19Njkj/QP9NCf0HMOufTQ2bXzYyVEZJm37w3mtkdWaErYsn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Yn0zWHi0+Di3lF9+srK6VljfqMdBP7J5zQ7cIDq2zJi7wuc1KaTLj8OIm57l8obVe6/ijTMexSLwP8lhyNue6fjiVNimJKhT2GxFXvKh1Y1D0+bJdrnCvVF91CmUWJlpK846lYlTwsQOg/VMCy2cICNPjxw+JDkuzAR09VEBQwhYW0khEXkCR3nGCFP2j6xODFMQnv0dGjVnKA+rVXOWKt+opLd0TKIl6y3+wnu2K/2CX7y/7NzZXoHKqWIb2tsZaHnbUvz46uH1R59Jbo3qlSa5Y4xZ6uVDtoUZUF7bWz1cqjkO9CYp2td6imEW4m7JLiuWlxqc735rpab7SoV02Ce3q0xo8UIXi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='9siXqbz75dWc0xrT6NpPLWzAz1rAbHDVO5Nx/e5eT3r75S9uZ3sWaf+ulx5W975uFOq7n8eT30Oz/ECr2iyd1HFAQ5Ro8wJfuACl4ZjfDW+GedjajYz+VOeYsqM7/8B8nDTJg=IV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD5XichVNb9NAEH2paSmhtAmoEhKXqFGlHm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='i0qQot1S9kFsQzYeURJHtbp1V/CV7g1JZkTgjcau4Io6QP8If4MBP4MyBSw+d3YR+KIo7lu3ZN+NZ3bHVuiKWDL2O7NkPFhebj6KPt47cn6Ri7/tBEHw8jmdTtwg6hlmTF3hc/rUkiXt8KIm57l8qY1OFbx5gcexSLwT+R5yLue6fji ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='TNimJKiX2+xEXlLt9OPQtHmyWypzb1wd93JFVmLaCvNOeYUMbNakM90MEpAtgYwgOHD0m+CxMxXW2UwRAS1kVCWESe0HGOMbKkHRKLE8MkdEBPh1btGerTWuWMtdqmr7h0R6QsYJv9Yt/ZX/aTdgfdrkwV6JzqFrO6W1NtTzsbXx6/v7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='fvSqP3hL9G1VqzRJnONS1Cqo91Ijqwtb6xUrFcag3QdG+1lsUswh3U3ZJsbzU+N3OX871tFjp0C6bhPb1aY3uqUJxB+TLVN7t80urOa1p9E0ntrZkZ61gNhKvd/x7e5WT3rb5S9up7seaexVyq/Lu2/2y9Wj5Op34VL7CFHZrsA1TwF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='jXUKXOCb/iBieEYn40L48uUupSZ/SnPcMeMr1fF9NMZII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD9HichVO7TuNAFD3BPEJ4BWiQaBABiQKiCe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='LZUDHQgCSARFthmSUfySPUGgKBI130C32mKFhGjZL9gfoOATt6ChoI7k/CMYq5l+8651zfO3NtBY6IJGOPiS6ju6e3L9mfGhgcGh5Jj47tR34tHnB9h0/PLTMiDvC4wUpMPg5CbruXwA6u6oeIHZzyMhO/tyYuAH7tm2ROnwjYl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='QaX0TDF061vFShSYNq8vZHPcbXxdNkrpDMsybVPtTq7lZNCybX80UQRJ/BhowYXHB4k+Q5MRHQdIQeGgLBj1AkLyRM6ztFAirQ1YnFimIRW6Vm1VEL9WitckZabdNXHLpDUk5hlj2w3+w/+8tu2D/23DFXedQtVzQ2pqeVAauZrYfp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='W5dJbovKuiq1Z4hRrulZBtQcaUV3YWt9ZqThl6k1QtKL1FsUswp2YXVIsNzb+ufP5tp46K8u0yahFX1a59UobhV8mUs7+P5xdUc0drVaBxP7ey5njWf2Es97Xj9yUnvV1Zctvk93u7C9mcyvZpZ2lTP7HZXPqk5jENOZosleRxya2U ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='aDMV7jDPf4YZ8a18dP41aR2JVp/yjg+mXH7AkDw2R4=III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD1HichVPLSsNAFD01Pmp960ZwIxbBhZSp+N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='wpbnSnaKtgRZI4tmPzIplKpQqCuHEhbvUPxB/xB1z4Ca5duHhnWl9URpvSHLn3HNu7p25sQJHRJKxl0Sb0d7R2ZXsTvX09vUPDA4N5yO/Eto8Z/uOH+5aZsQd4fGcFNLhu0HITdy+I5VXlXxnRMeRsL3tuVpwPds+iJI2GbkqB8IXRr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6+cHg2mWYdrGm51sw0mjYRv+UKAg7hw0YFLjg8SPIdmIjo2kMWDAFh+6gRFpIndJzjHCnSVojFiWESWqZnkVZ7DdSjtcoZabVNX3HoDk5jkn2zB7YG3tij+yVfbTMVdM5VC2n9LbqWh4cDFyPbr3/q3LpLVH6UcXWLHGERV2roNoDjag ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='ubK1vrVScIvUmKFrSeotiFuFOzC4plhsb/9v5dFNPrZVF2mWT0JI+reo/VShumXwZy/t9fnE1R7R2NRrHUztb1bPmEzuI5X51/Jub0rO+pGzue7KbnfxMJjufmd2cTS+vXNSnPokxTGCKJnsBy1jDBnKU+Ri3uMO9kTfOjEvjqk5tSzT+l ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='BH8MePmE+ykzOM=I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD1nichVM7TwJBEB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4H4gPRBsTGyMxsTBkMT47lMYSo+glYMzducCGe+VuMRCsTEmVsZW/4Dxj/gHLPwJ1hY2Fs4up0Ix1zudvab79ub2Z3VXZP5nJD3SFQZGR0bj03EJ6emZxKzybkT36l7Bi0Yjul4q ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='751GQ2LXDGTaq6HtUs3aSnei0n4qeX1POZYx/zpkvPLK1iszIzNI6QWvKs1n7uqH0+myJpIm2p38kETgoCyzvJSAlKcAEOGFAHCyjYwNE3QMfnyJkgICL2Bm0EPQYzJOoQ1x1NaRZ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='GhIVrDbwVnxQC1cS7W9KXawL+Y+HqoXIV8kaeySd5JS/kg3wPXKsl1xC5NHUO1rqnifuFo6+hqosHDlU/1WhOXMow47MlWHurkREFYbUD1YKTgVrYxitSr2OMR1xM2SXBMsKjfdWvt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='ZX02BlBXdZQ7QqT6sxJAvBraHPQ3nd5xeWs49zS6JhPLGzDdlrDrLdUO5vxd3cuOz1XWGbf53d75yspzNb6Y3DjVR27rT9TFYhGVYxc7ehiwcQB4KsqMf4BGeFW5Um6U2w41Ggluyj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='z0mHL/AygEzY=BCS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD5XichVNb9NAEH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2paSmhtAmoEhKXqFGlHmi0qQot1S9kFsQzYeURJHtbp1V/CV7g1JZkTgjcau4Io6QP8If4MBP4MyBSw+d3YR+KIo7lu3ZN+NZ3bHVuiKWDL2O7NkPFhebj6KPt47cn6Ri7/tBEHw8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='jmdTtwg6hlmTF3hc/rUkiXt8KIm57l8qY1OFbx5gcexSLwT+R5yLue6fjiTNimJKiX2+xEXlLt9OPQtHmyWypzb1wd93JFVmLaCvNOeYUMbNakM90MEpAtgYwgOHD0m+CxMxXW2UwR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AS1kVCWESe0HGOMbKkHRKLE8MkdEBPh1btGerTWuWMtdqmr7h0R6QsYJv9Yt/ZX/aTdgfdrkwV6JzqFrO6W1NtTzsbXx6/v7fvSqP3hL9G1VqzRJnONS1Cqo91Ijqwtb6xUrFcag3Qd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='G+1lsUswh3U3ZJsbzU+N3OX871tFjp0C6bhPb1aY3uqUJxB+TLVN7t80urOa1p9E0ntrZkZ61gNhKvd/x7e5WT3rb5S9up7seaexVyq/Lu2/2y9Wj5Op34VL7CFHZrsA1TwFjXUKX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='OCb/iBieEYn40L48uUupSZ/SnPcMeMr1fF9NMZII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD1HichVPLSsNAFD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='01Pmp960ZwIxbBhZSp+NwpbnSnaKtgRZI4tmPzIplKpQqCuHEhbvUPxB/xB1z4Ca5duHhnWl9URpvSHLn3HNu7p25sQJHRJKxl0Sb0d7R2ZXsTvX09vUPDA4N5yO/Eto8Z/uOH+5aZs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Qd4fGcFNLhu0HITdy+I5VXlXxnRMeRsL3tuVpwPds+iJI2GbkqB8IXRr6+cHg2mWYdrGm51sw0mjYRv+UKAg7hw0YFLjg8SPIdmIjo2kMWDAFh+6gRFpIndJzjHCnSVojFiWESWq ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='ZnkVZ7DdSjtcoZabVNX3HoDk5jkn2zB7YG3tij+yVfbTMVdM5VC2n9LbqWh4cDFyPbr3/q3LpLVH6UcXWLHGERV2roNoDjagubK1vrVScIvUmKFrSeotiFuFOzC4plhsb/9v5dFNPrZ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='VF2mWT0JI+reo/VShumXwZy/t9fnE1R7R2NRrHUztb1bPmEzuI5X51/Jub0rO+pGzue7KbnfxMJjufmd2cTS+vXNSnPokxTGCKJnsBy1jDBnKU+Ri3uMO9kTfOjEvjqk5tSzT+lBH8Me ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='PmE+ykzOM=I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD1HichVPLSsNAFD01Pmp960ZwIxbBhZSp+NwpbnSnaKtgRZI4tmPzIplKpQqCuHEhbvUPxB/xB1z4Ca5duHh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='nWl9URpvSHLn3HNu7p25sQJHRJKxl0Sb0d7R2ZXsTvX09vUPDA4N5yO/Eto8Z/uOH+5aZsQd4fGcFNLhu0HITdy+I5VXlXxnRMeRsL3tuVpwPds+iJI2GbkqB8IXRr6+cHg2mWYdrGm51sw0mjYRv+UKAg7hw0YFLjg8SPIdmIjo2kMWDAFh+6gRFpIndJzjHCnSVojFiWESWqZnkVZ7DdSjtcoZabVNX3HoDk5jkn2zB7YG3tij+yVfbTMVdM5VC2n9LbqWh4cDFyPbr3/ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='q3LpLVH6UcXWLHGERV2roNoDjagubK1vrVScIvUmKFrSeotiFuFOzC4plhsb/9v5dFNPrZVF2mWT0JI+reo/VShumXwZy/t9fnE1R7R2NRrHUztb1bPmEzuI5X51/Jub0rO+pGzue7KbnfxMJjufmd2cTS+vXNSnPokxTGCKJnsBy1jDBnKU+Ri3uMO9kTfOjEvjqk5tSzT+lBH8MePmE+ykzOM=I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='05 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Ei ° E¥°pairing I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD5XichVNa9tAEH20tRx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='msRJCR6MTWFHhKzLmT3hx6SW8pqe2AbYykbOTF+kJaBxth6LnQW8m19Njkj/QP9NCf0HMOufTQ2bXzYyVEZJm37w3mtkdWaErYsnYn0zWHi0+Di3lF9+srK6VljfqMdBP7J5zQ7cIDq2zJi7wuc1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='KaTLj8OIm57l8obVe6/ijTMexSLwP8lhyNue6fjiVNimJKhT2GxFXvKh1Y1D0+bJdrnCvVF91CmUWJlpK846lYlTwsQOg/VMCy2cICNPjxw+JDkuzAR09VEBQwhYW0khEXkCR3nGCFP2j6xODFMQnv0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='dGjVnKA+rVXOWKt+opLd0TKIl6y3+wnu2K/2CX7y/7NzZXoHKqWIb2tsZaHnbUvz46uH1R59Jbo3qlSa5Y4xZ6uVDtoUZUF7bWz1cqjkO9CYp2td6imEW4m7JLiuWlxqc735rpab7SoV02Ce3q0xo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8UIXi9siXqbz75dWc0xrT6NpPLWzAz1rAbHDVO5Nx/e5eT3r75S9uZ3sWaf+ulx5W975uFOq7n8eT30Oz/ECr2iyd1HFAQ5Ro8wJfuACl4ZjfDW+GedjajYz+VOeYsqM7/8B8nDTJg=IV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 °3 °2 °1 0 Ei ° Enormal BCS normal ¥-pairing I ¥-pairing IV ¥-pairing III ¥-pairing II (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='05 Ei ° E¥°pairing I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 °3 °2 °1 0 Ei ° Enormal BCS normal ¥-pairing I ¥-pairing IV ¥-pairing III ¥-pairing II pairing II η pairing IV η 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='05 Ei ° E¥°pairing I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 ni, mi nA nB nC mA mB mC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 ni, mi nA nB nC mA mB mC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 ni, mx i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 ni, mx i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 ni, mx i x y FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (a) Schematics for the four η-pairings in the tri- angular lattice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The arrows indicate the phase of the pair potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The size of the circles shows the amount of the electron density for each sublattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (b) Magnetic field dependence of the internal energies measured from the nor- mal state (upper panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The lower panel shows the inter- nal energy measured from the η-pairing I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (c) Magnetic field dependence of the number of electrons and magnetization on each sublattice for the η-pairing II (upper panel) and IV (lower panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' for IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The type-I has a non-colinear structure, and in the other η-pairings the vectors are aligned in a colinear man- ner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also note that CDW accompanies the η-pairings II and III, where the number of local filling is indicated by the size of the filled circle symbols in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Figure 7(b) shows the internal energy of the ordered states measured from the normal state (Upper panel) and from the η-pairing I (Lower panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' From the lower panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(b), we can identify the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' With in- creasing the magnetic field, the ground state changes as BCS → η-pairing II→ η-pairing I → η-pairing IV→ η- pairing I → normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Figure 7(c) shows the particle den- 9 (a) (b) Iloop h 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 Iloop FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (a) Schematic picture of the staggered flux state on the triangular lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The straight arrows display the phase of the pair potential at each site, and the circle arrows indicate the staggered loop current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (b) Magnetic field dependence of the magnitude of loop current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The yellow shaded rectangle indicates the range where the η-pairing I becomes the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' sity and x-direction magnetization mx i of each sublattice for η-pairing II (Upper panel) and η-pairing IV (Lower panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The values of my i and mz i are zero because the Zeeman field h is applied along the x-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Below, we explain the characteristic features for each η-pairing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' η-pairing-I state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='— The η-pairing I has 120◦ N´eel or- dering vector (Green pentagon in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The spon- taneous supercurrent appears in this non-colinear state as schematically shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 8(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This superconduct- ing state forms a staggered flux state, where the flux is aligned on a honeycomb dual lattice, which is similar to the η-pairing with 90◦-N´eel ordering vector on the square lattice shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Figure 8(b) displays the val- ues of spontaneous loop current density as a function of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' η-pairing-II state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='— The η-pairing II has the struc- ture with up-up-down colinear phases plus CDW (Red hexagon in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' There is the relation nA = nB < nC for the electron filling at each sublattice shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We note that this site-dependent feature is characteristic for the II (and IV) state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The phases of the pair potential at A and B sublattices are “ferromagnetic”, while the phase at C sublattice is “antiferromagnetic”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The resulting ordered state is regarded as the emergence of the honeycomb lattice formed by equivalent A and B sublattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' η-pairing-III state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='— This is the η-pairing with a stag- gered ordering vector and CDW (Magenta square in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The order parameter ∆ at C sublattice is zero, but the others (A,B) are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The electron-rich sublattices A and B form a simple bipartite η-pairing state on an emergent honeycomb lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Since this state does not become a ground state anywhere for the present choice of U = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='83, we do not further investigate this state in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' η-pairing-IV state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='— This is the η-pairing with a sim- ple stripe alignment (Cyan rhombus in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This η-pairing is accompanied by CDW around h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='9 shown 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 Kxx, Kyy (a) -pairing Ⅰ η Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (25) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 Kxx, Kyy (b) -pairing Ⅱ η 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 Kyy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 Kxx (c1) -pairing Ⅳ η (c2) -pairing Ⅳ η 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 h °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 Kyy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 K Kdia Kpara K KEFP KOFP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 K Kdia Kpara K KEFP KOFP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 h 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Kdia ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='Kpara ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='KEFP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='KOFP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AD0HichVO5TsNAEH3BnOEIR4NEg4iQKFC0QZxdEA0lVwCJIGSbTbKL9kbFIQio ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='EW08A+IH+EHKPgEagoaCmY35lIUM5bt2TfvjWd2x1bgiEgy9pLqMrp7ev6B9KDQ8MjmdGx8f3Ir4c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2L9q+4eHlhlxR3i8KIV0+GEQctO1H5g1TZU/OCMh5HwvT15HvBj16x4oixsUxK0U2qejGZjmb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='nfysZNFbFv+WKqEk7hw0YdLjg8SPIdmIjoOkIeDAFhx7gLCRP6DhHE2nS1onFiWESWqNnhVZHMer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='RWuWMtNqmrzh0h6Scxix7Zg/sjT2xR/bKPjrmutA5VC3n9LZaWh6cZG4md9/Vbn0lqj+qBJrlihjV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='dcqPZAI6oLW+s7KxWnQr0Jila13qKYRbiTsEuK5SbG/3Y+39ZTZ2WFdtktKpPq/FPFYpbI18m8n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6fX1LNEa1djSbx1M429Kz5xA4SuV8d/+am9ayvKVv6nux2Z38hl1/OLW4vZgvrV62p78cUZjBHk72C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='AjaxhSJlLuMWd7g3doyGcWlct6hdqfhPmcAfM24+AbMryxg=} ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Magnetic field dependence of the Meissner kernels Kxx and Kyy for the η-pairings I, II, IV on the triangular lat- tice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The yellow shaded rectangle indicates the regime where each η-pairing becomes the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The symbols are the same as those in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For the η-pairing IV, Kxx and Kyy are separately plotted in (c1) and (c2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' As shown below, this stripe phase show an anisotropic behavior in linear response coefficients, while the other η-pairing states are isotropic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Meissner response Now we discuss the Meissner response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Figure 9(a,b,c) shows the Meissner kernels Kxx, Kyy for the η-pairing I, II and IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The yellow-highlighted parts indicate the re- gion where each η-pairing becomes the ground state as identified from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The result for the η-pairing III is not shown because it does not become a ground state at U = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We confirm that the Meissner re- sponse is basically diamagnetic if the η-pairing becomes the ground state as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(a,b,c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Thus the en- ergetic stability and diamagnetic response are reasonably correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the following, we discuss the properties of the Meissner kernel for each state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The Meissner kernels for both η-pairing I and η-pairing II shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(a) and (b) satisfy the relation Kxx = Kyy, which means an isotropic linear response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For the η- pairing I, the Meissner kernel becomes positive in the re- gions h < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='95 < h < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='12, while the kernel becomes negative in the ground state region (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Although the local current density is finite for the η-pairing I state, it does not affect the expression of the Meissner kernel in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (10) since the total current j(q = 0) is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Next we disucuss the η-pairing IV state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The Meiss- 10 ner kernel jumps at h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 due to the emergence of the CDW order parameter as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(c1,c2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' It is notable that the η-pairing IV with the stripe pattern shows a difference between x and y directions as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(c1,c2), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This characteristic behav- ior can be intuitively understood from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 7(a), where the current along the x-axis flows with experiencing a staggered pair potential, whereas the current in the y- direction feels an uniform pair potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In the Meissner response, Kxx shows a characteristic behavior of the η- pairing, while Kyy is qualitatively the same as the kernel of BCS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Thus, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(c1), the diamagnetic response in the x-axis direction is related to to the odd- frequency pair, whereas the diamagnetic response in the y-axis direction, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 9(c2), is related to even- frequency pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' SUMMARY AND OUTLOOK We have studied the square and the triangular lattice of the attractive Hubbard model by using the mean-field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Several types of η-pairing have been found in the triangular lattice where a simple bipartite pattern is not allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Using the formulation of the Meissner kernel for a general tight-binding lattice, we have inves- tigated the electromagnetic stability of η-pairings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We have confirmed that the electromagnetic stability of the η-pairing correlates with the internal energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In a narrow parameter range, we also find that the η-pairing state can show an unphysical paramagnetic response if we assume the two or three sublattice structure in the mean-field calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this case, another solution with longer periodicity needs to be sought.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' When the current path experiences the staggered phase of the superconducting order parameter, the odd- frequency component of the pair amplitude contributes to the diamagnetic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' This is in contrast to the conventional BCS case in which the even-frequency com- ponent of the pair amplitude contributes to the diamag- netism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We have further clarified that one of the η- pairing states on the triangular lattice has a stripe pat- tern and shows an anisotropic Meissner response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In this case, the odd-frequency pair contributes diamagnetically or paramagnetically depending on the direction of cur- rent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We comment on some issues which are not explored in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We expect that the η-pairing without a simple staggered phase will appear on pyrochlore, kagome and quasicrystalline lattice, whose phase-alignment could be qualitatively different from the triangular lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In ad- dition, there is another model that shows η-pairing in equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A two-channel Kondo lattice (TCKL) is an example of a model in which η-pairing appears even in the absence of a Zeeman field [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Our preliminary cal- culation for the TCKL shows a number of ordered states which have similar energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' These additional studies provide more insight into the exotic superconductivity (a) (b) (c) °1 0 1 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 Re[F " #(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n) ° F # "(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n)]/ p 2 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='417 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='333 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='167 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='083 h=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 h=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='917 h=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='833 h=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 h=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='667 °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2°0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 Re[F " #(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n) ° F # "(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n)]/ p 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='417 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='333 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='167 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='083 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='917 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='667 °1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 D¥°pairing ° Dnormal °0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2°0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='0 Im[F # #(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n) ° F " "(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='n)]/ p 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (a) The difference between the DOSs of the η-pairing and normal states in the cubic lattice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The values of the DOS are shifted by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='2 for each magnetic field, and the gray dotted lines are the zero axes for each magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' We also show the Matsubara frequency dependence of (b) the imaginary part of [F↓↓(iωn) − F↑↑(iωn)] / √ 2 and (c) the real part of [F↑↓(iωn) − F↓↑(iωn)] / √ 2 for each magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The values of the pair amplitudes are shifted by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' characteristic for the η-pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' ACKNOWLEDGEMENT This work was supported by KAKENHI Grants No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 18H01176, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 19H01842, and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 21K03459.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Appendix A: Self-consistent equations in mean-field theory We derive self-consistent equations for the general in- teracting Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Let us begin with the Hamilto- nian H = � 12 ε12c† 1c2 + � 1234 U1234c† 1c† 2c4c3 (A1) where site-spin indices are written as 1 = (i1, σ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' The mean-field Hamiltonian is introduced as HMF = � 12 � E12c† 1c2 + ∆12c† 1c† 2 + ∆∗ 12c2c1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' (A2) We assume ⟨H ⟩ = ⟨HMF⟩ where the statistical average is taken with HMF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Then the self-consistent equation is obtained as E12 = ∂⟨H ⟩ ∂⟨c† 1c2⟩ = ε12 + � 34 (U1324 + U3142 − U1342 − U3124)⟨c† 3c4⟩ (A3) ∆12 = ∂⟨H ⟩ ∂⟨c† 1c† 2⟩ = � 34 U1234⟨c4c3⟩ (A4) 11 where the Wick’s theorem is used for the derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Al- though the variational principle for the free energy also gives the same equation, the above formalism gives a sim- ple procedure to derive the self-consistent equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Appendix B: Attractive Hubbard model on Cubic lattice We analyze the η-pairing on the cubic lattice, whose DOS does not have a van Hove singularity near zero en- ergy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Here we choose the parameter U = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='375 and the electron concentration is half-filled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' As a result, the DOS for the η-pairing around zero energy for each mag- netic filed on the cubic lattice is smaller than the DOS of the normal state as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 10(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' For reference, we also show in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 10(b) and (c) the pair amplitude similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 4(b) in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' In addition, the odd-frequency pair amplitude increases when DOS near zero energy is enhanced as seen from Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 10(a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Fulde and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ferrell, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 135, A550 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Larkin and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ovchinnikov, Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 47, 1136 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 63, 2144 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [4] For a review, see, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Agterberg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Davis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Edkins, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Fradkin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Van Harlingen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kivelson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lee, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Radzihovsky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tranquada, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Wang, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=', 11, 231 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Singh and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Scalettar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 66, 3203 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Coleman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Miranda, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tsvelik, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 70, 2960 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hoshino and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kuramoto, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 112, 167204 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [8] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Czart, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kapcia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Micnas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Robaszkiewicz, Physica A: Statistical Mechanics and its Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 585, 126403 (2022) [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kaneko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Shirakawa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Sorella, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yunoki, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 122, 077002 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Werner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Golez and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Eckstein, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 100, 155130 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Golez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Werner, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Eckstein, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 102, 165136 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nakagawa, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tsuji, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kawakami, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ueda, arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='13624 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [13] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yang and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Song, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 105, 195132 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Jiajun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' M¨uller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' L¨auchli, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Werner, arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='10176 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [15] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Motome, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nakamikawa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yamaji, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Uda- gawa, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 105, 036403 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' dos Santos Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 48, 3976 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [17] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Affleck and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Marston, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 37, 3774 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Chakravarty, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Laughlin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Morr, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nayak, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 63, 094503 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [19] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Morr, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 89, 106401 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Zhou and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Wang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 70, 020501(R) (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [21] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yokoyama, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tamura, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ogata, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 85, 124707 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kobayashi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yokoyama, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Toga, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' : Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 1054, 012016 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Fukuda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yamazaki, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tsuchiura, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ogata, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' : Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 1293, 012026 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hoshino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 90, 115154 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [25] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Berezinskii, ZhETF Pis Red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 20, 628 (1974), [JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 20, 287 (1974)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kirkpatrick and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Belitz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 66, 1533 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Balatsky and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Abrahams, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 45, 13125 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Sato, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nagaosa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 81, 011013 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Linder and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Balatsky, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 91, 045005 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Cayao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Triola and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Black-Schaffer, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=': Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 229, 545 (2020) [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Walter, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Prusseit, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Semerad, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kinder, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ass- mann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Huber, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Burkhardt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rainer, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Sauls, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 80, 3598 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [32] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Asano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Golubov, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kashiwaya, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 72, 140503 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [33] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Bergeret, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Volkov, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Efetov, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 77, 1321 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [34] Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Fominov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Asano, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Eschrig, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 91, 144514 (2015) [35] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Golubov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 98, 037003 (2007) [36] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanuma, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Golubov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 76, 054522 (2007) [37] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Higashitani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 66, 2556 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [38] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yokoyama, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Nagaosa, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 106, 246601 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Suzuki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Asano, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 91, 214510 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Di Bernardo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Salman, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Amado, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Egilmez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Flokstra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Suter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Zhao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Prokscha, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Morenzoni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Blamire, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Linder, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Robinson, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' X 5, 041021 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [41] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Krieger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Pertsova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Giblin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Dbeli, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Prokscha, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Schneider, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Suter, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hesjedal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Balatsky, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Salman, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 125, 026802 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [42] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Micnas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Ranninger, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Robaszkiewicz, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 62, 113 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [43] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Shiba, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 48, 2171 (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 12 [44] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Claveau, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Arnaud, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Matteo, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 35, 035023 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [45] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Bloch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Dalibard, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Zwerger, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 80, 885 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [46] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Scalapino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' White, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Zhang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 68, 2830 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [47] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Scalapino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' White, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Zhang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 47, 7995 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [48] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Kostyrko, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Micnas, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Chao, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 49, 6158 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [49] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hoshino, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Yada, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tanaka, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 93, 224511 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [50] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Tsuruta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Hyodo, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Miyake, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 83, 063706 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [51] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Chakraborty and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Black-Schaffer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' B 106, 024511 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Pearl, App.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} +page_content=' 5, 65 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49FAT4oBgHgl3EQfFRw-/content/2301.08426v1.pdf'} diff --git a/4dFAT4oBgHgl3EQflx3j/content/tmp_files/2301.08620v1.pdf.txt b/4dFAT4oBgHgl3EQflx3j/content/tmp_files/2301.08620v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..cfb8514ab9166e0452fb268c0d5093c7d7654bc0 --- /dev/null +++ b/4dFAT4oBgHgl3EQflx3j/content/tmp_files/2301.08620v1.pdf.txt @@ -0,0 +1,1060 @@ +Adjoint-based Identification of Sound Sources for +Sound Reinforcement and Source Localization +Mathias Lemke and Lewin Stein +Institut f¨ur Str¨omungsmechanik und Technische Akustik, +Technische Universit¨at Berlin, Germany +mathias.lemke@tnt.tu-berlin.de +Abstract. The identification of sound sources is a common problem in +acoustics. Different parameters are sought, among these are signal and +position of the sources. We present an adjoint-based approach for sound +source identification, which employs computational aeroacoustic tech- +niques. Two different applications are presented as a proof-of-concept: +optimization of a sound reinforcement setup and the localization of (mov- +ing) sound sources. +Keywords: Computational Aeroacoustics, Adjoint Equations, Source +Identification, Sound Reinforcement, Source Localization +1 +Introduction +A common issue in acoustics is the identification of fixed or moving sound +sources. In general, several parameters have to be determined; among these are +the source signal and the position of the sources. This general problem occurs +in many applications, from environmental to industrial acoustics. +In this contribution, we discuss an adjoint-based approach for sound source +identification. The time-domain method is based on the (adjoint) Euler equa- +tions, which are solved by means of computational aeroacoustic techniques (CAA). +The approach allows considering complex base flows, such as non-homogeneous +base flow, thermal stratification as well as complex geometries. +Adjoint-based methods have been used in the field of fluid mechanics for +decades. They have proven to be an effective approach for the analysis of flow +configurations and determining optimal model parameters in various applications +[7]. Adjoint-based techniques are used to optimize flow configurations by means +of geometry modifications [9] or for active flow control applications [1]. They are +applied for the analysis and optimization of reactive flow configurations [13,12] +and data assimilation applications [23,14,8]. Furthermore, they are employed in +the field of aeroacoustics [4,20] and sound reinforcement applications [15,21]. +Here, we restrict ourselves to two applications from the areas of sound re- +inforcement and sound source localization with generic setups as a proof-of- +concept. +In the context of sound reinforcement, line arrays are used for the synthesis of +sound fields. The identification of the geometric arrangement and the electronic +arXiv:2301.08620v1 [cs.SD] 20 Jan 2023 + +2 +Mathias Lemke et al. +drive of the loudspeaker cabinets to optimally (re-)produce a sound field is an +ill-posed, inverse problem. Typically frequency domain approaches are employed +[3,22]. +For the localization of moving and non-moving sound sources, usually, micro- +phone array methods like beam-forming are used. Depending on the specific task, +different algorithms, working in the time domain or in the frequency domain, +are applied. See [16] for a recent overview. +The manuscript is organized as follows: In Sec. 2, the adjoint approach is in- +troduced, and the adjoint Euler equations are derived. After a short description +of the numerical implementation in Sec. 3, the derived framework is employed for +an application in the context of sound reinforcement in Sec. 4. The applicability +of the approach for localization of sound sources is discussed in Sec. 5. +2 +Adjoint Approach +2.1 +General Adjoint Equations +Adjoint equations can be derived in different ways, e.g., the continuous or the +discrete approach. Despite different discretizations, the approaches are consistent +and applicable, see [7] for a discussion. In addition, automatic differentiation +techniques are used to create adjoint codes from existing simulation programs. +Recently, a mode-based approach to derive adjoint operators was presented [19] +as an enhancement of a direct operator construction method [12]. +Here, the adjoint equations are introduced in a discrete manner. A matrix- +vector notation is used, in which the vector space is the full solution in space +and time. The section is based on [7,11]. +In general, the adjoint equations arise by a scalar-valued objective function +J, which is defined by the user and encodes the target of the analysis, e.g., an +optimization. It is given by the scalar product between a weight vector g and a +system state vector q +J = gTq. +(1) +The system state q is the solution of the governing system +Aq = s +(2) +with A as governing operator and s as right-hand side forcing. In order to opti- +mize J by means of s in terms of a brute-force approach, the governing equation +has to be solved for all possible s. +Instead, to reduce the computational effort, the adjoint equation can be used +ATq∗ = g, +(3) +with the adjoint variable q∗. +With +J = gTq = +� +ATq∗�T q = q∗TAq = q∗Ts +(4) + +Adjoint Sound +3 +a formulation is found, which enables the computation of the objective J without +solving the governing system for every possible s. With the solution of the adjoint +equation, the objective can be calculated by a scalar product. Thus, the adjoint +approach enables efficient computation of gradients for J with respect to s. +2.2 +Adjoint Euler equations for Acoustic Applications +The section is based on [11,21]. The objective function J is defined in space and +time with dΩ = dxidt in the whole computational domain: +J = 1 +2 +�� � +q − qtarget�2 dΩ. +(5) +The variable q contains the full state q = [ϱ, uj, p] of the system governed by the +Euler equations. Therein, ϱ denotes the density, uj the velocity in the direction +xj, and p the pressure. +For the following aeroacoustic analyses the evaluation of the objective func- +tion is restricted to the pressure, resulting in +J = 1 +2 +�� � +p − ptarget�2 σ dΩ. +(6) +The additional weight σ(xi, t) defines where and when the objective is evalu- +ated. In general, the objective function has to be supplemented by a regular- +ization term, which is omitted here for the sake of clarity. The target ptarget is +application-specific. For optimization tasks, as presented in Sec. 4, it is defined +corresponding to a desired sound field, e.g., optimal listening experience for the +auditorium of an open-air concert. For the source localization application pre- +sented in Sec. 5, the target pressure is defined by microphone measurements. +The microphone positions are included by means of the weight function σ. In +both cases, a minimum of J is desired. +This minimum is to be achieved under the constraint that the Euler equa- +tions +∂t +� +� +ϱ +ϱuj +p +γ−1 +� +� + ∂xi +� +� +ϱui +ϱuiuj + pδij +uipγ +γ−1 +� +� − ui∂xi +� +� +0 +0 +p +� +� = +� +� +0 +0 +sp +� +� , +with γ as heat capacity ratio, are fulfilled. The summation convention applies. +For details on the formulation, in particular, the reformulation of the energy +equation in terms of pressure, see [13]. +To ease the derivation, the above system of partial differential equations is +abbreviated by +E(q) = s. +(7) +The terms s = [0, 0, sp] on the right side of the Euler equations character- +ize monopole sound sources, which allow controlling the system state, respec- +tively, the solution of the equations. In general, also mass and momentum source + +4 +Mathias Lemke et al. +terms could be considered. The overall goal is to obtain a solution of the Euler +equations, which reduces the objective (6) by adapting s. An optimization of s +corresponds to an optimization of the loudspeakers’ output signals. +To use the adjoint approach for optimizing s, the objective function (6) and +the governing system (7) have to be linearized. This results in +δJ = +�� � +q − qtarget� +σ +� +�� +� +=g +δpdΩ, +(8) +and +Elinδq = δs. +(9) +The weight g = (q − qtarget)σ encodes the difference between the current numer- +ical solution and the target field. Here, it is evaluated only in terms of pressure, +as discussed above. Combining the linearized system and the objective in a La- +grangian manner leads to +δJ = gTδq − q∗T (Elinδq − δs) +� +�� +� +=0 +(10) += q∗Tδs + δqT � +g − ET +linq∗� +. +Please note, the spatial and temporal integrals are not shown for the sake of +simplicity. +The desired adjoint equation E∗ = ET +lin results from demanding +g − ET +linq∗ = 0, +(11) +with q∗ = [ϱ∗, u∗ +j, p∗] as adjoint state variable. +For a detailed derivation of the adjoint Euler equations see [11]. They are +given by +∂tq∗ = ˜A +� +−(Bi)T∂xiq∗ − ∂xi(Ci)Tq∗ + ˜Ci∂xic − g +� +(12) +with ˜A = +� +AT�−1 and ˜Ci as resorting +q∗ +αδCi +αβ∂xicβ = q∗ +αδqκ +∂Ci +αβ +∂qκ +∂xicβ +(13) +abbreviated as δqκ ˜Ci +κβ∂xicβ. The matrices A, Bi and Ci are given in the ap- +pendix. +Finally, the change of the objective function is given by +δJ = q∗Tδs. +(14) +Thus, the solution of the adjoint equation can be interpreted as gradient of J +with respect to the source terms s +∇sJ = q∗. +(15) +Initial and boundary conditions of the adjoint Euler equations as well as the +derivation of the adjoint compressible Navier-Stokes equations are discussed in +[11]. + +Adjoint Sound +5 +sources +initial guess +s0=0 +solution +Euler equations +N(q, sn)  +target +qtarget +solution adjoint +Euler equations +N*(q,q*,Δ q) +gradient +q* +sources +update sn+1 +Δ q = q ­ qtarget +optimal +s +source +positions +p +convergence +loop 1 +Fig. 1. Iterative procedure for the determination of an optimal s. Computationally +intensive steps are marked in gray. The first gradient provides information on (optimal) +source positions, see Sec. 5 for a detailed discussion. +2.3 +Iterative Process +The adjoint-based gradient is employed in an iterative manner. First, the Euler +equations (7) are solved forward in time, usually with s0 = 0. Subsequently, +the adjoint equations (12) are calculated backward in time, deploying the direct +solution and g. Based on the adjoint solution, the gradient ∇sJ is determined +and used to update the source distribution sn by means of a steepest gradient +approach: +sn+1 = sn + α∇sJ, +(16) +with α denoting an appropriate step size and n the iteration number. The gradi- +ent is calculated for the whole computing region and the entire simulation time. +For the determination of sound sources with a known position, the gradient is +evaluated only there. The procedure is repeated, using the current sn, until a +suitable convergence criterion is reached. Typically, for acoustic problems, con- +vergence is reached within or less 20 loops. +The identification of global optima is not ensured as the proposed technique +optimizes to local extrema only. The computational costs of the approach are +independent of the number of sources and their arrangement. However, they +depend on the size and resolution of the computational domain in space and +time, defined by the considered frequency range. The computational problem is +fully parallelizable. +2.4 +Source Localization +In particular, when s0 = 0 holds, the first adjoint solution contains information +on the position of the sources. By the pointwise summation of the absolute +adjoint sensitivities p∗ in the spatial domain over all computed time steps +¯p = +tn=end +� +tn=0 +|p∗|, +(17) + +6 +Mathias Lemke et al. +the positions featuring maximum impact on the objective function can be iden- +tified by means of maxima of ¯p. These correspond to the most likely (monopole) +source locations. Thus, the adjoint solution allows the localization of sound +sources, see Sec. 5. A subsequent iterative adaptation of the sources can be +interpreted as adjoint-based monopole synthesis. +3 +Adjoint CAA framework +The set of governing equations (7) is implemented by means of a new MPI- +parallelized Fortran program. The discretization is realized by a finite difference +time domain approach (FDTD). For the spatial derivatives, a compact scheme +of 6th order is employed [10]. The corresponding linear system of equations is +solved by BLAS routines using an LU-decomposition. For the time-wise inte- +gration, the standard explicit Runge-Kutta-scheme of fourth-order is used. +To ensure stability, a compact filter is employed [5]. Boundaries are treated by +characteristic boundary conditions [18]. The MPI implementation is realized by +collective communication via all2all v. The parallelization strategy is found to +be efficient for the governing equations (7), see Fig. 2, and comparable to other +implementations using collective communication, e.g. [17]. +Thus, the code is prepared to handle large scale problems, e.g., open-air festi- +val sites in the context of sound reinforcement applications or source localization +for vehicle aeroacoustics in wind tunnels. However, the examples presented in +the following are computed using a single workstation or a few cluster nodes. +Fig. 2. (Left) Strong scaling behaviour. The overall number of grid points is kept +constant while increasing the number of MPI processes. Nearly linear scaling is found. +(Right) Weak scaling behaviour. The number of grid points on each process is kept +constant while increasing the number of MPI processes. An admissible reduction of the +parallelization efficiency is found. +The adjoint equations are solved using the same discretization. A detailed +discussion on the adjoint initial- and characteristic boundary conditions can be +found in [11]. + +8 +speedup +6 +4 +caa +2 +--ideal +400 +1200 +2000 +2800 +3600 +MPl processesefficiency +0.9 +0.8 +caa +.--ideal +0.7 +40 +80 +160 +320 +640 +1280 2560 +MPl processesAdjoint Sound +7 +4 +Application I: Sound Reinforcement +This section presents a test case regarding the optimization of sound reinforce- +ment setups. The overall goal is to identify optimal drives (amplitude and phase) +for given loudspeakers in order to synthesise a desired sound field. The loudspeak- +ers are approximated by means of monopole sources, which is feasible for low +frequencies. +The spatial domain under consideration is 1.6 × 1.6 × 1.6 m3. The domain +is resolved by 197 × 197 × 99 equidistantly distributed points. The time step, +and by this, the sampling rate, is given by 48 kHz, corresponding to a CFL- +condition smaller than 1. The computational time span considered is 31.25 ms. +The reference values for density and pressure correspond to a speed of sound +of 343 m/s. All boundaries are treated as non-reflecting. In addition, a sponge +layer is applied at all boundaries. +For the test case reference signals for five sources, located in a curved ar- +rangement in the center x1-x2 plane, are predefined. The signals are charac- +terised by different amplitudes and phase delays resulting in a steered sound +field, see Fig. 3 (left). In order to investigate the frequency band 1-3 kHz, a +corresponding logarithmic sine-sweep is specified as the reference signal. Using +this setup, a reference sound field is computed by a Complex Directivity Point +Source (CDPS) algorithm [2]. The resulting reference sound field serves as the +target for the adjoint-based framework, with the aim to identify the reference +signals (amplitudes and phases) based on the reference target sound field only. +After 15 iterative loops of the adjoint framework, the objective function is +reduced to nearly 3% with respect to the initial solution with s = 0, see Fig. 3 +(right). The general features of the target reference sound field are captured, see +Fig. 4. A detailed spectral analysis of the occurring deviations at two selected +microphone positions, presented in Fig. 4, show amplitude deviations less than +1 dB within the confidence interval from 1.3 to 2.7 kHz. The normalized phase +derivations, with respect to 2π, are in the limits of -0.07 to 0.07. +A discussion on how to derive optimal electronic drives from the adjoint- +based signals s is given in [21]. Therein, the capability of the approach to consider +complex base flows by means of wind and temperature stratification is shown. +5 +Application II: Source Localization +In this section, the localization of fixed and moving sound sources is shown. Two +generic setups serve as a proof of concept. For the first setup with four stationary +sound sources and the second setup with a moving source, it is shown that the +adjoint-based approach is able to identify the sources and track their path in +case of moving. +In both cases, the measurements are provided by a reference computation +with predefined sound sources. Synthetic microphone signals are extracted from +this reference solution. A spatially discrete planar array with 64 microphones is +used. The general setup is based on the array benchmark test case B7 provided + +8 +Mathias Lemke et al. +Fig. 3. (Left) Sound reinforcement setup including a selected time step of the CDPS- +based reference sound field shown at the center x1-x2 plane of the computational do- +main. The five monopole speakers in a curved arrangement are denoted by (*). Different +driving functions (in amplitude and phase) for the speaker result in a steered sound +field. The area/volume marked by the dashed line corresponds to the spatial weight σ +in the objective function. Please note, the employed CDPS technique for computing +the reference sound field does not provide reliable solutions near the source positions; +therefore, p′ +ref is discontinuous for x1 = [0.32, 0.62] m. (Right) Progress of the objective +function with a logarithmic y-axis. Convergence is reached. The objective is reduced +by nearly two orders of magnitude with respect to the initial guess s = 0. +Fig. 4. Reference target (left) and resulting optimized (right) sound field at t = 15.63 +ms for the center x1-x2 plane. The general features of the reference field are (re-) +captured. The influence of the employed sponge layer in the adjoint-based sound field +is visible. The dashed line encodes the spatial weight σ within the objective function. +The marked positions correspond to synthetic microphone positions x1,2 = [1.1, 1.1] +and x1,2 = [0.8, 0.8] which are used for spectral analysis, see text for details. + +1.5 +0.8 +米‘ +speaker +0.6 +0.4 +a +m +0. +8 +0 +d- +0.5 +0.P +-0.4 +0.5 +1 +1.5 +X, /m1 +0.5 +0.25 +r/ +0.1 +0.05 +0.02 +5 +10 +15 +iteration1.5 +0.5 +1 +a +P +0 ++ +ref +p +0.5 +-0.5 +0.5 +1 +1.5 +X, / m1.5 +0.5 +1 +a +P +0 ++ +opt +2 +p +0.5 +-0.5 +0.5 +1 +1.5Adjoint Sound +9 +Fig. 5. (Left) Normalized amplitude difference between resulting optimized and refer- +ence target sound field at selected microphone positions, see Fig. 4. (Right) Normalized +phase difference between resulting optimized and reference target sound field at the +selected microphone positions. +by the Brandenburg university of technology, see [6]. Modifications are discussed +below. An example in which experimental data are used is shown in [11]. +The spatial domain under consideration is 1.7 × 1.7 × 1.25 m3. The domain +is resolved by 240 × 240 × 176 equidistantly distributed points. The time step, +and by this, the sampling rate of the microphone measurements, is given by +53.33 kHz, corresponding to a CFL-condition smaller than 1. In both cases, no +base flow is considered. The reference values for density and pressure correspond +to a speed of sound of 343 m/s. The spiral-like microphone array is located at +x3 = 0 m and centered in the corresponding plane. The spatial distribution of +the microphones is described in more detail in [6]. All boundaries are treated as +non-reflecting. In addition, a sponge layer is applied at all boundaries. +5.1 +Four sources +As in the array benchmark test case B7 four monopole sources are located in +the x1-x2-plane at x3 = 0.75 m, see Fig. 6 (left). For the reference computation, +the original benchmark source signals are replaced by incoherent random sig- +nals, frequency-band limited between 750 and 2500 Hz, see Fig. 6 (right). The +computational time span is 14.06 ms. +Using a corresponding reference forcing s = � +i si a simulation of the Euler +equations (7) is carried out. From the results, discrete microphone signals are +extracted, see Fig. 7 (left), which are the result of the superposition of all sources +and the associated signals. +The 64 signals are encoded in the objective function J (6) using the spatial +weight σ. To avoid an unstable discrete forcing of the adjoint equations, σ is +chosen as Gauss-distribution with a half-width of 2∆x for each microphone +position. After determining the solution of the direct equations with an initial +guess for s = 0, here, constant environmental conditions for all time steps, the + +mic 1 +B +0.4 +mic 2 +ta +0.2 +p +opt +0 +-0.2 +-0.4 +-0.6 +1500 +2000 +2500 +f /Hz0.1 +mic 1 +mic 2 +2π +0.05 +tar +0 +opt +-0.05 +-0.1 +1500 +2000 +2500 +f / Hz10 +Mathias Lemke et al. +Fig. 6. (Left) Acoustic setup for source localization of four sources (*) by 64 micro- +phones (o) located in the planes x3 = 0.75 m respectively x3 = 0 m. (Right) Normalized +signals si of the four reference sources, shown for the whole computational time. +adjoint equations are solved backwards in time. From the resulting gradient, the +source positions can be derived, as discussed before. That way, the reference +source positions are identified, see Fig. 7 (right). +Fig. 7. (Left) Captured pressure signal at the center microphone in the array. The +initial silence results from the distance between the sources and the array. (Right) Re- +sulting pointwise summation of the absolute adjoint sensitivities p∗ (17). The reference +source positions (∗) are recovered. +Please note, the analysis is based on the first adjoint-based gradient only. +The required computational time for the analysis is less than 15 min on a 16 +core workstation. Iterative optimization of s might improve the results. +5.2 +Single moving source +Again, the aforementioned test case B7 from [6] serves as a base for the following +test setup. The planar microphone array is located in the same plane (x3 = 0) but + +米 +米 +0.5 +米 +米 +8 +00 +0 +8 +0 +0 +0 +0 +00 +00 +00 +00 +0 +0 +0 +0 +0 +00 +0 +0. +00 +00 +0 +0 +0 +00 +8 +0.5 +0.5 +0 +0 +-0.5 +-0.5 +×2 /m +X, / mS +(normalized) +0.5 +S +2 +S +1 +3 +. +S +0 +4 +.. +: i +11 +-0.5 +11 +S +II +..... +11 +二 +-1 +2 +6 +10 +14 +t/ mscenter mic +0.1 +a +P +8 +d-( +p +-0.1 +2 +6 +10 +14 +t/msref. sources +0.5 +0.8 +(normalized) +0.6 +米 +米 +0 +* +米 +0.4 +p +-0.5 +0.2 +-0.5 +0 +0.5 +/ mAdjoint Sound +11 +scaled by a factor of 0.8, resulting in smaller distances between the microphones. +The incoherent sources are replaced by a single source with a harmonic 2 kHz +reference signal. The source is moving in the x1-x2-plane, see Fig. 8 (left). The +movement is described by an acceleration and deceleration, taking place along +the x1 axis. It starts at the beginning of the computational time and ends with +the simulation after 8.44 ms. The highest speed of the movement is reached +midway. +Again a reference solution provides synthetic microphone signals, which are +encoded in the objective function. Using constant environmental conditions as +solution of the direct equations (s0 = 0), the adjoint equations are solved. Eval- +uation of the adjoint sensitivity p∗ over time at the reference source position +provides information of the reference signal, see Fig. 8 (right). The phase of +the reference signal is determined with very good agreement. The amplitude +shows deviations at the beginning and end of the simulation. The influence of +the directional characteristic of the used microphone array is presumed. +Fig. 8. (Left) Acoustic setup for source localization of a single moving source (*) by +means of 64 microphones (o) located in the planes x3 = 0.75 m, respectively x3 = 0 +m. The movement of the source is visualized by it waypoints, chosen with a constant +time interval. (Right) Normalized adjoint-based sensitivity p∗ at the reference source +positions over time in comparison to the reference forcing. See text for a detailed +discussion. +Besides, the identification of the source signal also its position might be +tracked. In Fig. 9 the adjoint-based sensitivity p∗ is shown for the plane x3 = 0.75 +m for different time steps. Occurring maxima give rise to the actual sound source +position, besides its signal. +Again, the analysis is based on the first adjoint-based gradient only. The +required computational time for the analysis is less than 10 min on 8 cluster +nodes with 8 cores each. + +m +0.5 +0 +0 +CD +0 +000 +00 +0 +00 +0 +8 +0 +00 +0.5 +0.5 +0 +0 +-0.5 +-0.5 +m +m +25 二 1 +I +0.5 +(normalized) +? +P-0.5 +adjoint-based +4 +--- reference +- +1! +2 +4 +6 +8 +t/ms12 +Mathias Lemke et al. +Fig. 9. Normalized adjoint-based sensitivity p∗ at the plane x3 = 0.75 for different +time steps. The reference source location is marked by (*) in a white circle. In the +inset, the normalized reference signal is shown. + +t= 3.88125 / ms +0.5 +0.5 +(normalized) +m +0 +0 ++ +p +-0.5 +-0.5 +/ +米 +3.5 +4 +4.5 +t / ms +-0.5 +0 +0.5 +, / mt= 3.99375/ ms +0.5 +0.5 +(normalized) +m +0 +0 +/ ++ +米 +p +-0.5 +-0.5 +3.5 +4 +4.5 +t / ms +-0.5 +0 +0.5 +X, / mt= 4.12500 / ms +0.5 +0.5 +(normalized) +m +0 +0 +/ +* +米 +p +-0.5 +-0.5 +3.5 +4 +4.5 +t / ms +-0.5 +0 +0.5 +_ / mt= 4.25625 / ms +0.5 +0.5 +(normalized) +m +0 +0 +/ +p +-0.5 +-0.5 +3.6 +44.4 +4.8 +t / ms +-0.5 +0 +0.5 +_ /mAdjoint Sound +13 +6 +Summary +An adjoint-based framework for the identification of sound sources is presented. +It is shown that the approach is able to determine (optimal) source signals and +to track moving sources. +By design, the time-domain approach allows the consideration of base flows, +such as velocity profiles and temperature stratification, and complex geometries, +which will be the focus of the upcoming work. The first results that take into +account a complex base flow in the context of sound reinforcement are shown in +[21]. +Acknowledgments +The authors gratefully acknowledge financial support by the Deutsche Forschungs- +gemeinschaft (DFG) within the project LE 3888/2-1. +We thank Florian Straube (Audio Communication Group, TU Berlin) for +defining the target sound field for the sound reinforcement test case. +References +1. A. Carnarius, F. Thiele, E. ¨Ozkaya, A. Nemili, and N. Gauger. Optimal control of +unsteady flows using a discrete and a continuous adjoint approach. In D. H¨omberg +and F. Tr¨oltzsch, editors, System Modeling and Optimization, volume 391 of IFIP +Advances in Information and Communication Technology, pages 318–327. Springer +Berlin Heidelberg, 2013. +2. S. Feistel. Modeling the radiation of modern sound reinforcement systems in high +resolution, volume 19. Logos Verlag Berlin GmbH, 2014. +3. S. Feistel, M. Sempf, K. K¨ohler, and H. Schmalle. Adapting loudspeaker array +radiation to the venue using numerical optimization of FIR filters. In Proc. of the +135th Audio Eng. Soc. Conv., New York, number #8937, 2013. +4. J. B. Freund. Adjoint-based optimization for understanding and suppressing jet +noise. Journal of Sound and Vibration, 330(17):4114 – 4122, 2011. +5. D. V. Gaitonde and M. R. Visbal. Pade-type higher-order boundary filters for the +navier-stokes equations. AIAA Journal, 38:2103–2112, Nov. 2000. +6. T. Geyer. https://www.b-tu.de/fg-akustik/lehre/aktuelles/arraybenchmark. last +seen 12. Dec. 2019. +7. M. Giles and N. Pierce. An introduction to the adjoint approach to design. Flow, +Turbulence and Combustion, 65:393–415, 2000. +8. J. Gray, M. Lemke, J. Reiss, C. Paschereit, J. Sesterhenn, and J. Moeck. A compact +shock-focusing geometry for detonation initiation: Experiments and adjoint-based +variational data assimilation. Combustion and Flame, 183:144 – 156, 2017. +9. A. Jameson. Optimum aerodynamic design using cfd and control theory. AIAA +paper, 1729:124–131, 1995. +10. S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal +of Computational Physics, 103(1):16 – 42, 1992. +11. M. Lemke. Adjoint based data assimilation in compressible flows with application to +pressure determination from PIV data. PhD thesis, Technische Universit¨at Berlin, +2015. + +14 +Mathias Lemke et al. +12. M. Lemke, L. Cai, J. Reiss, H. Pitsch, and J. Sesterhenn. Adjoint-based sensitiv- +ity analysis of quantities of interest of complex combustion models. Combustion +Theory and Modelling, 23(1):180–196, 2019. +13. M. Lemke, J. Reiss, and J. Sesterhenn. +Adjoint based optimisation of reactive +compressible flows. Combustion and Flame, 161(10):2552 – 2564, 2014. +14. M. Lemke and J. Sesterhenn. +Adjoint-based pressure determination from PIV +data in compressible flows — validation and assessment based on synthetic data. +European Journal of Mechanics - B/Fluids, 58:29 – 38, 2016. +15. M. Lemke, F. Straube, F. Schultz, J. Sesterhenn, and S. Weinzierl. Adjoint-based +time domain sound reinforcement. In Audio Engineering Society Conference: 2017 +AES International Conference on Sound Reinforcement – Open Air Venues, Aug +2017. featured in Ramsey, F. (2017): ’Sound Reinforcement in the Open Air.’ In: +J. Audio Eng. Soc., vol. 65, no. 12, pp. 1051 - 1055 (December). +16. R. Merino-Mart´ınez, P. Sijtsma, M. Snellen, T. Ahlefeldt, J. Antoni, C. J. Bahr, +D. Blacodon, D. Ernst, A. Finez, S. Funke, T. F. Geyer, S. Haxter, G. Herold, +X. Huang, W. M. Humphreys, Q. Lecl`ere, A. Malgoezar, U. Michel, T. Padois, +A. Pereira, C. Picard, E. Sarradj, H. Siller, D. G. Simons, and C. Spehr. A review +of acoustic imaging methods using phased microphone arrays. CEAS Aeronautical +Journal, 10(1):197–230, Mar 2019. +17. D. Pekurovsky. P3dfft: A framework for parallel computations of fourier transforms +in three dimensions. SIAM Journal on Scientific Computing, 34(4):C192–C209, +2012. +18. T. Poinsot and S. Lele. Boundary conditions for direct simulations of compressible +viscous flows. Journal Computational Physics, 101:104–129, 1992. +19. J. Reiss, M. Lemke, and J. Sesterhenn. Mode-based derivation of adjoint equations +- a lazy man’s approach. on ArXiv, 2018. +20. J. Schulze, P. Schmid, and J. Sesterhenn. +Iterative optimization based on an +objective functional in frequency-space with application to jet-noise cancellation. +Journal of Computational Physics, 230(15):6075 – 6098, 2011. +21. L. Stein, F. Straube, J. Sesterhenn, S. Weinzierl, and M. Lemke. Adjoint-based +optimization of sound reinforcement including non-uniform flow. The Journal of +the Acoustical Society of America, 146(3):1774–1785, 2019. +22. A. Thompson and J. Luzarraga. Drive granularity for straight and curved loud- +speaker arrays. Proc. of the Inst. of Acoustics, 35(2):210–218, 2013. +23. Y. Yang, C. Robinson, D. Heitz, and E. M´emin. Enhanced ensemble-based 4dvar +scheme for data assimilation. Computers & Fluids, 115:201 – 210, 2015. +A +Appendix +A.1 +Adjoint equations +As stated above, linearization of the governing Euler equations with respect to +all state variables by q = q0 + δq results in +∂tAδq + ∂xiBiδq + Ci∂xiδq + δCi∂xic = δs. +(18) +Again, the summation convention applies. The corresponding linearization ma- +trices are + +Adjoint Sound +15 +A = +� +����� +1 0 0 0 +0 +u1 ρ 0 0 +0 +u2 0 ρ 0 +0 +u3 0 0 ρ +0 +0 0 0 0 +1 +γ−1 +� +����� +, +B1 = +� +����� +u1 +ρ +0 +0 +0 +u2 +1 +2ρu1 +0 +0 +1 +u1u2 ρu2 ρu1 +0 +0 +u1u3 ρu3 +0 ρu1 +0 +0 +γp +γ−1 +0 +0 +γu1 +γ−1 +� +����� +, +B2 = +� +����� +u2 +0 +ρ +0 +0 +u1u2 ρu2 ρu1 +0 +0 +u2 +2 +0 2ρu2 +0 +1 +u2u3 +0 +ρu3 ρu2 +0 +0 +0 +γp +γ−1 +0 +γu2 +γ−1 +� +����� +, +B3 = +� +����� +u3 +0 +0 +ρ +0 +u1u3 ρu3 +0 +ρu1 +0 +u2u3 +0 ρu3 ρu2 +0 +u2 +3 +0 +0 2ρu3 +1 +0 +0 +0 +γp +γ−1 +γu3 +γ−1 +� +����� +, +Ci = +� +����� +0 0 0 0 +0 +0 0 0 0 +0 +0 0 0 0 +0 +0 0 0 0 +0 +0 0 0 0 −ui +� +����� +, +δCi = +� +����� +0 0 0 0 +0 +0 0 0 0 +0 +0 0 0 0 +0 +0 0 0 0 +0 +0 0 0 0 −δui +� +����� +. +The full adjoint Navier-Stokes equations, in particular, the friction terms, +are derived and discussed in [11]. The two-dimensional adjoint Euler equations +can be found in [15]. +status: draft for review +last modified: January 23, 2023 by (ML) + diff --git a/4dFAT4oBgHgl3EQflx3j/content/tmp_files/load_file.txt b/4dFAT4oBgHgl3EQflx3j/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c664231167bd13df68ad5656a172a2678143810b --- /dev/null +++ b/4dFAT4oBgHgl3EQflx3j/content/tmp_files/load_file.txt @@ -0,0 +1,643 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf,len=642 +page_content='Adjoint-based Identification of Sound Sources for Sound Reinforcement and Source Localization Mathias Lemke and Lewin Stein Institut f¨ur Str¨omungsmechanik und Technische Akustik, Technische Universit¨at Berlin, Germany mathias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='lemke@tnt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='tu-berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='de Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The identification of sound sources is a common problem in acoustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Different parameters are sought, among these are signal and position of the sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' We present an adjoint-based approach for sound source identification, which employs computational aeroacoustic tech- niques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Two different applications are presented as a proof-of-concept: optimization of a sound reinforcement setup and the localization of (mov- ing) sound sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Keywords: Computational Aeroacoustics, Adjoint Equations, Source Identification, Sound Reinforcement, Source Localization 1 Introduction A common issue in acoustics is the identification of fixed or moving sound sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In general, several parameters have to be determined;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' among these are the source signal and the position of the sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' This general problem occurs in many applications, from environmental to industrial acoustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In this contribution, we discuss an adjoint-based approach for sound source identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The time-domain method is based on the (adjoint) Euler equa- tions, which are solved by means of computational aeroacoustic techniques (CAA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The approach allows considering complex base flows, such as non-homogeneous base flow, thermal stratification as well as complex geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based methods have been used in the field of fluid mechanics for decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' They have proven to be an effective approach for the analysis of flow configurations and determining optimal model parameters in various applications [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based techniques are used to optimize flow configurations by means of geometry modifications [9] or for active flow control applications [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' They are applied for the analysis and optimization of reactive flow configurations [13,12] and data assimilation applications [23,14,8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Furthermore, they are employed in the field of aeroacoustics [4,20] and sound reinforcement applications [15,21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Here, we restrict ourselves to two applications from the areas of sound re- inforcement and sound source localization with generic setups as a proof-of- concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In the context of sound reinforcement, line arrays are used for the synthesis of sound fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The identification of the geometric arrangement and the electronic arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='08620v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='SD] 20 Jan 2023 2 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' drive of the loudspeaker cabinets to optimally (re-)produce a sound field is an ill-posed, inverse problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Typically frequency domain approaches are employed [3,22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the localization of moving and non-moving sound sources, usually, micro- phone array methods like beam-forming are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Depending on the specific task, different algorithms, working in the time domain or in the frequency domain, are applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' See [16] for a recent overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The manuscript is organized as follows: In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2, the adjoint approach is in- troduced, and the adjoint Euler equations are derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' After a short description of the numerical implementation in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 3, the derived framework is employed for an application in the context of sound reinforcement in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The applicability of the approach for localization of sound sources is discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2 Adjoint Approach 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 General Adjoint Equations Adjoint equations can be derived in different ways, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=', the continuous or the discrete approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Despite different discretizations, the approaches are consistent and applicable, see [7] for a discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In addition, automatic differentiation techniques are used to create adjoint codes from existing simulation programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Recently, a mode-based approach to derive adjoint operators was presented [19] as an enhancement of a direct operator construction method [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Here, the adjoint equations are introduced in a discrete manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A matrix- vector notation is used, in which the vector space is the full solution in space and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The section is based on [7,11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In general, the adjoint equations arise by a scalar-valued objective function J, which is defined by the user and encodes the target of the analysis, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=', an optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' It is given by the scalar product between a weight vector g and a system state vector q J = gTq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (1) The system state q is the solution of the governing system Aq = s (2) with A as governing operator and s as right-hand side forcing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In order to opti- mize J by means of s in terms of a brute-force approach, the governing equation has to be solved for all possible s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Instead, to reduce the computational effort, the adjoint equation can be used ATq∗ = g, (3) with the adjoint variable q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' With J = gTq = � ATq∗�T q = q∗TAq = q∗Ts (4) Adjoint Sound 3 a formulation is found, which enables the computation of the objective J without solving the governing system for every possible s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' With the solution of the adjoint equation, the objective can be calculated by a scalar product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Thus, the adjoint approach enables efficient computation of gradients for J with respect to s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='2 Adjoint Euler equations for Acoustic Applications The section is based on [11,21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The objective function J is defined in space and time with dΩ = dxidt in the whole computational domain: J = 1 2 �� � q − qtarget�2 dΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (5) The variable q contains the full state q = [ϱ, uj, p] of the system governed by the Euler equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Therein, ϱ denotes the density, uj the velocity in the direction xj, and p the pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the following aeroacoustic analyses the evaluation of the objective func- tion is restricted to the pressure, resulting in J = 1 2 �� � p − ptarget�2 σ dΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (6) The additional weight σ(xi, t) defines where and when the objective is evalu- ated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In general, the objective function has to be supplemented by a regular- ization term, which is omitted here for the sake of clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The target ptarget is application-specific.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For optimization tasks, as presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4, it is defined corresponding to a desired sound field, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=', optimal listening experience for the auditorium of an open-air concert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the source localization application pre- sented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5, the target pressure is defined by microphone measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The microphone positions are included by means of the weight function σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In both cases, a minimum of J is desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' This minimum is to be achieved under the constraint that the Euler equa- tions ∂t � � ϱ ϱuj p γ−1 � � + ∂xi � � ϱui ϱuiuj + pδij uipγ γ−1 � � − ui∂xi � � 0 0 p � � = � � 0 0 sp � � , with γ as heat capacity ratio, are fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The summation convention applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For details on the formulation, in particular, the reformulation of the energy equation in terms of pressure, see [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' To ease the derivation, the above system of partial differential equations is abbreviated by E(q) = s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (7) The terms s = [0, 0, sp] on the right side of the Euler equations character- ize monopole sound sources, which allow controlling the system state, respec- tively, the solution of the equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In general, also mass and momentum source 4 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' terms could be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The overall goal is to obtain a solution of the Euler equations, which reduces the objective (6) by adapting s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' An optimization of s corresponds to an optimization of the loudspeakers’ output signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' To use the adjoint approach for optimizing s, the objective function (6) and the governing system (7) have to be linearized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' This results in δJ = �� � q − qtarget� σ � �� � =g δpdΩ, (8) and Elinδq = δs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (9) The weight g = (q − qtarget)σ encodes the difference between the current numer- ical solution and the target field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Here, it is evaluated only in terms of pressure, as discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Combining the linearized system and the objective in a La- grangian manner leads to δJ = gTδq − q∗T (Elinδq − δs) � �� � =0 (10) = q∗Tδs + δqT � g − ET linq∗� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Please note, the spatial and temporal integrals are not shown for the sake of simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The desired adjoint equation E∗ = ET lin results from demanding g − ET linq∗ = 0, (11) with q∗ = [ϱ∗, u∗ j, p∗] as adjoint state variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For a detailed derivation of the adjoint Euler equations see [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' They are given by ∂tq∗ = ˜A � −(Bi)T∂xiq∗ − ∂xi(Ci)Tq∗ + ˜Ci∂xic − g � (12) with ˜A = � AT�−1 and ˜Ci as resorting q∗ αδCi αβ∂xicβ = q∗ αδqκ ∂Ci αβ ∂qκ ∂xicβ (13) abbreviated as δqκ ˜Ci κβ∂xicβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The matrices A, Bi and Ci are given in the ap- pendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Finally, the change of the objective function is given by δJ = q∗Tδs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (14) Thus, the solution of the adjoint equation can be interpreted as gradient of J with respect to the source terms s ∇sJ = q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (15) Initial and boundary conditions of the adjoint Euler equations as well as the derivation of the adjoint compressible Navier-Stokes equations are discussed in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint Sound 5 sources initial guess s0=0 solution Euler equations N(q, sn) target qtarget solution adjoint Euler equations N*(q,q*,Δ q) gradient q* sources update sn+1 Δ q = q \xad qtarget optimal s source positions p convergence loop 1 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Iterative procedure for the determination of an optimal s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Computationally intensive steps are marked in gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The first gradient provides information on (optimal) source positions, see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5 for a detailed discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='3 Iterative Process The adjoint-based gradient is employed in an iterative manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' First, the Euler equations (7) are solved forward in time, usually with s0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Subsequently, the adjoint equations (12) are calculated backward in time, deploying the direct solution and g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Based on the adjoint solution, the gradient ∇sJ is determined and used to update the source distribution sn by means of a steepest gradient approach: sn+1 = sn + α∇sJ, (16) with α denoting an appropriate step size and n the iteration number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The gradi- ent is calculated for the whole computing region and the entire simulation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the determination of sound sources with a known position, the gradient is evaluated only there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The procedure is repeated, using the current sn, until a suitable convergence criterion is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Typically, for acoustic problems, con- vergence is reached within or less 20 loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The identification of global optima is not ensured as the proposed technique optimizes to local extrema only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The computational costs of the approach are independent of the number of sources and their arrangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' However, they depend on the size and resolution of the computational domain in space and time, defined by the considered frequency range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The computational problem is fully parallelizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 Source Localization In particular, when s0 = 0 holds, the first adjoint solution contains information on the position of the sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' By the pointwise summation of the absolute adjoint sensitivities p∗ in the spatial domain over all computed time steps ¯p = tn=end � tn=0 |p∗|, (17) 6 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' the positions featuring maximum impact on the objective function can be iden- tified by means of maxima of ¯p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' These correspond to the most likely (monopole) source locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Thus, the adjoint solution allows the localization of sound sources, see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A subsequent iterative adaptation of the sources can be interpreted as adjoint-based monopole synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 3 Adjoint CAA framework The set of governing equations (7) is implemented by means of a new MPI- parallelized Fortran program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The discretization is realized by a finite difference time domain approach (FDTD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the spatial derivatives, a compact scheme of 6th order is employed [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The corresponding linear system of equations is solved by BLAS routines using an LU-decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the time-wise inte- gration, the standard explicit Runge-Kutta-scheme of fourth-order is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' To ensure stability, a compact filter is employed [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Boundaries are treated by characteristic boundary conditions [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The MPI implementation is realized by collective communication via all2all v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The parallelization strategy is found to be efficient for the governing equations (7), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2, and comparable to other implementations using collective communication, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Thus, the code is prepared to handle large scale problems, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=', open-air festi- val sites in the context of sound reinforcement applications or source localization for vehicle aeroacoustics in wind tunnels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' However, the examples presented in the following are computed using a single workstation or a few cluster nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Left) Strong scaling behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The overall number of grid points is kept constant while increasing the number of MPI processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Nearly linear scaling is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Right) Weak scaling behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The number of grid points on each process is kept constant while increasing the number of MPI processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' An admissible reduction of the parallelization efficiency is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The adjoint equations are solved using the same discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A detailed discussion on the adjoint initial- and characteristic boundary conditions can be found in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 8 speedup 6 4 caa 2 --ideal 400 1200 2000 2800 3600 MPl processesefficiency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8 caa .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='--ideal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='7 40 80 160 320 640 1280 2560 MPl processesAdjoint Sound 7 4 Application I: Sound Reinforcement This section presents a test case regarding the optimization of sound reinforce- ment setups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The overall goal is to identify optimal drives (amplitude and phase) for given loudspeakers in order to synthesise a desired sound field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The loudspeak- ers are approximated by means of monopole sources, which is feasible for low frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The spatial domain under consideration is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 × 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 × 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The domain is resolved by 197 × 197 × 99 equidistantly distributed points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The time step, and by this, the sampling rate, is given by 48 kHz, corresponding to a CFL- condition smaller than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The computational time span considered is 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='25 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The reference values for density and pressure correspond to a speed of sound of 343 m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' All boundaries are treated as non-reflecting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In addition, a sponge layer is applied at all boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the test case reference signals for five sources, located in a curved ar- rangement in the center x1-x2 plane, are predefined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The signals are charac- terised by different amplitudes and phase delays resulting in a steered sound field, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 3 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In order to investigate the frequency band 1-3 kHz, a corresponding logarithmic sine-sweep is specified as the reference signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Using this setup, a reference sound field is computed by a Complex Directivity Point Source (CDPS) algorithm [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The resulting reference sound field serves as the target for the adjoint-based framework, with the aim to identify the reference signals (amplitudes and phases) based on the reference target sound field only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' After 15 iterative loops of the adjoint framework, the objective function is reduced to nearly 3% with respect to the initial solution with s = 0, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 3 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The general features of the target reference sound field are captured, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A detailed spectral analysis of the occurring deviations at two selected microphone positions, presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4, show amplitude deviations less than 1 dB within the confidence interval from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='3 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='7 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The normalized phase derivations, with respect to 2π, are in the limits of -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='07 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A discussion on how to derive optimal electronic drives from the adjoint- based signals s is given in [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Therein, the capability of the approach to consider complex base flows by means of wind and temperature stratification is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5 Application II: Source Localization In this section, the localization of fixed and moving sound sources is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Two generic setups serve as a proof of concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the first setup with four stationary sound sources and the second setup with a moving source, it is shown that the adjoint-based approach is able to identify the sources and track their path in case of moving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In both cases, the measurements are provided by a reference computation with predefined sound sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Synthetic microphone signals are extracted from this reference solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A spatially discrete planar array with 64 microphones is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The general setup is based on the array benchmark test case B7 provided 8 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Left) Sound reinforcement setup including a selected time step of the CDPS- based reference sound field shown at the center x1-x2 plane of the computational do- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The five monopole speakers in a curved arrangement are denoted by (*).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Different driving functions (in amplitude and phase) for the speaker result in a steered sound field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The area/volume marked by the dashed line corresponds to the spatial weight σ in the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Please note, the employed CDPS technique for computing the reference sound field does not provide reliable solutions near the source positions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' therefore, p′ ref is discontinuous for x1 = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='32, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='62] m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Right) Progress of the objective function with a logarithmic y-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Convergence is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The objective is reduced by nearly two orders of magnitude with respect to the initial guess s = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Reference target (left) and resulting optimized (right) sound field at t = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='63 ms for the center x1-x2 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The general features of the reference field are (re-) captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The influence of the employed sponge layer in the adjoint-based sound field is visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The dashed line encodes the spatial weight σ within the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The marked positions correspond to synthetic microphone positions x1,2 = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1] and x1,2 = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8] which are used for spectral analysis, see text for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8 米‘ speaker 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 a m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 8 0 d- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='P 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 X, /m1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='25 r/ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='02 5 10 15 iteration1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 1 a P 0 + ref p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 X, / m1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 1 a P 0 + opt 2 p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5Adjoint Sound 9 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Left) Normalized amplitude difference between resulting optimized and refer- ence target sound field at selected microphone positions, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Right) Normalized phase difference between resulting optimized and reference target sound field at the selected microphone positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' by the Brandenburg university of technology, see [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Modifications are discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' An example in which experimental data are used is shown in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The spatial domain under consideration is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='7 × 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='7 × 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='25 m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The domain is resolved by 240 × 240 × 176 equidistantly distributed points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The time step, and by this, the sampling rate of the microphone measurements, is given by 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='33 kHz, corresponding to a CFL-condition smaller than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In both cases, no base flow is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The reference values for density and pressure correspond to a speed of sound of 343 m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The spiral-like microphone array is located at x3 = 0 m and centered in the corresponding plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The spatial distribution of the microphones is described in more detail in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' All boundaries are treated as non-reflecting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In addition, a sponge layer is applied at all boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 Four sources As in the array benchmark test case B7 four monopole sources are located in the x1-x2-plane at x3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='75 m, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 6 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' For the reference computation, the original benchmark source signals are replaced by incoherent random sig- nals, frequency-band limited between 750 and 2500 Hz, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 6 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The computational time span is 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='06 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Using a corresponding reference forcing s = � i si a simulation of the Euler equations (7) is carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' From the results, discrete microphone signals are extracted, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 7 (left), which are the result of the superposition of all sources and the associated signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The 64 signals are encoded in the objective function J (6) using the spatial weight σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' To avoid an unstable discrete forcing of the adjoint equations, σ is chosen as Gauss-distribution with a half-width of 2∆x for each microphone position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' After determining the solution of the direct equations with an initial guess for s = 0, here, constant environmental conditions for all time steps, the mic 1 B 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 mic 2 ta 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='2 p opt 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 1500 2000 2500 f /Hz0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 mic 1 mic 2 2π 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='05 tar 0 opt 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 1500 2000 2500 f / Hz10 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Left) Acoustic setup for source localization of four sources (*) by 64 micro- phones (o) located in the planes x3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='75 m respectively x3 = 0 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Right) Normalized signals si of the four reference sources, shown for the whole computational time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' adjoint equations are solved backwards in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' From the resulting gradient, the source positions can be derived, as discussed before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' That way, the reference source positions are identified, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 7 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Left) Captured pressure signal at the center microphone in the array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The initial silence results from the distance between the sources and the array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Right) Re- sulting pointwise summation of the absolute adjoint sensitivities p∗ (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The reference source positions (∗) are recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Please note, the analysis is based on the first adjoint-based gradient only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The required computational time for the analysis is less than 15 min on a 16 core workstation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Iterative optimization of s might improve the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='2 Single moving source Again, the aforementioned test case B7 from [6] serves as a base for the following test setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The planar microphone array is located in the same plane (x3 = 0) but 米 米 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 米 米 8 00 0 8 0 0 0 0 00 00 00 00 0 0 0 0 0 00 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 00 00 0 0 0 00 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 ×2 /m X, / mS (normalized) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 S 2 S 1 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' S 0 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='. : i 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 11 S II .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 11 二 1 2 6 10 14 t/ mscenter mic 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 a P 8 d-( p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 2 6 10 14 t/msref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' sources 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8 (normalized) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 米 米 0 米 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 / mAdjoint Sound 11 scaled by a factor of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8, resulting in smaller distances between the microphones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The incoherent sources are replaced by a single source with a harmonic 2 kHz reference signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The source is moving in the x1-x2-plane, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 8 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The movement is described by an acceleration and deceleration, taking place along the x1 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' It starts at the beginning of the computational time and ends with the simulation after 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='44 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The highest speed of the movement is reached midway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Again a reference solution provides synthetic microphone signals, which are encoded in the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Using constant environmental conditions as solution of the direct equations (s0 = 0), the adjoint equations are solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Eval- uation of the adjoint sensitivity p∗ over time at the reference source position provides information of the reference signal, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 8 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The phase of the reference signal is determined with very good agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The amplitude shows deviations at the beginning and end of the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The influence of the directional characteristic of the used microphone array is presumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Left) Acoustic setup for source localization of a single moving source (*) by means of 64 microphones (o) located in the planes x3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='75 m, respectively x3 = 0 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The movement of the source is visualized by it waypoints, chosen with a constant time interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (Right) Normalized adjoint-based sensitivity p∗ at the reference source positions over time in comparison to the reference forcing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' See text for a detailed discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Besides, the identification of the source signal also its position might be tracked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 9 the adjoint-based sensitivity p∗ is shown for the plane x3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='75 m for different time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Occurring maxima give rise to the actual sound source position, besides its signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Again, the analysis is based on the first adjoint-based gradient only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The required computational time for the analysis is less than 10 min on 8 cluster nodes with 8 cores each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0 CD 0 000 00 0 00 0 8 0 00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 m m 25 二 1 I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 (normalized) ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' P-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 adjoint-based 4 --- reference 1!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2 4 6 8 t/ms12 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Normalized adjoint-based sensitivity p∗ at the plane x3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='75 for different time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The reference source location is marked by (*) in a white circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In the inset, the normalized reference signal is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' t= 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='88125 / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 (normalized) m 0 0 + p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 / 米 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 t / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 , / mt= 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='99375/ ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 (normalized) m 0 0 / + 米 p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 t / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 X, / mt= 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='12500 / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 (normalized) m 0 0 / 米 p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 t / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 _ / mt= 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='25625 / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 (normalized) m 0 0 / p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='8 t / ms 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='5 _ /mAdjoint Sound 13 6 Summary An adjoint-based framework for the identification of sound sources is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' It is shown that the approach is able to determine (optimal) source signals and to track moving sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' By design, the time-domain approach allows the consideration of base flows, such as velocity profiles and temperature stratification, and complex geometries, which will be the focus of the upcoming work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The first results that take into account a complex base flow in the context of sound reinforcement are shown in [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Acknowledgments The authors gratefully acknowledge financial support by the Deutsche Forschungs- gemeinschaft (DFG) within the project LE 3888/2-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' We thank Florian Straube (Audio Communication Group, TU Berlin) for defining the target sound field for the sound reinforcement test case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Carnarius, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Thiele, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' ¨Ozkaya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Nemili, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Gauger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Optimal control of unsteady flows using a discrete and a continuous adjoint approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' H¨omberg and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Tr¨oltzsch, editors, System Modeling and Optimization, volume 391 of IFIP Advances in Information and Communication Technology, pages 318–327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Springer Berlin Heidelberg, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Feistel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Modeling the radiation of modern sound reinforcement systems in high resolution, volume 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Logos Verlag Berlin GmbH, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Feistel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sempf, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' K¨ohler, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Schmalle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adapting loudspeaker array radiation to the venue using numerical optimization of FIR filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' of the 135th Audio Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=', New York, number #8937, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Freund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based optimization for understanding and suppressing jet noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Journal of Sound and Vibration, 330(17):4114 – 4122, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Gaitonde and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Visbal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Pade-type higher-order boundary filters for the navier-stokes equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' AIAA Journal, 38:2103–2112, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Geyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='b-tu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='de/fg-akustik/lehre/aktuelles/arraybenchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' last seen 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Giles and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Pierce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' An introduction to the adjoint approach to design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Flow, Turbulence and Combustion, 65:393–415, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Gray, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Reiss, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Paschereit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Moeck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A compact shock-focusing geometry for detonation initiation: Experiments and adjoint-based variational data assimilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Combustion and Flame, 183:144 – 156, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Jameson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Optimum aerodynamic design using cfd and control theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' AIAA paper, 1729:124–131, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Compact finite difference schemes with spectral-like resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Journal of Computational Physics, 103(1):16 – 42, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint based data assimilation in compressible flows with application to pressure determination from PIV data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' PhD thesis, Technische Universit¨at Berlin, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 14 Mathias Lemke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Cai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Reiss, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Pitsch, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based sensitiv- ity analysis of quantities of interest of complex combustion models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Combustion Theory and Modelling, 23(1):180–196, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Reiss, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint based optimisation of reactive compressible flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Combustion and Flame, 161(10):2552 – 2564, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based pressure determination from PIV data in compressible flows — validation and assessment based on synthetic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' European Journal of Mechanics - B/Fluids, 58:29 – 38, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Straube, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Schultz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Weinzierl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based time domain sound reinforcement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' In Audio Engineering Society Conference: 2017 AES International Conference on Sound Reinforcement – Open Air Venues, Aug 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' featured in Ramsey, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (2017): ’Sound Reinforcement in the Open Air.’ In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Audio Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 65, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 1051 - 1055 (December).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Merino-Mart´ınez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sijtsma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Snellen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Ahlefeldt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Antoni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Bahr, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Blacodon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Ernst, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Finez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Funke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Geyer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Haxter, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Herold, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Humphreys, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lecl`ere, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Malgoezar, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Michel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Padois, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Pereira, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Picard, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sarradj, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Siller, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Simons, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Spehr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A review of acoustic imaging methods using phased microphone arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' CEAS Aeronautical Journal, 10(1):197–230, Mar 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Pekurovsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' P3dfft: A framework for parallel computations of fourier transforms in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' SIAM Journal on Scientific Computing, 34(4):C192–C209, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Poinsot and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Boundary conditions for direct simulations of compressible viscous flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Journal Computational Physics, 101:104–129, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Reiss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Mode-based derivation of adjoint equations a lazy man’s approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' on ArXiv, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Schulze, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Schmid, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Iterative optimization based on an objective functional in frequency-space with application to jet-noise cancellation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Journal of Computational Physics, 230(15):6075 – 6098, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Stein, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Straube, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Sesterhenn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Weinzierl, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Lemke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Adjoint-based optimization of sound reinforcement including non-uniform flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The Journal of the Acoustical Society of America, 146(3):1774–1785, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Thompson and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Luzarraga.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Drive granularity for straight and curved loud- speaker arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' of the Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' of Acoustics, 35(2):210–218, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Robinson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Heitz, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' M´emin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Enhanced ensemble-based 4dvar scheme for data assimilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Computers & Fluids, 115:201 – 210, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' A Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content='1 Adjoint equations As stated above, linearization of the governing Euler equations with respect to all state variables by q = q0 + δq results in ∂tAδq + ∂xiBiδq + Ci∂xiδq + δCi∂xic = δs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' (18) Again, the summation convention applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The corresponding linearization ma- trices are Adjoint Sound 15 A = � ����� 1 0 0 0 0 u1 ρ 0 0 0 u2 0 ρ 0 0 u3 0 0 ρ 0 0 0 0 0 1 γ−1 � ����� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' B1 = � ����� u1 ρ 0 0 0 u2 1 2ρu1 0 0 1 u1u2 ρu2 ρu1 0 0 u1u3 ρu3 0 ρu1 0 0 γp γ−1 0 0 γu1 γ−1 � ����� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' B2 = � ����� u2 0 ρ 0 0 u1u2 ρu2 ρu1 0 0 u2 2 0 2ρu2 0 1 u2u3 0 ρu3 ρu2 0 0 0 γp γ−1 0 γu2 γ−1 � ����� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' B3 = � ����� u3 0 0 ρ 0 u1u3 ρu3 0 ρu1 0 u2u3 0 ρu3 ρu2 0 u2 3 0 0 2ρu3 1 0 0 0 γp γ−1 γu3 γ−1 � ����� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' Ci = � ����� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −ui � ����� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' δCi = � ����� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −δui � ����� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The full adjoint Navier-Stokes equations, in particular, the friction terms, are derived and discussed in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' The two-dimensional adjoint Euler equations can be found in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} +page_content=' status: draft for review last modified: January 23, 2023 by (ML)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dFAT4oBgHgl3EQflx3j/content/2301.08620v1.pdf'} diff --git a/4tE4T4oBgHgl3EQfbgyP/content/tmp_files/2301.05074v1.pdf.txt b/4tE4T4oBgHgl3EQfbgyP/content/tmp_files/2301.05074v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4beb6a9aa75f1a2ccef77f5532da6c5091611630 --- /dev/null +++ b/4tE4T4oBgHgl3EQfbgyP/content/tmp_files/2301.05074v1.pdf.txt @@ -0,0 +1,351 @@ +Identification of light leptons and pions in the electromagnetic calorimeter of Belle II +Anja Novosela,b, Abtin Narimani Charanc, Luka ˇSanteljb,a, Torben Ferberd, Peter Kriˇzanb,a, Boˇstjan Golobe,a +aJoˇzef Stefan Institute, Ljubljana, Slovenia +bFaculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia +cDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany +dKarlsruhe Institute of Technology (KIT) , Karlsruhe, Germany +eUniversity of Nova Gorica, Nova Gorica, Slovenia +Abstract +The paper discusses new method for electron/pion and muon/pion separation in the Belle II detector at transverse momenta below +0.7 GeV/c, which is essential for efficient measurements of semi-leptonic decays of B mesons with tau lepton in the final state. The +method is based on the analysis of patterns in the electromagnetic calorimeter by using a Convolutional Neural Network (CNN). +Keywords: Electromagnetic calorimeter, Particle identification, Convolutional Neural Network +1. Introduction +Searches for New Physics at the intensity frontier are based +on very precise measurements of rare processes within the Stan- +dard Model. Of particular interest, because of persistent hints of +Lepton Flavour Universality (LFU) violation, are semi-leptonic +decays of B mesons, e.g. decays mediated by the b → cτ+ντ +transitions with a tau lepton in the final state and decays in- +volving b → sµ+µ− and b → se+e− transitions. In decays with +tau lepton in the final state, the tau lepton must be reconstructed +from its long-lived decay products, for example from the decays +τ− → µ−¯νµντ or τ− → e−¯νeντ. In the Belle II experiment [1, 2], +the momentum spectrum of light leptons from tau decays is +rather soft, a sizable fraction being below 0.7 GeV/c. One of +the crucial steps in the analysis of these decays is identifying +low momenta light leptons (e or µ) from hadronic background +(mostly π). The simplest baseline feature for separating elec- +trons from other charged particles (muons and pions) is E/p, +the ratio between the energy measured in the electromagnetic +calorimeter and the reconstructed momentum of topologically +matched charged track. This variable provides an excellent sep- +aration for particles with p > 1 GeV/c, but due to increased en- +ergy losses from bremsstrahlung for low momentum electrons, +the separation is less distinct [3]. Muons are identified in the +KL and muon system. However, its efficiency is very poor for +low momentum muons that are out of acceptance of the ded- +icated sub-detector. Other sub-detectors designed for particle +identification, the time of propagation detector and the aerogel +ring-imaging Cherenkov detector, are not able to provide effi- +cient µ/π separation in this momentum range because at low +momenta multiple scattering in the material of the detector as +well as the material in front of it blurs the pattern considerably. +Our main goal is to improve the identification of low momen- +tum leptons using the information of energy deposition in the +electromagnetic calorimeter in a form of images. As a classifier +we are using a Convolutional Neural Network (CNN), a power- +ful machine learning technique designed for working with two- +dimensional images. Using CNN on the images allows us to ac- +cess the information on the shape of the energy deposition with- +out depending on cluster reconstruction or track-cluster match- +ing. +In what follows, we will describe the electromagnetic +calorimeter of Belle II, discuss the analysis of simulated pion, +muon and electron patterns in the electromagnetic calorimeter, +and present the results. +2. Electromagnetic calorimeter of Belle II +The Belle II detector is a large-solid-angle magnetic spec- +trometer designed to reconstruct the products of collisions pro- +duced by the SuperKEKB collider. The detector consists of +several sub-detectors arranged around the interaction point in +cylindrical geometry: the innermost Vertex Detector (VXD) +used for reconstructing decay vertices, a combination of the +Pixel Detector (PXD) and Silicon Vertex Detector (SVD); the +Central Drift Chamber (CDC) is the main tracking system; the +Time of Propagation (TOP) detector in the barrel region and +the Aerogel Ring-Imaging Cherenkov detector (ARICH) in the +forward endcap region are used for hadron identification; the +Electromagnetic Calorimeter (ECL) is used to measure the en- +ergy of photons and electrons and the outermost K-Long and +Muon (KLM) detector detects muons and neutral K0 +L mesons +[1]. +The sub-detector relevant for this work is the ECL, more +specifically its central barrel region barrel region which con- +sists of 6624 CsI(Tl) scintillation crystals, covering the po- +lar angle region 32.2◦ < θ < 128.7◦ with respect to the +beam axis. A solenoid surrounding the calorimeter generates +a uniform 1.5 T magnetic field filling its inner volume [2]. +We are mainly interested in the transverse momentum range +0.28 < pT < 0.7 GeV/c, where the minimal pT threshold en- +sures the tracks are within the ECL barrel region acceptance. +Preprint submitted to Nucl. Instr. Meth. A +January 13, 2023 +arXiv:2301.05074v1 [hep-ex] 12 Jan 2023 + +Currently, two methods for the particle identification in the ECL +are available. The first method relies exclusively on the ratio +of the energy deposited by a charged particle in the ECL and +the reconstructed momentum of topologically matched charged +track, E/p. While for electrons this variable enables powerful +discrimination, as electrons completely deposit their energy in +the ECL, the µ/π separation is strongly limited, especially for +low-momentum particles with a broader E/p distribution as can +be seen on Fig. 1. The second method uses Boosted Decision +Trees (BDT) with several expert-engineered observables char- +acterising the shower shape in the ECL [4]. +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +E/p [c] +0 +2 +4 +6 +8 +Events (normalised / (0.02 c)) +Belle II Simulation, ECL barrel, 0.28 + pT < 0.7 GeV/c +e +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +E/p [c] +0 +1 +2 +3 +4 +5 +Events (normalised / (0.02 c)) +Belle II Simulation, ECL barrel, 0.28 + pT < 0.7 GeV/c +Figure 1: Distribution of E/p for simulated single particle candidates: e +(green), µ (red) and π (blue) for 0.28 ≤ pT < 0.7 GeV/c in the ECL barrel +region. +3. Analysis of the patterns in the electromagnetic calorime- +ter +Our proposed method to improve the identification of low- +momentum leptons is to exploit the specific patterns in the spa- +tial distribution of energy deposition in the ECL crystals us- +ing a Convolutional Neural Network (CNN)1. The images are +consistent with the 11 x 11 neighbouring crystals around the +entry point of the extrapolated track into the ECL, where each +pixel corresponds to an individual ECL crystal and pixel inten- +sity to the energy deposited by charged particle in the crystal. +Examples of the obtained images are shown on Fig. 2. While +electrons generate electromagnetic showers depositing the ma- +jority of their energy in the ECL, the dominant interaction in +CsI(Tl) for muons and pions in the aforementioned transverse- +momentum range is ionization. Besides, pions can strongly in- +teract with nuclei producing less localized images compared to +muons [5]. +Energy [GeV] +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +Belle II Simulation, ECL barrel, 0.28 + pT < 0.7 GeV/c +Figure 2: Examples of simulated energy depositions and the average over 80000 +images for e (left), µ (middle) and π (right). +For each binary classification we generated 1.5 × 106 events +using the Belle II Analysis Software Framework [6], where the +1CNN is built using TensorFlow software available from tensorflow.org. +data set consists of the same number of signal (e or µ) and back- +ground (π) events with uniformly distributed transverse mo- +menta, polar angle and azimuthal angle. The two data sets were +split on the train-validation-test set as 70 − 10 − 20% and we +use the same CNN architecture for e/π and µ/π case. As an +input to the convolutional layers we use 11 x 11 images. Before +fully connected layers we add the information about pT and θID, +where the later represents an integer number corresponding to +the location of the ECL crystal and is in the network imple- +mented as an embedding. To perform a binary classification, +we have 1 neuron in the output layer with a sigmoid activation +function that outputs the signal probability that the image was +produced by a lepton. +4. Performance +To validate the performance of a binary classifier we use +a Receiver Operating Characteristic (ROC) curve by plotting +true positive rate (µ or e efficiency) against the false positive +rate (π mis-ID rate). As the reference for the existing ECL +information, we use the log-likelihood difference, a powerful +discriminator between the competing hypotheses, defined as +∆LLECL = log LECL +e,µ +− log LECL +π +based only on E/p [3] and +BDT ECL using the shower-shape information from the ECL, +thoroughly described in [4]. The ROC curves obtained by these +three methods are shown on Fig. 3 for e/π and on Fig. 4 for µ/π +classification. +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 + mis-ID rate +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +e efficiency +Belle II Simulation, ECL barrel, 0.28 + pT < 0.5 GeV/c +LLECL (AUC: 89.34) +BDT ECL (AUC: 94.12) +CNN (AUC: 99.35) +0.0 +0.1 +0.6 +0.7 +0.8 +0.9 +1.0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 + mis-ID rate +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +e efficiency +Belle II Simulation, ECL barrel, 0.5 + pT < 0.7 GeV/c +LLECL (AUC: 98.58) +BDT ECL (AUC: 99.25) +CNN (AUC: 99.86) +0.0 +0.1 +0.6 +0.7 +0.8 +0.9 +1.0 +Figure 3: The performance of three different classifiers for e/π based on only +ECL information: ∆LLECL, BDT ECL, and ∆LLCNN. +2 + +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 + mis-ID rate +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 + efficiency +Belle II Simulation, ECL barrel, 0.28 + pT < 0.5 GeV/c +LLECL (AUC: 69.02) +BDT ECL (AUC: 86.50) +CNN (AUC: 93.56) +0.0 +0.1 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 + mis-ID rate +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 + efficiency +Belle II Simulation, ECL barrel, 0.5 + pT < 0.7 GeV/c +LLECL (AUC: 69.65) +BDT ECL (AUC: 79.89) +CNN (AUC: 84.94) +0.0 +0.1 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Figure 4: The performance of three different classifiers for µ/π based on only +ECL information: ∆LLECL, BDT ECL, and ∆LLCNN. +Looking at the shapes of ROC curves and the Area Under the +Curve (AUC) values, it is evident that the CNN outperforms +the existing classifiers, ∆LLECL and BDT ECL for both e/π and +µ/π. The performance of the CNN drops with increasing mo- +mentum as the path in the ECL gets shorter and the specific +patterns in the images become less evident. +5. Summary and outlook +We can conclude there is more information in the ECL that is +currently used for particle identification. We saw that the sep- +aration between low-momentum light leptons and pions can be +improved using a CNN on the ECL images. The newly pro- +posed method looks very promising and worthwhile to be fur- +ther developed. A comparison of the method presented in this +article to a novel BDT-based analysis is a subject of a forthcom- +ing publication [7]. +6. Acknowledgements +We thank Anˇze Zupanc for his support with ideas and ad- +vice in the early stages of the project. This work was supported +by the following funding sources: European Research Coun- +cil, Horizon 2020 ERC-Advanced Grant No. 884719; BMBF, +DFG, HGF (Germany); Slovenian Research Agency research +grants No. J1-9124, J1-4358 and P1-0135 (Slovenia). +References +[1] T. Abe et al., KEK Report 2010-1 (2010) +[2] I. Adachi et al., Nucl. Instrum. Meth. A 907 (2018) +[3] E. Kou et al., PTEP, Volume 2019, Issue 12, 123C01 (2019) +[4] M. Milesi, J. Tan, P. Urquijo, EPJ Web of Conferences 245, 06023 (2020) +[5] S. Longo, J. M. Roney et al., Nucl. Instrum. Meth. A 982 (2020) +[6] T. Kuhr, C. Pulvermacher, M. Ritter et al., Comput Softw Big Sci 3, 1 +(2019) +[7] M. Milesi et al., in preparation for Nucl. Instrum. Meth. A +3 + diff --git a/4tE4T4oBgHgl3EQfbgyP/content/tmp_files/load_file.txt b/4tE4T4oBgHgl3EQfbgyP/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8d4e5c0667b8d09c89850c5641fc8372bdfee9f0 --- /dev/null +++ b/4tE4T4oBgHgl3EQfbgyP/content/tmp_files/load_file.txt @@ -0,0 +1,273 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf,len=272 +page_content='Identification of light leptons and pions in the electromagnetic calorimeter of Belle II Anja Novosela,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Abtin Narimani Charanc,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Luka ˇSanteljb,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Torben Ferberd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Peter Kriˇzanb,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Boˇstjan Golobe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='a aJoˇzef Stefan Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Ljubljana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Slovenia bFaculty of Mathematics and Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' University of Ljubljana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Ljubljana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Slovenia cDeutsches Elektronen-Synchrotron (DESY),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Hamburg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Germany dKarlsruhe Institute of Technology (KIT) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Karlsruhe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Germany eUniversity of Nova Gorica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Nova Gorica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Slovenia Abstract The paper discusses new method for electron/pion and muon/pion separation in the Belle II detector at transverse momenta below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c, which is essential for efficient measurements of semi-leptonic decays of B mesons with tau lepton in the final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The method is based on the analysis of patterns in the electromagnetic calorimeter by using a Convolutional Neural Network (CNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Keywords: Electromagnetic calorimeter, Particle identification, Convolutional Neural Network 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Introduction Searches for New Physics at the intensity frontier are based on very precise measurements of rare processes within the Stan- dard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Of particular interest, because of persistent hints of Lepton Flavour Universality (LFU) violation, are semi-leptonic decays of B mesons, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' decays mediated by the b → cτ+ντ transitions with a tau lepton in the final state and decays in- volving b → sµ+µ− and b → se+e− transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' In decays with tau lepton in the final state, the tau lepton must be reconstructed from its long-lived decay products, for example from the decays τ− → µ−¯νµντ or τ− → e−¯νeντ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' In the Belle II experiment [1, 2], the momentum spectrum of light leptons from tau decays is rather soft, a sizable fraction being below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' One of the crucial steps in the analysis of these decays is identifying low momenta light leptons (e or µ) from hadronic background (mostly π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The simplest baseline feature for separating elec- trons from other charged particles (muons and pions) is E/p, the ratio between the energy measured in the electromagnetic calorimeter and the reconstructed momentum of topologically matched charged track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' This variable provides an excellent sep- aration for particles with p > 1 GeV/c, but due to increased en- ergy losses from bremsstrahlung for low momentum electrons, the separation is less distinct [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Muons are identified in the KL and muon system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' However, its efficiency is very poor for low momentum muons that are out of acceptance of the ded- icated sub-detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Other sub-detectors designed for particle identification, the time of propagation detector and the aerogel ring-imaging Cherenkov detector, are not able to provide effi- cient µ/π separation in this momentum range because at low momenta multiple scattering in the material of the detector as well as the material in front of it blurs the pattern considerably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Our main goal is to improve the identification of low momen- tum leptons using the information of energy deposition in the electromagnetic calorimeter in a form of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' As a classifier we are using a Convolutional Neural Network (CNN), a power- ful machine learning technique designed for working with two- dimensional images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Using CNN on the images allows us to ac- cess the information on the shape of the energy deposition with- out depending on cluster reconstruction or track-cluster match- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' In what follows, we will describe the electromagnetic calorimeter of Belle II, discuss the analysis of simulated pion, muon and electron patterns in the electromagnetic calorimeter, and present the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Electromagnetic calorimeter of Belle II The Belle II detector is a large-solid-angle magnetic spec- trometer designed to reconstruct the products of collisions pro- duced by the SuperKEKB collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The detector consists of several sub-detectors arranged around the interaction point in cylindrical geometry: the innermost Vertex Detector (VXD) used for reconstructing decay vertices, a combination of the Pixel Detector (PXD) and Silicon Vertex Detector (SVD);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' the Central Drift Chamber (CDC) is the main tracking system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' the Time of Propagation (TOP) detector in the barrel region and the Aerogel Ring-Imaging Cherenkov detector (ARICH) in the forward endcap region are used for hadron identification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' the Electromagnetic Calorimeter (ECL) is used to measure the en- ergy of photons and electrons and the outermost K-Long and Muon (KLM) detector detects muons and neutral K0 L mesons [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The sub-detector relevant for this work is the ECL, more specifically its central barrel region barrel region which con- sists of 6624 CsI(Tl) scintillation crystals, covering the po- lar angle region 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2◦ < θ < 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7◦ with respect to the beam axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' A solenoid surrounding the calorimeter generates a uniform 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='5 T magnetic field filling its inner volume [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' We are mainly interested in the transverse momentum range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 < pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c, where the minimal pT threshold en- sures the tracks are within the ECL barrel region acceptance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Preprint submitted to Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' A January 13, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='05074v1 [hep-ex] 12 Jan 2023 Currently, two methods for the particle identification in the ECL are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The first method relies exclusively on the ratio of the energy deposited by a charged particle in the ECL and the reconstructed momentum of topologically matched charged track, E/p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' While for electrons this variable enables powerful discrimination, as electrons completely deposit their energy in the ECL, the µ/π separation is strongly limited, especially for low-momentum particles with a broader E/p distribution as can be seen on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The second method uses Boosted Decision Trees (BDT) with several expert-engineered observables char- acterising the shower shape in the ECL [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 E/p [c] 0 2 4 6 8 Events (normalised / (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='02 c)) Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c e 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 E/p [c] 0 1 2 3 4 5 Events (normalised / (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='02 c)) Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c Figure 1: Distribution of E/p for simulated single particle candidates: e (green), µ (red) and π (blue) for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 ≤ pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c in the ECL barrel region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Analysis of the patterns in the electromagnetic calorime- ter Our proposed method to improve the identification of low- momentum leptons is to exploit the specific patterns in the spa- tial distribution of energy deposition in the ECL crystals us- ing a Convolutional Neural Network (CNN)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The images are consistent with the 11 x 11 neighbouring crystals around the entry point of the extrapolated track into the ECL, where each pixel corresponds to an individual ECL crystal and pixel inten- sity to the energy deposited by charged particle in the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Examples of the obtained images are shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' While electrons generate electromagnetic showers depositing the ma- jority of their energy in the ECL, the dominant interaction in CsI(Tl) for muons and pions in the aforementioned transverse- momentum range is ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Besides, pions can strongly in- teract with nuclei producing less localized images compared to muons [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Energy [GeV] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='10 Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c Figure 2: Examples of simulated energy depositions and the average over 80000 images for e (left), µ (middle) and π (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' For each binary classification we generated 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='5 × 106 events using the Belle II Analysis Software Framework [6], where the 1CNN is built using TensorFlow software available from tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' data set consists of the same number of signal (e or µ) and back- ground (π) events with uniformly distributed transverse mo- menta, polar angle and azimuthal angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The two data sets were split on the train-validation-test set as 70 − 10 − 20% and we use the same CNN architecture for e/π and µ/π case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' As an input to the convolutional layers we use 11 x 11 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Before fully connected layers we add the information about pT and θID, where the later represents an integer number corresponding to the location of the ECL crystal and is in the network imple- mented as an embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' To perform a binary classification, we have 1 neuron in the output layer with a sigmoid activation function that outputs the signal probability that the image was produced by a lepton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Performance To validate the performance of a binary classifier we use a Receiver Operating Characteristic (ROC) curve by plotting true positive rate (µ or e efficiency) against the false positive rate (π mis-ID rate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' As the reference for the existing ECL information, we use the log-likelihood difference, a powerful discriminator between the competing hypotheses, defined as ∆LLECL = log LECL e,µ − log LECL π based only on E/p [3] and BDT ECL using the shower-shape information from the ECL, thoroughly described in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The ROC curves obtained by these three methods are shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 3 for e/π and on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 4 for µ/π classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 mis-ID rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 e efficiency Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='5 GeV/c LLECL (AUC: 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='34) BDT ECL (AUC: 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='12) CNN (AUC: 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='35) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 mis-ID rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 e efficiency Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='5 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c LLECL (AUC: 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='58) BDT ECL (AUC: 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='25) CNN (AUC: 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='86) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 Figure 3: The performance of three different classifiers for e/π based on only ECL information: ∆LLECL, BDT ECL, and ∆LLCNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 mis-ID rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 efficiency Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='28 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='5 GeV/c LLECL (AUC: 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='02) BDT ECL (AUC: 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='50) CNN (AUC: 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='56) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 mis-ID rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 efficiency Belle II Simulation, ECL barrel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='5 pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='7 GeV/c LLECL (AUC: 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='65) BDT ECL (AUC: 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='89) CNN (AUC: 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='94) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content='0 Figure 4: The performance of three different classifiers for µ/π based on only ECL information: ∆LLECL, BDT ECL, and ∆LLCNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Looking at the shapes of ROC curves and the Area Under the Curve (AUC) values, it is evident that the CNN outperforms the existing classifiers, ∆LLECL and BDT ECL for both e/π and µ/π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The performance of the CNN drops with increasing mo- mentum as the path in the ECL gets shorter and the specific patterns in the images become less evident.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Summary and outlook We can conclude there is more information in the ECL that is currently used for particle identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' We saw that the sep- aration between low-momentum light leptons and pions can be improved using a CNN on the ECL images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' The newly pro- posed method looks very promising and worthwhile to be fur- ther developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' A comparison of the method presented in this article to a novel BDT-based analysis is a subject of a forthcom- ing publication [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Acknowledgements We thank Anˇze Zupanc for his support with ideas and ad- vice in the early stages of the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' This work was supported by the following funding sources: European Research Coun- cil, Horizon 2020 ERC-Advanced Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' 884719;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' BMBF, DFG, HGF (Germany);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Slovenian Research Agency research grants No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' J1-9124, J1-4358 and P1-0135 (Slovenia).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' References [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=', KEK Report 2010-1 (2010) [2] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Adachi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=', Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' A 907 (2018) [3] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Kou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=', PTEP, Volume 2019, Issue 12, 123C01 (2019) [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Milesi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Tan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Urquijo, EPJ Web of Conferences 245, 06023 (2020) [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Longo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Roney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=', Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' A 982 (2020) [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Kuhr, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Pulvermacher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Ritter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=', Comput Softw Big Sci 3, 1 (2019) [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Milesi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=', in preparation for Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} +page_content=' A 3' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tE4T4oBgHgl3EQfbgyP/content/2301.05074v1.pdf'} diff --git a/59FKT4oBgHgl3EQf-y48/content/2301.11959v1.pdf b/59FKT4oBgHgl3EQf-y48/content/2301.11959v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a53cc095757d8ed4736d8b38485dfcadaa87981d --- /dev/null +++ b/59FKT4oBgHgl3EQf-y48/content/2301.11959v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e2e1dae6b272ef9f8334d1c8b18be33af5ffc0dab3b26ad751b93b590f19dfb4 +size 324157 diff --git a/59FKT4oBgHgl3EQf-y48/vector_store/index.faiss b/59FKT4oBgHgl3EQf-y48/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8abaad5d550327c780f80af600b769bf3cb4bb7e --- /dev/null +++ b/59FKT4oBgHgl3EQf-y48/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:650ae78b74b7b55fab783f55fbe9125d134508d6198160848666a13f7146613a +size 3145773 diff --git a/59FKT4oBgHgl3EQf-y48/vector_store/index.pkl b/59FKT4oBgHgl3EQf-y48/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0a5a1e69a05becec218fb174bdd26f246a93b0e9 --- /dev/null +++ b/59FKT4oBgHgl3EQf-y48/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71a2aed0c6421367c97016241cbe17a1e599dcd255f64095ff900417af1df870 +size 134762 diff --git a/5NAzT4oBgHgl3EQfEPrI/content/tmp_files/2301.00991v1.pdf.txt b/5NAzT4oBgHgl3EQfEPrI/content/tmp_files/2301.00991v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ff6ce825e5a42af91c52ed8f7db59a11e933d49 --- /dev/null +++ b/5NAzT4oBgHgl3EQfEPrI/content/tmp_files/2301.00991v1.pdf.txt @@ -0,0 +1,1821 @@ +MNRAS 000, 1–14 (2021) +Preprint 4 January 2023 +Compiled using MNRAS LATEX style file v3.0 +Multi-wavelength study of TeV blazar 1ES 1218+304 using +gamma-ray, X-ray and optical observations +Rishank Diwan,1⋆ Raj Prince,2 Aditi Agarwal,3 Debanjan Bose,4† Pratik Majumdar,5 +Aykut Özdönmez,6 Sunil Chandra,7,8 Rukaiya Khatoon,8 Ergün Ege,9 +1Laboratory for Space Research, The University of Hong Kong, 405B Cyberport 4, 100 Cyberport Road, Cyberport, Hong Kong +2Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland +3 Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bengaluru - 560080, India +4 S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-700106 +5 Saha Institute of Nuclear Physics, a CI of Homi Bhabha National Institute, Kolkata 700064, West Bengal, India +6 Ataturk University, Faculty of Science, Department of Astronomy and Space Science, 25240, Yakutiye, Erzurum +7 South African Astronomical Observatory, Observatory Road, Observatory, Cape Town 7925, South Africa +8 Center for Space Research, North-West University, Potchefstroom, 2520, South Africa +9 Istanbul University, Faculty of Science, Department of Astronomy and Space Sciences, 34116, Beyazıt, Istanbul, Turkey +Accepted XXX. Received YYY; in original form ZZZ +ABSTRACT +We report the multi-wavelength study for a high-synchrotron-peaked BL Lac 1ES 1218+304 using near-simultaneous +data obtained during the period from January 1, 2018, to May 31, 2021 (MJD 58119-59365) from various instruments +including Fermi-LAT, Swift-XRT, AstroSat, and optical from Swift-UVOT & TUBITAK observatory in Turkey. The +source was reported to be flaring in TeV γ-ray during 2019 but no significant variation in Fermi-LAT is observed. A +minute scale variability is seen in SXT light curve suggesting a compact emission region for their variability. However, +Hour’s scale variability is observed in the γ-ray light curve. A "softer-when-brighter" trend is observed in γ-ray and an +opposite trend is seen in X-ray suggesting both emissions are produced via two different processes as expected from an +HBL source. We have chosen the two epochs in January 2019 to study and compare their physical parameters. A joint +fit of SXT and LAXPC provides a great constraint on the synchrotron peak roughly estimated to be ∼2.68×1017 Hz. +A clear shift in the synchrotron peak is observed from 1017−18 to 1020 Hz revealing its extreme nature or behaving like +an EHBL-type source. The optical observation provides color-index variation as "blue-when-brighter". The broadband +SED is fitted with a single-zone SSC model and their parameters are discussed in the context of a TeV blazar and +possible mechanism behind the broadband emission. +Key words: +galaxies: active – galaxies: jets – gamma-rays: galaxies – radiation mechanisms: non-thermal – BL +Lacertae objects: individual: 1ES 1218+304 +1 INTRODUCTION +Active galactic nuclei (AGN) host a supermassive black hole +(SMBH) at the center which accretes matter from the sur- +rounding. The matters are in Keplerian orbit and fall into +the SMBH via an accretion disk. The mechanism proposed +in Blandford & Znajek (1977) suggests that the magnetic +field lines from the accretion disk get twisted and collimated +due to the high spin of SMBH and eject the matter through +a bipolar jet perpendicular to the accretion disk plane. Later, +the AGNs were classified based on how they are viewed +commonly known as the AGN unification scheme (Urry & +Padovani 1995). Blazars are a subclass of active galactic nu- +clei that have their relativistic jet pointed to the observer. +⋆ E-mail: rishank2610@gmail.com +† E-mail: debaice@gmail.com +They are characterized by rapid variability from hours to +days’ timescales across all wavelengths, high polarization, and +superluminal jet speeds. Blazars can be further subdivided +into two classes: flat spectrum radio quasars (FSRQs) and +BL Lacertae (BL Lac) objects. The broad-band continuum +spectra of blazars are dominated by non-thermal emission. +The spectral energy distribution of blazars is characterized +by a double hump structure: the first hump is generally at- +tributed to the synchrotron radiation in the radio to X-ray +bands whereas there is intense debate about the origin of +the second hump. The commonly accepted emission mech- +anism is via inverse Compton scattering of the low-energy +photons by high-energy electrons in the system from GeV +to TeV energies. There are alternative scenarios proposed +by several authors which involve hadronic interactions pro- +ducing neutral pions. These pions decay to generate photons +in the GeV-TeV energies (Mannheim 1993; Aharonian 2000; +© 2021 The Authors +arXiv:2301.00991v1 [astro-ph.HE] 3 Jan 2023 + +2 +R. Diwan et al. +Böttcher et al. 2013). The BL Lac-type sources are further +subdivided into three main classes depending on the position +of their low-energy peak. If the synchrotron peak is observed +at < 1014Hz, those BL Lacs are called low-frequency peaked +BL Lacs (LBLs). If the synchrotron peak is observed be- +tween 1014Hz and 1015Hz, then they are called intermediate- +frequency peaked BL Lacs (IBLs). Finally, BL Lacs with syn- +chrotron peak ≥ 1015Hz is called high-frequency peaked BL +Lacs (HBLs). There is also a newly defined class of ultra- +high-frequency peaked BL Lacs (UHBLs) with the spectral +peak of the second bump (high energy peak) in the SED lo- +cated at an energy of 1 TeV or above. These blazars are also +known as "extreme blazars" or EHBLs. (Abdo et al. 2010). +Multiwavelength observation of blazars is a very important +tool for investigating the various properties of the blazars and +the jet. For example, the shortest variability timescale allows +one to put strong constraints on the size of the emission re- +gion of the blazar. The location of the emission region along +the jet axis is another challenging problem in blazar physics. +Many studies have been done in the past to locate the emis- +sion region, in some cases, it has been found that the emission +happens very close to the SMBH within the broad-line region +(BLR) (Prince 2020; Prince et al. 2021). However, in some +studies, it has been proposed to be at higher distances be- +yond the broad-line region (Cao & Wang 2013; Nalewajko +et al. 2014; Barat et al. 2022). The break or curvature in the +γ-ray spectrum above 10-20 GeV suggests the emission region +within the BLR as the BLR is opaque to high energy pho- +tons above 10 GeV ( Liu & Bai 2006). The cross-correlation +studies among the various wavebands are another way to lo- +cate the emission region along the jet axis. In many studies, +it has been reported that simultaneous broadband emissions +generally have a co-spatial origin. However, in some cases, a +significant time lag has been reported strongly suggesting the +different locations for the different emissions (Prince 2019). +In the first case scenario, one zone emission model is favored +to explain the broadband SED, and in the later case, the +multi-zone emission model is preferred (Prince et al. 2019). +The production of high-energy γ-rays in blazar suggests an +acceleration of charged particles to very high energy and +many models have been proposed to explain the acceleration. +The most accepted mechanisms are the diffusive shock accel- +eration (Schlickeiser 1989a,b) and the magnetic re-connection +(Shukla & Mannheim 2020). In many studies shock accelera- +tion has been favored which also demands the emission region +close to the SMBH within the BLR because the shocks are +produced and are strong at the base of the jet. On the other +hand, the magnetic reconnection happens due to external per- +turbation and hence demands the jet to be less collimated i.e. +the emission region is farther from the base. +In this paper, we report on a multiwavelength study of the +TeV blazar 1ES1218+304 to understand the broadband prop- +erties of the source. It is located at a redshift, z = 0.182 with +R.A. = 12 21 26.3 (hh mm ss), Dec = +30 11 29 (dd mm ss). +It has been observed in TeV energy with VERITAS (Fortin +2008, Acciari et al. 2009) and MAGIC (Albert et al. 2006, +Lombardi et al. 2011) and are part of TeV Catalog1. +The paper is arranged in the following way. We discuss the +multiwavelength observations and the data analysis proce- +1 http://tevcat.uchicago.edu/ +dures from different instruments used in this study in Section +2. In section 3, we have discussed the results from Astrosat +alone and the broadband light curves and spectral energy dis- +tributions at length. In Section 4 we summarise and discussed +the important findings in the context of blazar physics and +eventually conclude our work in Section 5. +2 MULTIWAVELENGTH OBSERVATIONS, +DATA ANALYSIS AND DATA REDUCTION +The following section describes the data analysis technique +used to generate a multi-waveband light curve. In the sub- +sections, we provide a description of the data analysis tech- +nique of γ-ray data collected from Fermi-Lat. X-ray, and +UV-optical data were collected from Swift-XRT and Swift- +UVOT. Also, soft X-ray and hard X-ray data were collected +from AstroSat-SXT and AstroSat-LAXPC, respectively and +Optical Data from TUBITAK National Observatory. +2.1 Fermi-LAT γ-ray Observatory +Large Area Telescope (LAT) is a gamma-ray telescope placed +on Fermi gamma-ray space observatory2 which was launched +in 2008. It has a working energy range of 20 MeV to 1 +TeV with a field of view of 2.4 Sr (Atwood et al. 2009). +The orbital period of the telescope is around ∼ 96 mins +in each hemisphere and covers the entire sky in total ∼ 3 +hr. Blazar 1ES 1218+304 is continuously being monitored +since 2008. In this study, we have analyzed the data from +1st January 2018 - 31st May 2021 when the source was +reported to be flaring in gamma-ray (January 2019). The +analysis was performed using Fermipy v0.17.43(Wood et al. +2021) and the standard Fermi tools software (Fermitools +v1.2.23)4 between 0.3-300 GeV. A 15◦ circular region was +chosen around the source to extract the photon events with +evclass=128 and evtype=3 and the time intervals were re- +stricted using ‘(DATA_QUAL>0)&&(LAT_CONFIG==1)’ +as recommended by the Fermi-LAT team in the fermitools +documentation. The source model file was generated using +the Fermi 4FGL catalog (Abdollahi et al. 2020) and the back- +ground gamma-ray emission was taken care of by using the +gll_iem_V07.fits file along with the isotropic background +emission by using the iso_P8R3_SOURCE_V2_v1.txt file. In +addition, the zenith angle cut was chosen as 90◦ to reduce the +contamination from the Earth limb’s γ-ray. The source and +background were modeled by the binned Likelihood method. +Initially, the spectral parameters of all the sources were kept +free to optimize the γ-ray emission from them. Eventually, +we generated the γ-ray light curves for 7, 15, and 30 days +of binning for our scientific purpose. To extract lightcurve +and perform spectral fitting normalization of the sources only +within 2◦ of ROI were kept free, and the rest of the param- +eters and other source models were frozen, except that of +Source of Interest, in this case, blazar 1ES 1218+304 and a +high flux source 4FGL J1217.9+3007, with an offset of 0.753◦ +from 1ES 1218+304, which constitutes to 10 parameters for +2 https://fermi.gsfc.nasa.gov/ +3 Fermipy webpage +4 Fermtools Github page +MNRAS 000, 1–14 (2021) + +Multi-wavelength study of 1ES 1218+304 +3 +likelihood analysis. PowerLaw model was used for the source +as given below: +dN(E) +dE += No × +� E +Eo +�−α +(1) +where Eo and No are the scale factor and the prefactor, re- +spectively provided in the 4FGL catalog and α is the spectral +index. +2.2 AstroSat +On January 03, 2019 MAGIC reported a gamma-ray activ- +ity and detection of very high energy γ ray from blazar 1ES +1218+304 (Mirzoyan 2019). Later, VERITAS also detected a +γ-ray flare from this source (Mukherjee & VERITAS Collab- +oration 2019). Following these two events, we proposed a tar- +get of opportunity proposal in India’s first space-based multi- +wavelength observatory, AstroSat5. Observations were car- +ried out from 17th to 20th January with a soft-Xray telescope +(SXT) and large area X-ray proportional counter (LAXPC). +2.2.1 SXT +The SXT working energy range is 0.3-7.0 keV and the ob- +servation was performed with photon counting mode (PC). +The level-1 data was downloaded from the webpage and fur- +ther reduction was performed with the latest SXT pipeline, +sxtpipeline1.4b (Release Date: 2019-01-04). It produces +the cleaned level-2 data products which were used for fur- +ther analysis (Singh et al. 2016, Singh et al. 2017). The ob- +servations were done in various orbits and therefore it was +merged together with the help of SXTEVTMERGERTOOL. The +X-ray light curve is extracted using XSELECT with a circular +region of 16′ centered on the source. The energy selection +of 0.3-7.0 keV was applied in XSELECT itself using the chan- +nel filtering through pha_cutoff filter. The source spectrum +was extracted for 0.3-7.0 keV energy range and the back- +ground spectrum file was used provided by the AstroSat +SkyBkg_comb_EL3p5_Cl_Rd16p0_v01.pha. The spectrum was +grouped in GRPPHA in order to have good photon statistics in +each bin. The ancillary response file (arf) was generated using +sxtARFModule and the RMF file (sxt_pc_mat_g0to12.rmf) +was provided by the SXT-POC (Payload Operation Cen- +ter) team. Eventually, the X-ray spectra from 0.3-7.0 KeV +with proper background and response files were loaded in +XSPEC and fitted with the simple absorbed power-law and +log-parabola spectral models with the correction of ISM ab- +sorption model at NH = 1.91×1020 cm−2 (HI4PI Collabora- +tion et al. 2016). +2.2.2 LAXPC +LAXPC works in the hard X-ray energy range from 3.0-80.0 +keV (Yadav et al. 2016) consisting of three identical detec- +tors namely LAXPC10, LAXPC20, and LAXPC30. Unfor- +tunately, LAXPC 10 was operating at a lower gain during +the time of observation period. Also, the LAXPC30 detec- +tor has a gain instability issue caused by substantial gas +5 https://www.isro.gov.in/AstroSat.html +leakage. Therefore, we used only LAXPC20 for the analy- +sis, and the corresponding results are presented here. The +Level-1 data were processed using the LaxpcSoft package +available in AstroSat Science Support Cell (ASSC)6. We +generated the Level-2 combined event file using the com- +mand laxpc_make_event. During the data processing, a +good time interval was applied to exclude the time inter- +vals corresponding to the Earth occultation periods, SAA +passage, and standard elevation angle screening criteria +by using the laxpc_make_stdgti tool. Finally, the tools +laxpc_make_spectra and laxpc_make_lightcurve were used +to produce the spectra and lightcurve of the source, using the +gti file. We restricted the spectra to the energy range of +4-20 keV since the background dominates the spectra above +this energy. In the spectral analysis, a 3% systematic un- +certainty was added to the data. The obtained lightcurve is +not background subtracted, therefore we estimated the back- +ground following the faint source routine (Misra et al. 2021). +However, due to insignificant variations observed in the ex- +tracted lightcurve from LAXPC20, we did not use them in +our study. +2.3 The Neil Gehrels Swift Observatory +Simultaneous to AstroSat, blazar 1ES 1218+304 was also ob- +served in X-ray with Swift-XRT and in optical-UV by Swift- +UVOT telescopes7. It provides a unique opportunity to have +simultaneous broadband light curves and spectrum which is +important to decipher the cause behind the flare and the +broadband emission. +2.3.1 XRT +X-ray telescope (XRT) works in an energy range between 0.3- +10.0 keV. Multiple observations were done during this period +with an average of 2ks exposure. We have analyzed the data +following the standard Swift xrtpipeline and the details can +be found on Swift webpage8. The cleaned event files were pro- +duced and a circular region of 10” was chosen for the source +and background around the source and away from the source. +Tool XSELECT was used to extract the source light curve and +the spectrum. The spectrum was binned by using the tool +GRPPHA to have a sufficient number of counts in each bin. A +proper ancillary response file (ARF) and the redistribution +matrix files (RMF) were used to model the X-ray spectra in +XSPEC. A simple unabsorbed power law was used to fit the X- +ray 0.3-10.0 keV spectra and extract the X-ray flux. The soft +X-ray (below 1 keV) is prone to go through interstellar ab- +sorption in Milky-way and hence a correction is applied with +NH = 1.91×1020 cm−2 (HI4PI Collaboration et al. 2016). +2.3.2 UVOT +Having an ultraviolet-optical telescope has the advantage of +getting simultaneous observations to X-ray. UVOT has six +filters namely U, B, and V in optical and W1, M2, and W2 +in the ultraviolet band. The image files were opened in DS9 +6 http://astrosat-ssc.iucaa.in +7 https://swift.gsfc.nasa.gov/ +8 https://www.swift.ac.uk/analysis/xrt/ +MNRAS 000, 1–14 (2021) + +4 +R. Diwan et al. +Table 1. Best fit spectral parameters of 1ES 1218+304 from SXT observations of 17-20 January 2019. X-ray flux is presented in the unit +(erg cm−2 s−1). The spectrum is fitted with both the power-law and log-parabola models. In the last row, we show the joint fit of the +SXT and LAXPC spectrum. We also added a 3% systematic in the fit as suggested by the AstroSat team. The parameters are compared +for free and fixed NH (HI4PI Collaboration et al. 2016) values. The overall fit provide better fit with free NH. +Model +Parameters +Value +Power-law +Fixed nH +Free nH +TBabs +NH(1022cm−2) +0.0191 +0.057±0.005 +Index +Γ +1.95±0.01 +2.11±0.02 +Flux +F0.3−10.0 keV +(1.427 ± 0.004) × 10−10 +(1.474 ± 0.006) × 10−10 +χ2/dof +777/434 +595.75/433 +Logparabola +TBabs +NH(1022cm−2) +0.0191 +0.075±0.014 +Index +α +1.90±0.02 +2.21±0.08 +β +0.28±0.04 +0.15±0.11 +Flux +F0.3−10.0 keV +(1.300 ± 0.009) × 10−10 +(1.585 ± 0.037) × 10−10 +χ2/dof +642.28/433 +590.55/432 +Logparabola +joint fit +SXT + LAXPC +TBabs +NH(1022cm−2) +0.0191 +0.042±0.010 +Index +α +1.85±0.02 +1.98±0.06 +β +0.33±0.03 +0.22±0.06 +Norm +0.0262±0.0002 +0.0281 ± 0.0009 +Constant factor +- +0.96±0.04 +0.96±0.04 +χ2/dof +601.16/402 +587.72/401 +software and the source and background region of 5" and 10" +were selected around the source and away from the source, +respectively. The task UVOTSOURCE has been used to get the +magnitudes which were later corrected for galactic reddening, +E(B-V)=0.0176 (Schlafly & Finkbeiner 2011) and converted +into the fluxes using zero points and the conversion factor +(Giommi et al. 2006). +2.4 Optical +The optical observations of our source were performed in the +Johnson BVRI bands using the three ground-based facilities +in Turkey, namely, 0.6m RC robotic (T60) and the 1.0m RC +(T100) telescopes at TUBITAK National Observatory, and +0.5m RC telescope at Ataturk University in Turkey. Techni- +cal details of these telescopes are explained in Agarwal et al. +(2022). The standard data reduction of all CCD frames, i.e. +the bias subtraction, twilight flat-fielding, and cosmic-ray re- +moval, was done as mentioned in (Agarwal et al. 2019a). +2.5 Archival +We have used the archival optical data from ASAS-SN (All- +Sky Automated Survey for Supernovae) (Shappee et al. 2014; +Kochanek et al. 2017).We have also used long-term high flux +observation in UV/Optical range from NASA/IPAC Extra- +galactic Database (NED)9 for providing the reference points +in our SED analysis. We have also extracted the NuSTAR +SED data points from (Sahakyan 2020) and plotted them +alongside our SED analysis. +9 https://ned.ipac.caltech.edu/ +3 RESULTS +In this section, we provide the main results of our work using +the above broadband observations. We have explained various +characteristics of broadband light curves and spectral energy +distributions. +3.1 Astrosat results +Astrosat observations in SXT and LAXPC were done dur- +ing 17-20 January 2019 after two weeks of TeV detection. +We have produced the SXT light curve and the spectrum +as shown in Figure 1 and Figure 2 for 0.3-7.0 keV energy +band. The source appears to be variable on a short-time +scale and the corresponding fractional variability and vari- +ability time is estimated in section 3.2. A spectrum is ex- +tracted in the energy range of 0.3-7 keV and fitted with the +power law and log-parabola models. The best-fit parame- +ters are presented in Table 1. We started with a power-law +with fixed hydrogen column density, NH = 0.0191×1020 cm−2 +and ended up getting χ2/dof = 777/434 with photon spec- +tral index, Γ = 1.95±0.01 and 0.3-7 keV flux, F0.3−7keV = +(14.27±0.04)×10−11 ergs/cm2/s. Next, we keep NH as a free +parameter and the best fit value is estimated as 0.057±0.005 +in units of 1020 cm−2. The χ2/dof has improved to 595.75/433 +and the spectral index was found to be 2.11±0.02 with almost +the same 0.3-7 keV flux. We repeat the same procedure with +the log parabola model and with both the cases of fixed and +free NH and it gives a better fit than the power law. With +the free NH parameter we achieved a better fit with χ2/dof += 590.55/432 compared to the power-law case. The best-fit +spectral index is 2.21±0.08 a bit softer than the power-law +index. The details about the other parameters are provided +in Table 1. +MNRAS 000, 1–14 (2021) + +Multi-wavelength study of 1ES 1218+304 +5 +0 +20000 +40000 +60000 +80000 +100000 120000 +Time(s) +1.6 +1.7 +1.8 +1.9 +2.0 +2.1 +2.2 +2.3 +Counts/sec +SXT 0.3-7.0 keV +Figure 1. AstroSat-SXT light curve for energy 0.3-7.0 keV. The +bin size is taken as 856 sec. +We could not get a good light curve in LAXPC but ex- +tracted the spectrum from 4-20 keV. The SXT and LAXPC +spectra are jointly fitted with Power law and Log-parabola +models. In the case of the Power-law, we get the χ2/dof += 948.46/403 and 623.25/402 for fixed and free NH val- +ues. In both cases, the reduced-χ2 is much higher than +the case of Log-parabola (Table 1) and hence not pur- +sued further. For the joint fit, we used the total model as +constant*tbabs*logpar. The constant factor is fixed at 1.0 +for data group 1 and kept as a free parameter for data group +2. The best fit value for the constant factor is 0.96±0.04 for +both fixed and free NH. The overall reduced-χ2 is improved +when the NH is free and it is estimated as 4.2±1.0 (×1020 +cm−2), almost two times higher than the fixed NH value. Fig- +ure 3 shows the best fit plot with a log-parabola model. We +found that the spectral index, α, and the curvature parame- +ter, β are a bit different during fixed and free NH. The math- +ematical representation of the log-parabolic model is given +as, +F(E) = K(E/E1)(−α+βlog(E/E1))ph cm−2 s−1 keV, +(2) +where K is the normalization and the E1 is the reference +energy fixed at 1 keV. Using the best-fit parameters of the +log-parabola model we can estimate the location of the syn- +chrotron peak, which is given as Ep = E1 10(2−α)/2β keV. +For α=1.98 and β=0.22, the Ep is estimated as 1.11 keV or +2.68×1017 Hz. The peak of the synchrotron emission is mostly +constrained by the X-ray as shown in Figure 3 which peaks +at ∼ 2.68×1017 Hz. +3.2 Broadband Light curves +We have collected the γ-ray data between 2018 to 2021. The +source was found to be in a flaring state in γ-ray during Jan +2019. Simultaneous observation in Swift-XRT and UVOT +also confirms the flaring behavior in X-ray as well as in +optical-UV. On 02 January 2019 source was reported to be +flaring in very high energy gamma-ray by MAGIC (Mirzoyan +2019) which was followed by VERITAS (Mukherjee & +VERITAS Collaboration 2019) and observation was done on +4, 5, and 6 January 2019 show high flux state above 100 GeV +and the corresponding period is marked by light pink color +in Figure 4. We identify this period as Flare A. In X-ray +10−3 +0.01 +0.1 +1 +normalized counts s−1 keV−1 +1 +0.5 +2 +5 +0.5 +1 +1.5 +2 +2.5 +ratio +Energy (keV) +Figure 2. The 0.3 - 7.0 keV energy spectrum of 1ES 1218+304 +fitted with Logparabola spectral model with free galactic absorp- +tion. The SXT data were taken during the period 17-20 January +2019. +10−10 +2×10−11 +5×10−11 +ν Fν (ergs cm−2 s−1) +1017 +1018 +2×1017 +5×1017 +2×1018 +1 +1.5 +2 +ratio +Energy (Hz) +Figure 3. The joint SXT (red) and LAXPC (blue) spectra are +modeled together. The SXT energy range is taken as 0.3 - 7.0 +keV and LAXPC is taken from 3.0-20.0 keV. The joint spectra are +fitted with a log parabola spectral model. Both spectra were taken +simultaneously during the period of 17-20 January 2019. +and optical source was reported to be historically bright +with flux around ∼ 2×10−10 erg cm−2 s−1 in X-ray and +with R band flux 2.35±0.05 mJy (Ramazani et al. 2019). +We also proposed this source in India’s first space mission, +AstroSat for broadband observation. Our observation was +done between 17-20 January 2019. This period is marked +as a vertical green line in Figure 4 and identified as Flare +B. The first two panels of Figure 4 represent the long-term +γ-ray (GeV) light curve and corresponding photon spectral +index. The source is not very bright in Fermi-LAT but a +clear variability in the flux is seen. Panel 3 & 4 represent the +long-term Swift-XRT light curve and corresponding photon +spectral index. A clear X-ray brightening during Jan 2019 is +observed. During this period, we do not have many optical +observations (panel 5), and hence it’s difficult to comment +on the flux level. However, in UV (W1, M2, W2) bands +(panel 6) high flux state is observed corresponding to TeV +and X-ray activity. In panel 7, we show the archival optical +data from ASAS-SN, and no short time scale variability +MNRAS 000, 1–14 (2021) + +6 +R. Diwan et al. +is seen. We also have optical data from the ground-based +observatory (panel 5) which covers the last part of the light +curve showing a nice variation from a high flux state to a low +flux state, suggesting a long-term variation in optical bands. +3.3 Variability Study +In general, blazar shows significant variability during the flar- +ing period. The properties of these flares can depend on var- +ious factors like particle injection, particle acceleration, and +energy dissipation in the jets of the blazars. To study this in- +trinsic property we calculate the Fractional Variability Am- +plitude (Fvar) from the multi-wavelength light curve of the +source. The relation given in (Vaughan et al. 2003) is used to +determine the fractional variability (Fvar) +Fvar = +� +S2 − E2 +F 2 +(3) +err(Fvar) = +� +� +� +� +�� +1 +2N +E2 +F 2Fvar +�2 ++ +�� +E2 +N +1 +F +�2 +(4) +where S2 is the variance of the light curve, F is the aver- +age flux, E2 is the mean of the squared error in the flux +measurements and N is the number of flux points in a light +curve. We have estimated the Fvar for all the light curves +and the corresponding values are tabulated in Table 2. We +found that the source is more variable in UV followed by X- +ray and gamma-ray. We also plot the Fvar with respect to +the corresponding frequency in Figure 5. A similar behavior +is also seen for another TeV blazar 1ES 1727+502 for one of +the states (Prince et al. 2022). In past studies, it has also +been argued that the variability pattern resembles the shape +of the broadband SED seen in blazar if the source is observed +from radio to very high energy gamma-ray. One of the best +examples is Mrk 421 which is also a TeV source, where the +variability pattern during its two flaring states resembles the +blazar SED (Aleksić et al. 2015a,b). A long-term study, using +10 yrs data, is done on 1ES 1218+304 by Singh et al. (2019) +using the multi-wavelength data from radio to γ-ray and the +Fvar estimated on long-term period is different from what we +have found in our study. Singh et al. (2019) have found that +source is more variable in radio at 15 GHz followed by X-ray +and then optical-UV and γ-ray. +The timescale of variability is yet another important pa- +rameter that sets the bound on the size of the emission re- +gion. Doubling/Halving timescales are calculated for all time +bins from MJD 58119 to 59365 for the 7-day binned γ-ray +light curve. The formula used is: +F(t2) = F(t1) × 2(t2−t1)/Td +(5) +Here F(t1) and F(t2) are the fluxes measured at time t1 +and t2, respectively. Td is the flux doubling/halving time +scale. The fastest doubling/halving time (Tf) in γ-ray was +found to be 0.396 days. The value for tvar can be given by +tvar = ln(2)×Tf which is 0.275 days or 6.6 hours. The hour’s +scale variability is very common in blazar suggesting a com- +pact emitting region close to the central supermassive black +hole. +Waveband +Fvar +err(Fvar) +Fermi γ-ray +0.2601 +0.0964 +AstroSat-SXT X-ray +0.0421 +0.0058 +Swift X-ray +0.5074 +0.01513 +W1 +0.9448 +0.0006 +W2 +0.6805 +0.0005 +M2 +0.9448 +0.0007 +U +0.0242 +3.3185E-05 +V +0.0147 +0.0002 +B +0.0171 +0.0002 +R +0.0144 +6.5188E-05 +I +0.0120 +8.2755E-05 +Table 2. +Fractional variability amplitude (Fvar) parameter for +the blazar 1ES 1218+304 from optical to HE γ-rays using observa- +tions during January 1, 2018 - May 31, 2021 (MJD 58119-59365) +with different instruments. +Using the same equation we also calculate the time-scale vari- +ability for the 856 sec binned AstroSat SXT light curve shown +in Figure 1. The flux doubling/halving time is estimated as +Tf = 1848.645 sec and the tvar is 1281.29 sec (1.2 ksec) or +21.35 minutes. A similar flux variability time of 1.1 ksec is +also estimated for Mrk 421 in SXT light curve by Chatter- +jee et al. (2021). Considering the fact that 1ES 1218+304 +is a high synchrotron peaked blazar the X-ray will explain +the synchrotron emission. As argued by many authors that +the variability time can be associated with the characteristic +time scale in the system. Here, we consider that the X-ray +variability timescale can be linked with the radiation cooling +time scale due to synchrotron only. Under this assumption +the cooling time can be the fast X-ray variability time and +can be defined as (Rybicki & Lightman 1979), +tcool ≃ 7.74 × 108 (1 + z) +δ +B−2γ−1 sec. +(6) +Where, B is the strength of the magnetic field in Gauss and +tcool is the synchrotron cooling timescale in seconds. Follow- +ing Rybicki & Lightman (1979), We can also derive the char- +acteristic frequency of the electron population responsible for +the synchrotron emission at the peak frequency, +νch,e = 4.2 × 106 +δ +(1 + z)Bγ2 Hz. +(7) +Using the above two equations, we eliminate the γ since it +changes with different states and derives a single equation +given as, +B3δ ≃ 2.5(1 + z)(νch,e/1018)−1τ −2 +d . +(8) +Using the above equation we derive the magnetic field +strength for Doppler factor, δ, =30 and variability time scale +of 1.2 ksec and it is found to be 0.1 G. The strength of the +magnetic field derived from the broadband SED modeling is +a factor lower than this estimated value. This discrepancy +could be because of the many assumptions made in deriving +the eqn (7) or due to the degeneracy in the SED modeling. +3.4 Flux-Index Correlation +We computed flux-index correlation for the γ-ray and X-ray +data to study index hardening/softening. The flux vs index +plot is shown in Figure 6 with γ-ray on the upper panel and +MNRAS 000, 1–14 (2021) + +Multi-wavelength study of 1ES 1218+304 +7 +0 +1 +2 +3 +4 +5 +Flux0.3 +300 GeV +1.0 +1.5 +2.0 +2.5 +Index +0.5 +1.0 +1.5 +2.0 +Flux0.3 +10 KeV +1.5 +2.0 +2.5 +3.0 +Index +15.0 +15.5 +16.0 +16.5 +17.0 +Optical (mag) +U +B +V +R +I +15.5 +16.0 +16.5 +17.0 +17.5 +UV (mag) +W1 +M2 +W2 +58200 +58400 +58600 +58800 +59000 +59200 +MJD +14 +15 +16 +17 +Optical (mag) +ASAS-SN +Figure 4. Multi-wavelength light curve of 1ES 1218+304 from January 2018 to May 2021. 7-day binned γ-ray flux are presented in units +of 10−8 ph cm−2 s−1, and X-ray fluxes are in units of 10−10 erg cm−2 s−1. The vertical red line represents the Flare period from 5-7 +January 2019 and the vertical green line represents the Flare period from 15-20 January 2019. This period also includes the data from +AstroSat for the period 17-20 January 2019. We identify these periods as Flare A and Flare B. +X-ray on the lower panel. In the case of γ-ray, we have taken +data points with TS≥16. We also observe a positive corre- +lation between the flux and index, with Pearson correlation +coefficient, R = 0.644 and p-value ≈ 0. The trend follows +the linear function with slope = 0.212. In contrast to the +above plot, X-ray data shows an inverse trend i.e; a negative +correlation between flux and index, with Pearson correlation +coefficient, R = -0.748 and p-value ≈ 0. It can also be fit- +ted by a linear function with a slope = -0.423. This plot +shows two contrasting trends, we can see the ’harder-when- +brighter’ trend in the X-ray energy range and the ’softer- +when-brighter’ trend in the γ-ray energy range. A similar +trend is also observed for one of the TeV blazar 1ES 1727+502 +(Prince et al. 2022). One of the possible explanations for hav- +ing different trends in X-ray and gamma-ray is that they are +produced via two different processes. For BL Lac-type sources +such as 1ES 1218+304, it is well-known that the X-rays are +produced by the synchrotron process and γ-rays are produced +via the inverse-Compton process. A long-term study done by +Singh et al. (2019) also found a mild harder-when-brighter +MNRAS 000, 1–14 (2021) + +8 +R. Diwan et al. +1016 +1018 +1020 +1022 +1024 +1026 +Frequency (Hz) +0.0 +0.2 +0.4 +0.6 +0.8 +Fractional Variability amplitude +Gamma-ray +SWIFT X-ray +Optical +SWIFT-UV +AstroSat SXT +Figure 5. Fractional variability for various wavebands is plotted +with respect to their frequency. +0 +1 +2 +3 +4 +5 +6 +7 +Photon Flux (10 +8 ph cm +2 sec +1) +1.0 +1.5 +2.0 +2.5 +3.0 +Index +-ray +r= 0.644, p-value= 1.04×10 +11 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +Flux_(0.3-10 KeV) (10 +10 erg cm +2 sec +1) +1.6 +1.8 +2.0 +2.2 +2.4 +2.6 +2.8 +3.0 +Index +X-ray +r= -0.748, p-value= 1.139×10 +5 +Figure 6. Scatter plot for the correlation between flux and index of +the blazar 1ES 1218+304. The top plot represents the 7-day binned +Fermi-Lat data. The slope is positive and the Person correlation +coefficient is 0.644. The bottom plot represents Swift-XRT data +for Flux (0.3-10 KeV) vs Photon Index. The slope is negative and +the Pearson correlation coefficient is -0.748, it follows an inverse +trend as the γ-ray data. The orange line is a linear fit for reference. +trend in X-rays using almost 10 yrs of data. The average +spectral index is estimated as 1.99±0.16 which is consistent +with our estimated value as ∼2.0. These results are also con- +sistent with the long-term study done by Wierzcholska & +Wagner (2016) where they found the average photon spec- +tral index as ∼2.0±0.01 for different values of galactic ab- +sorption taken from different models. A recent study done by +Sahakyan (2020) estimated the average photon spectral index +≥2 for the period considering from 2008 to 2020. The spec- +tra can be even harder during the bright state as 1.60±0.05 +which is consistent with our result (see Figure 6). +103 +104 +105 +Energy (MeV) +10 +6 +10 +5 +10 +4 +E2 dN +dE [MeV cm +2 s +1] +Likelihood Fit +5-7 Jan +15-20 Jan +Total Time Period +Figure 7. The γ-ray SED extracted for both the period and fit- +ted with power-law using the Likelihood fit method. The fitting +parameters are discussed in the corresponding Section 3.5. +3.5 Fermi-LAT γ-ray spectral fitting +The process for data extraction and fitting is provided in +subsection 2.1. We have used the fermipy to extract the γ- +ray SED for the two periods (5-7 and 15-20 January 2019). +The SEDs are then fitted with a simple power law spectral +model. We noticed that the spectra are very hard and still +increasing with energy suggesting the involvement of high- +energy particles in their production. The fitted parameters +are given in Table 3 and the spectral index for period A +(Γ=1.55±0.23) and B (Γ=1.54±0.19) are much harder than +the average power law index, (Γ=1.75±0.03) for the total pe- +riod. The harder spectra suggest that the IC peak is even at +higher energy which is clearly seen in broadband SED model- +ing. A study by Costamante et al. (2018) also shows a harder +gamma-ray spectrum for many TeV blazar. A harder gamma- +ray spectrum is also seen in another TeV extreme blazar. In- +cluding the TeV data in broadband SED Aguilar-Ruiz et al. +(2022) modeled the SED for six such sources with a two- +zone emission model. Few new EHBL types sources are also +discovered with the MAGIC telescope and the Fermi-LAT +gamma-ray spectra were found to be very hard for all the +sources suggesting an extreme location of the second SED +peak above 100 GeV energy range (Acciari et al. 2020). A +long-term gamma-ray spectral index was also estimated for +1ES 1218+304 by Singh et al. (2019) and they found it to +be harder with 1.67±0.05, similar to our estimated value. Sa- +hakyan (2020) also estimated the γ-ray spectra averaged over +∼11.7 years which found to be 1.71±0.02 mostly consistent +with above discussed results. These values are also consistent +with the long-term average photon spectral index reported in +the recent 4FGL catalog. +3.6 Color-Magnitude Variations +The color-magnitude relation helps us understand the differ- +ent variability scenarios of the blazar. Fluctuations in optical +flux are often followed by spectral changes. Therefore study- +ing the color-magnitude (CM) relationship can further shed +light on the dominant emission mechanisms in the blazar. +To obtain a better understanding of the CM relation for our +source, we fit a linear plot (CI = m V +c) between the color +MNRAS 000, 1–14 (2021) + +Multi-wavelength study of 1ES 1218+304 +9 +Parameter +Flare A +Flare B +Whole Time Period +Units +Spectral Index (α) +-1.547 ± 0.230 +-1.540 ± 0.191 +-1.745 ± 0.030 +- +Flux (F0.3−300GeV ) +3.306 +3.063 +1.310 +10−8× photon(s) cm−2 s−1 +Prefactor (N0) +9.538 ± 3.633 +8.902 ± 2.796 +2.966 ± 0.122 +10−13× photon(s) cm−2 s−1 MeV−1 +TS +43.497 +48.297 +2913.496 +- +Table 3. Best fit spectral parameters of 1ES 1218+304 from Fermi-Lat observations using equation 1 for two flaring periods 58488-58490 +MJD (Flare A), 58498-58503 MJD (Flare B) and whole time period MJD 58119-59365. +15.6 +15.8 +16.0 +16.2 +16.4 +16.6 +(B+V)/2 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +Color Indices +B-V + 1.3 +B-I +R-I + 0.2 +V-R +Figure 8. Colour magnitude plot for 1ES 1218+304. The various +color indices are plotted against (B+V)/2. +indices (CI) and (B+V)/2 magnitude. We then estimate the +fit values, i.e., slope (m), constant (c), along with the corre- +lation coefficient (r) and the respective null hypothesis prob- +ability (p) using two methods, Pearson and Spearman, as +listed in Table 4. The generated CM plots are shown in Fig- +ure 8. Offsets of 1.3 and 0.2 are used for (B-V) and (R-I). +A positive slope with p < 0.05 implies a bluer-when-brighter +(BWB) trend or a redder-when-fainter trend (Agarwal et al. +2021) while a negative slope indicates a redder-when-brighter +trend (RWB). As evident from Table 4, a significant BWB is +dominant during our observation period for all possible color +indices, namely; (B-V), (B-I), (R-I), and (V-R). Blazars, in +general, display BWB from their quasi-simultaneous optical +observations (Ghosh et al. 2000; Agarwal et al. 2015; Gupta +et al. 2016a). +The BWB trend can be attributed to the process of elec- +tron acceleration to higher energies at the shock front, fol- +lowed by losing energy by radiative cooling while propagat- +ing away (Kirk et al. 1998). On the other hand, the opposite +trend of redder when brighter is observed more commonly +in FSRQs due to the contribution of bluer thermal emission +from the accretion disc (Villata et al. 2006). In addition to +BWB and RWB trends, other optical studies have revealed +cycle or loop-like trends (Agarwal et al. 2021), a mixed trend +where BWB is dominant during higher state while RWB dur- +ing the fainter state, or a stable-when-brighter (SWB) which +is no significant color-magnitude correlation in the data at +any timescale (Gupta et al. 2016b; Isler et al. 2017; Negi +et al. 2022; Agarwal et al. 2022). However, due to the lack +of simultaneous observations for a larger sample of blazars, +color-magnitude trends are still a topic of debate. +3.7 Broadband SED modeling +The broadband SED modeling in blazar is used to un- +derstand the simultaneous multi-wavelength emission from +the source along with the possible physical mechanism re- +sponsible for broadband flaring event. Simultaneous multi- +wavelength SEDs were generated for two time periods, which +overlapped with proposed flaring periods. The model fit- +ting was done using a publicly available code JetSet10 (Tra- +macere et al. 2009, 2011, 2020; Massaro, E. et al. 2006). +Broadband emission of BL Lac sources like 1ES 1218+304 is +better explained by the one-zone Synchrotron-Self Compton +(SSC) model. Leptonic models assume that relativistic lep- +tons (mostly electrons and positrons) interact with the mag- +netic field in the emission region and produce synchrotron +photons in the frequency region of radio to soft-X-ray or the +first hump of the SED. The emission in the frequency region +of X-ray to γ-ray or the second hump of the SED is pro- +duced by inverse Compton (IC) scattering of a photon popu- +lation further classified into synchrotron-self Compton (SSC) +or external Compton (EC) categories based on the source +of the seed photons. In the case of SSC models (Ghisellini +1993; Maraschi et al. 1992) relativistic electrons up-scatter +the same synchrotron photons which they have produced in +the magnetic field. The model assumes a spherically sym- +metric blob of radius (R) in the emission region, surrounded +by relativistic particles accelerated by the magnetic field (B). +The blob makes an angle θ with the observer and moves along +the jet with the bulk Lorentz factor Γ, affecting emission re- +gion by the beaming factor δ = 1/Γ(1 − β cos θ). The blob +is filled with a relativistic population of electrons following +an empirical lepton distribution relation and the power law +with an exponential cut-off (PLEC) distribution of particles +is assumed: +Ne(γ) = N0γ−αexp(−γ/γcut) +(9) +where γcut is the highest energy cut-off in the electron spec- +trum. We see that the optical/UV measurements are higher +than the non-thermal emission from the jet predicted by +the SSC model. We also see high flux points in UV/optical +range from the long-term observation of 1ES 1218+304, from +NASA/IPAC Extragalactic Database (NED)11. These obser- +vations suggest that the stellar emission from the host galaxy +of the source is dominant at optical/UV frequencies. In order +to accurately account for this emission due to the host galaxy, +we have added the host galaxy component during modeling +the SED using JetSet. Modeling of blazar 1ES 1218+304 is +based on the SSC model in reference to equation 9. Results +10 https://jetset.readthedocs.io/en/latest/ +11 https://ned.ipac.caltech.edu/ +MNRAS 000, 1–14 (2021) + +10 +R. Diwan et al. +Colour +In- +dices +Slope +Intercept +Pearson +Coeffi- +cient +Pearson +P-value +Spearman +Coeffi- +cient +Spearman +P-value +(B-V) +0.216 +± +0.024 +−3.152 +± +0.390 +0.752 +7.88E- +13 +0.774 +6.33E- +14 +(B-I) +0.446 +± +0.031 +−6.002 +± +0.506 +0.893 +1.15E- +19 +0.928 +6.06E- +24 +(R-I) +0.156 +± +0.019 +−1.982 +± +0.317 +0.550 +1.67E- +05 +0.734 +2.65E- +10 +(V-R) +0.085 +± +0.018 +−1.070 +± +0.292 +0.745 +1.52E- +10 +0.787 +2.77E- +12 +Table 4. Colour magnitude fitting and correlations coefficient. +2 +0 +2 +4 +6 +8 +10 +12 +14 +log(E) (eV) +12 +14 +16 +18 +20 +22 +24 +26 +28 +log( ) (Hz) +14 +13 +12 +11 +10 +9 +8 +log( F ) (erg cm +2 s +1) + -Sync + -SSC +host_galaxy +Total SED +FERMI +SWIFT UVOT +SWIFT XRAY +archived +Nustar +Figure 9. Broadband SED Modelling for 5-7 January 2019 (Flare +A). Optical data are fitted with the host galaxy template available +in JetSet. Archival NuSTAR data are also plotted in cyan color +which does not match with the current state X-ray spectral shape. +Due to the hard X-ray spectral index, the synchrotron peak is +shifted to higher energy (∼1020 Hz) compared to the synchrotron +peak location (1017−18 Hz) during 15-20 January as constrained +by AstroSat observation in Figure 3 and also visible in Figure 10. +for the SSC model are shown in Figure 9 and Figure 10 for +Flare A and Flare B. The model parameters are given in table +5. +3.7.1 The constraint on Doppler factor +We can calculate the minimum value of the Doppler factor +using the detection of high-energy photons from the source. +This calculation assumes the optical depth, τγγ(Eh), of the +highest energy photon, Eh, to γγ interaction is 1. The formula +for calculating the minimum value of the Doppler factor is +δmin = +�σtd2 +l (1 + z)2fϵEh +4tvarmec4 +�1/6 +(10) +where σt is the Thomson scattering cross-section for the elec- +tron (6.65 × 10−25cm2), dl is the luminosity distance of the +source, fϵ is the X-ray flux in 0.3-10 KeV energy range, Eh +is the highest energy photon, tvar is the observed variability +time. For 1ES 1218+304, z=0.182, dl is 924 Mpc and tvar is +0.275 days. Using the value of highest energy photon Eh = +162.822 GeV for Flare A and 278.132 GeV for Flare B, and +fϵ = 1.94 × 10−10 for Flare A and 1.55 × 10−10 for Flare B, +2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +log(E) (eV) +12 +14 +16 +18 +20 +22 +24 +26 +28 +log( ) (Hz) +14 +13 +12 +11 +10 +9 +log( F ) (erg cm +2 s +1) + -Sync + -SSC +host_galaxy +Total SED +FERMI +SWIFT UVOT +archived +Nustar +AstroSat-SXT +SWIFT XRAY +Figure 10. The plot is the same as Figure 8 but for 15-20 January +2019 (Flare B). Here also the archival NuSTAR spectrum does +not match the current state X-ray spectral shape which suggests +that the NuSTAR spectrum was taken in low-flux states. Here the +synchrotron peak is decided by both the XRT and SXT spectra +plotted on top of each other which peaks at roughly ∼2.68×1017 +Hz as estimated in section 3.1 using AstroSat data. +we get the δmin value to be 13.725 for Flare A and 14.455 for +Flare B. +3.7.2 The size of emission region +The information on the size and location of the emission re- +gion is very important for performing the SED modeling. The +variability time scale estimated from the γ-ray light curve is +used to estimate the size of the emission region. The radius +R can be estimated by using the equation, +R = cδmintvar/(1 + z), +(11) +where R is estimated to be 8.27 − 8.71 × 1015cm, using the +δmin calculated in the previous section, and tvar is calculated +in section 3.3. During SED modeling we have used the values +1.06 × 1016 cm for Flare A and 1.40 × 1016 cm for Flare B. +The location of the emission region along the jet axis from +the supermassive black hole can also be estimated from the +variability time assuming a spherical emission region by using +the expression d ∼ 2cΓ2tvar/(1+z). Using the Lorentz factor, +Γ = δmin and tvar = 0.275 days and z = 0.182, the location is +estimated to be, d ∼ 2×1017 cm. To optimize the broadband +SED modeling, we have fixed the location of the emission +region to 1.0 × 1017 cm along the jet axis. +MNRAS 000, 1–14 (2021) + +Multi-wavelength study of 1ES 1218+304 +11 +Sr. No. +Model Parameters +Unit +Flare A +Flare B +5-7 Jan +15-20 Jan +1. +γmin +- +88.342 +5.9990 +2. +γmax +- +6.3346 × 107 +6.2115 × 107 +3. +γcut +- +2.8153 × 107 +6.2216 × 105 +4. +RH +1017cm +1.0 +1.0 +5. +R +1016cm +1.0658 +1.4 +6. +α +- +1.482500 +1.530156 +7. +N +cm−3 +85.34312 +37.58231 +8. +B +G +2.7378 × 10−3 +1.3035 × 10−2 +9. +z +- +0.182 +0.182 +10. +δ +- +15.97827 +30.30340 +11. +Ue +erg cm−3 +3.470401 +4.179746 × 10−2 +12. +UB +erg cm−3 +2.982449 × 10−7 +6.760266 × 10−6 +13. +Pe +erg s−1 +9.460334 × 1045 +7.081457 × 1044 +14. +PB +erg s−1 +8.130172 × 1038 +1.145346 × 1041 +15. +Pjet +erg s−1 +1.060629 × 1046 +7.370064 × 1044 +16. +Reduced Chi-Squared +- +1.079990 +2.707362 +Host Galaxy +17. +nuFnu_p_host +erg cm−2 s−1 +-10.373 +-10.373 +18. +nu_scale +Hz +0.496 +0.493 +Table 5. [1-3] Minimum, maximum and cut Lorentz factor of injected electron spectrum [4] The position of the region [5] The size of +emission region [6] Spectral Index [7] Particle density [8] Magnetic field [9] Red Shift [10] Doppler factor [11] Electron energy density [12] +Magnetic field energy density [13] Jet power in electrons [14] Jet power in magnetic field [15] Total jet power +3.7.3 Jet Power +We have estimated the power carried by individual compo- +nents (leptons, protons, and magnetic fields) and the total +jet power. The total power of the jet was estimated using +Pjet = πR2Γ2c(U ′ +e + U ′ +p + U ′ +B) +(12) +Here Γ is the bulk Lorentz factor. U ′ +e, U ′ +p, U ′ +B are the energy +densities of electrons-positrons, cold protons and the mag- +netic field respectively in the co-moving jet’s frame (primed +quantities are in the co-moving jet frame while unprimed +quantities are in the observer frame). The power in leptons +is given by +Pe = 3Γ2c +4R +� Emin +Emax +EQ(E)dE +(13) +where Q(E) is the injected particle spectrum. The integration +limits, Emin and Emax are calculated by multiplying the min- +imum and maximum Lorentz factor (γmin and γmax) of the +electrons with the rest-mass energy of the electron respec- +tively. The power in the magnetic field is calculated using +PB = R2Γ2cB2 +8 +(14) +where B is the magnetic field strength obtained from the +SED modeling. The energy densities for electron-positron and +magnetic field for both Flare events were returned by our +model. The energy density for cold proton was not estimated +as it was too small. We calculated Pe, PB which are the power +carried by the leptons and the magnetic field respectively. The +total power Pjet ≈ Pe + PB along with the power of the in- +dividual components has been mentioned in Table 5. The jet +is dominated by the lepton’s power and its value decreases +for the second flare period. The luminosities have been com- +puted for a pure electron/positron jet since the proton con- +tent is not well known, and can be considered as the lower +limit. The absolute jet power Ljet ≃ 1×1046ergs−1 for Flare +A and is below the Eddington luminosity for a 5.6 × 108M⊙ +black hole mass (LEdd = 7.3 × 1046ergs−1) estimated from +the properties of the host galaxy in the optical band (Rüger +et al. 2010). For Flare B, Ljet ≃ 7.37 × 1044ergs−1 is signifi- +cantly below the LEdd. +3.7.4 Broadband emission during flaring states +We choose two flaring periods during the month of January +2019, MJD 58488-58490 (5-7 January 2019, Fig 9) and MJD +58498-58503 (15-20 January 2019, Fig 10) were modeled with +a one-zone leptonic scenario. The modeled parameters are +mentioned in Table 5. The model parameters inferred from +this fitting suggest that Flare A had more activity compared +to Flare B. Although the γmax and α are almost the same for +both the flares inferring that there was very little variability +in VHE γ-ray band, we see from Table 5 that γmin, γcut have +significantly higher values for Flare A compared to Flare B, +which may be due to the flaring seen in the X-ray band. The +magnetic field (B) for Flare A (2.73×10−3) is also less than +that of Flare B (1.30×10−2). During the fitting of SED, we +kept RH and δ as free parameters. We find that the value of +RH is close to the value we calculate using equation 11. We +also calculate the minimum doppler factor δmin between the +range (13.725-14.455), but during the SED modeling, we find +that for Flare A δ = 15.98 and for Flare B it is much higher δ += 30.30 then the calculated value. It suggests that variation +in δ could be one of the reasons for different flux states. +During these flares, the optical-UV emission is dominated +MNRAS 000, 1–14 (2021) + +12 +R. Diwan et al. +by thermal emission from the host galaxy and hence has been +modeled using the host galaxy model using JetSet. It is also +seen that the X-ray data is better explained by synchrotron +radiation of electrons. The SSC component of SED model- +ing dominates above 1020 Hz (∼ 1 MeV) and it is useful in +describing the data up to the VHE γ-ray band. +4 SUMMARY AND DISCUSSIONS +In our work, we present the multi-wavelength study of HBL +blazar 1ES 1218+304 from 1st January 2018 to 31st March +2021 (58119-59365), which also include the high flux event in +VHE γ-rays detected by both MAGIC and VERITAS obser- +vatories during January 2019. This high flux rate was also +seen in Swift-XRT and UVOT instruments. Hence we di- +vided our SED analysis into two flaring periods 5-7 Jan- +uary 2019 and 15-20 January 2019 for simultaneous multi- +wavelength observation of 1ES 1218+304. The fastest vari- +ability timescale was found to be 0.275 days from analyzing +the γ-ray light curve, constraining the size of the emission +region to 8.27 − 8.71 × 1015 cm, which came out to be higher +than previous modeling results (Rüger et al. 2010, Sahakyan +2020, Singh et al. 2019) but comparable to SED modeled +results in our case, see Table 5. The location of the emis- +sion region is estimated to be d ∼ 2 × 1017cm was similar +to that used for SED modeling. The highest energy photon +detected was 278.132 GeV which arrived during Flare B. We +can also see the ’harder-when-brighter’ trend in the X-ray en- +ergy range and the ’softer-when-brighter’ trend in the γ-ray +energy range. +The broadband SED modeling of the source was repro- +duced by a leptonic simple one-zone SSC model with the +electron energy distribution described by a Power-law with +an exponential cut-off (PLEC) function. Parameters like the +magnetic field, injected electron spectrum, and minimum and +maximum energy of injected electrons have been optimized +to get a good fit to the SEDs data points. So this study sug- +gests that a single-zone model can also be good enough to +explain the multi-waveband emissions from 1ES 1218+304. +The optical and UV emissions from the source are found to +be dominated by the stellar thermal emissions from the host +galaxy and can be modeled using the JetSet code by a simple +blackbody approximation (Rüger et al. 2010). +Costamante et al. (2018) argued that the broadband SED +modeling in hard-TeV blazar can be explained by the one- +zone SSC model at the expense of extreme electron ener- +gies with very low radiative efficiency. The maximum elec- +tron Lorentz factor estimated in their modeling for all the six +sources is orders of 107 which is consistent with our results +for 1ES 1218+304. The other modeling parameters such as +the size of the emission region, magnetic field strength, and +the magnetization parameters (UB/Ue) are very similar to +our SED modeling result for 1ES 1218+304. In our case, the +UB/Ue = 10−4 - 10−6 and in Costamante et al. (2018) it order +of 10−2 - 10−5. Similar results were also obtained by Kauf- +mann et al. (2011) where they model the broadband SED of +extreme TeV source 1ES 0229+200. The magnetic field and +the magnetization parameter (10−5) are consistent with our +results for 1ES 1218+304. But their model requires a narrow +electron energy distribution with γmin ∼ 105 to γmax ∼ 107 +rather than the broad energy range obtained in our study, +Costamante et al. (2018), and Acciari et al. (2020). +Acciari et al. (2020) have observed ten new TeV sources +with MAGIC from 2010 to 2017 for a total period of 262 +hours and the simultaneous X-ray observations confirm that +out of 10, 8 sources are of extreme nature. Their γ-SED +was found to be very hard between 1.4 to 1.9. Blazar 1ES +1218+304 is also an extreme TeV blazar and in our study, the +gamma-ray SED is found to be 1.5 consistent with the above +TeV sources. They have modeled all the sources with a sin- +gle zone conical-jet SSC model. Additionally, they also used +the proton-synchrotron and a leptonic scenario with a struc- +tured jet. They also argue that all the model provides a good +fit to the broadband SED but the individual parameters in +each model differ substantially. Comparing their SSC model +results to our SSC modeling the maximum electron energy is +consistent. The electron spectral index in our case is harder +than their results and also the magnetic field in our case is +much smaller. The estimated Lorentz factor is more or less +consistent with the Γ used for all the sources in their study. +In their recent work Aguilar-Ruiz et al. (2022) have modeled +the six well-known extreme BL Lac sources with a lepto- +hadronic two-zone emission model to explain the broadband +SED. In another study, Zech & Lemoine (2021) have shown +that the broadband SED of extreme BL Lac sources can be +explained by considering the co-acceleration of electrons and +protons on internal or recollimation shocks inside the rela- +tivistic jet. Sahakyan (2020) has modeled the average state +of 1ES 1218+304 with one-zone SSC model. The parameter +estimated in their study is mostly consistent with ours. How- +ever, our study focuses on the smaller period including two +flaring events. During the flaring event (15-20 Jan) the mag- +netic field and the magnetization parameters are estimated +as 1.30×10−2 Gauss and ∼10−4 which is comparable to the +value for the same parameters estimated by modeling the av- +erage state of the source in Sahakyan (2020). However, the +Doppler factor required in Sahakyan (2020) is much higher +than the Doppler factor needed to fit the flaring state in our +case. Singh et al. (2019) also modeled the average broadband +SED collected for almost 10 years with a one-zone SSC model. +The required γmin, γmax and Doppler factor are consistent +with our result but the size of the emission region is one order +of magnitude smaller than ours, and also the magnetic field +estimated in their model is much higher than what we found. +The difference in some of the parameters could be because +they modeled the average SED and in our case, we are more +focused on a short period of time. The optical-UV SED is +mostly off to the general trend of broadband SED of blazar +and hence in both cases is fitted with a host-galaxy contri- +bution. Singh et al. (2019) used a specific model to fit the +host-galaxy and estimated the black hole mass of the source, +however, in JetSet we can not include a specific model, and +hence host-galaxy is fitted as a free parameter. +The above discussion suggests that the known extreme BL +Lac sources are very less in number and need careful attention +and more broadband study to exactly quantify their nature +and the physical emission mechanism. +MNRAS 000, 1–14 (2021) + +Multi-wavelength study of 1ES 1218+304 +13 +5 CONCLUSIONS +In this work, we present the long-term study of the blazar +1ES 1218+304 using 3.5 years of near-simultaneous multi- +wavelength data from Fermi-LAT, SWIFT-XRT, SWIFT- +UVOT, AstroSat, and TUBITAK observations taken between +January 1, 2018, and March 31, 2021. This study explores the +broadband temporal and spectral behavior of the source dur- +ing flaring states. The main results of our study are provided +below: +• During the month of January 2019, VHE γ-rays detected +by both MAGIC and VERITAS observatory. This high flux +state was also seen in Fermi, Swift-XRT, and UVOT instru- +ments. The fractional variability estimated across the wave- +bands suggests that UV is more variable followed by X-ray, +γ-ray, and optical. +• The fast flux variability in γ-ray is calculated to be +0.275 days, the size of the emission region is estimated to +be ∼8×1015 cm, and the emission region is located at a dis- +tance of ∼ 2 × 1017 cm. A "harder-when-brighter" trend was +seen in X-ray whereas a "softer-when-brighter" trend was in +γ-ray. The γ-ray emission from 1ES 1218+304 can also be +described by a power law with a spectral index of ∼ 1.745. +• The Astrosat SXT light curve reveals a minute scale of +variability of the order of 20 minutes and the X-ray spectrum +is well fitted with both power-law and the log parabola mod- +els. However, the LP provides a better fit. A joint fit with the +LAXPC spectrum provides a great constrain on the location +of synchrotron peak roughly around 2.68×1017Hz. +• As seen in many other TeV blazars, a shift in syn- +chrotron peak is observed from one state to another state +from ∼1017−18 Hz to ∼1020 suggesting an extreme nature of +the source. +• The broadband SED modeling of the source is repro- +duced by a one-zone leptonic SSC model with the electron +energy distribution described by a Power-law with an expo- +nential cut-off (PLEC) function. We also find that the Opti- +cal/UV emissions from the source are dominated by the stel- +lar thermal emissions from the host galaxy which are modeled +by a simple blackbody approximation (Rüger et al. 2010) us- +ing JetSet. The JetSet code uses an approximation of the host +galaxy model to help fit the SED modeling. We need more +precise and dedicated observation in the UV/Optical band +for a better understanding of the host galaxy. +• 1ES 1218+304 is also an important source for obser- +vations within the upcoming high-energy ground-based tele- +scopes like CTA (Cherenkov Telescope Array)12 observatory +to establish the link beyond the GeV energy range, in the +realm of TeV γ-ray emission and MeV-GeV emission mea- +sured from the Fermi-LAT and its extreme blazar behavior. +ACKNOWLEDGEMENTS +D. Bose acknowledges the support of Ramanujan Fellowship- +SB/S2/RJN-038/2017. R. Prince is grateful for the support of +the Polish Funding Agency National Science Centre, project +2017/26/A/ST9/-00756 (MAESTRO 9) and MNiSW grant +DIR/WK/2018/12. This work made use of Fermi telescope +12 https://www.cta-observatory.org +data and the Fermitool package obtained through the Fermi +Science Support Center (FSSC) provided by NASA. This +work also made use of publicly available packages JetSet, Fer- +mipy, and PSRESP. This publication uses the data from the +AstroSat mission of the Indian Space Research Organisation +(ISRO), archived at the Indian Space Science Data Centre +(ISSDC). This work has used the data from the Soft X-ray +Telescope (SXT) developed at TIFR, Mumbai, and the SXT +POC at TIFR is thanked for verifying and releasing the data +via the ISSDC data archive and providing the necessary soft- +ware tools. We thank the LAXPC Payload Operation Center +(POC) at TIFR, Mumbai for providing the necessary soft- +ware tools. We have also made use of the software provided +by the High Energy Astrophysics Science Archive Research +Center (HEASARC), which is a service of the Astrophysics +Science Division at NASA/GSFC. +DATA AVAILABILITY +For this work, we have used data from the Fermi-LAT, Swift- +XRT, Swift-UVOT, and AstroSat which are available in the +public domain. We have also used optical data collected by +the TUBITAK telescope. This optical data was given to us +on request. Details are given in Section 2. +REFERENCES +Abdo A. A., et al., 2010, The Astrophysical Journal, 716, 30 +Abdollahi S., et al., 2020, The Astrophysical Journal Supplement +Series, 247, 33 +Abhir J., Joseph J., Patel S. R., Bose D., 2021a, MNRAS, 501, +2504 +Abhir J., Prince R., Joseph J., Bose D., Gupta N., 2021b, ApJ, +915, 26 +Acciari V. A., et al., 2009, ApJ, 695, 1370 +Acciari V. A., et al., 2020, ApJS, 247, 16 +Agarwal A., et al., 2015, MNRAS, 451, 3882 +Agarwal A., et al., 2019a, MNRAS, 488, 4093 +Agarwal A., et al., 2019b, Monthly Notices of the Royal Astronom- +ical Society, 488, 4093 +Agarwal A., et al., 2021, A&A, 645, A137 +Agarwal A., Pandey A., Özdönmez A., Ege E., Kumar Das A., +Karakulak V., 2022, ApJ, 933, 42 +Aguilar-Ruiz E., Fraija N., Galván-Gámez A., Benítez E., 2022, +MNRAS, 512, 1557 +Aharonian F. A., 2000, New Astron., 5, 377 +Albert J., et al., 2006, ApJ, 642, L119 +Aleksić J., et al., 2015a, A&A, 576, A126 +Aleksić J., et al., 2015b, A&A, 578, A22 +Atwood W. B., et al., 2009, ApJ, 697, 1071 +Barat S., Chatterjee R., Mitra K., 2022, Monthly Notices of the +Royal Astronomical Society, 515, 1655 +Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433 +Bose D., Chitnis V. R., Majumdar P., Acharya B. S., 2022, The +European Physical Journal Special Topics, 231, 3 +Böttcher M., Reimer A., Sweeney K., Prakash A., 2013, ApJ, 768, +54 +Cao G., Wang J.-C., 2013, Monthly Notices of the Royal Astro- +nomical Society, 436, 2170 +Chatterjee R., et al., 2021, arXiv e-prints, p. arXiv:2102.00919 +Costamante L., Bonnoli G., Tavecchio F., Ghisellini G., Taglia- +ferri G., Khangulyan D., 2018, Monthly Notices of the Royal +Astronomical Society, 477, 4257 +MNRAS 000, 1–14 (2021) + +14 +R. Diwan et al. +Feng +Q., +VERITAS +Collaboration +2022, +in +37th +Interna- +tional Cosmic Ray Conference. p. 802 (arXiv:2108.05333), +doi:10.22323/1.395.0802 +Fortin P., 2008, in Aharonian F. A., Hofmann W., Rieger F., +eds, American Institute of Physics Conference Series Vol. 1085, +American Institute of Physics Conference Series. pp 565–568 +(arXiv:0810.0301), doi:10.1063/1.3076735 +Ghisellini G., 1993, Advances in Space Research, 13, 587 +Ghosh K. K., Ramsey B. D., Sadun A. C., Soundararajaperumal +S., 2000, ApJS, 127, 11 +Giommi P., et al., 2006, A&A, 456, 911 +Gupta A. C., et al., 2016a, MNRAS, 458, 1127 +Gupta A. C., et al., 2016b, Monthly Notices of the Royal Astro- +nomical Society, 458, 1127 +HI4PI Collaboration et al., 2016, A&A, 594, A116 +Isler J. C., Urry C. M., Coppi P., Bailyn C., Brady M., MacPherson +E., Buxton M., Hasan I., 2017, ApJ, 844, 107 +Kaufmann S., Wagner S. J., Tibolla O., Hauser M., 2011, A&A, +534, A130 +Kirk J. G., Rieger F. M., Mastichiadis A., 1998, A&A, 333, 452 +Kochanek C. S., et al., 2017, PASP, 129, 104502 +Liu H. T., Bai J. M., 2006, The Astrophysical Journal, 653, 1089 +Lombardi S., Lindfors E., Becerra Gonzalez J., Colin P., Sitarek +J., Stamerra A., 2011, arXiv e-prints, p. arXiv:1110.6786 +Mannheim K., 1993, A&A, 269, 67 +Maraschi L., Ghisellini G., Celotti A., 1992, ApJ, 397, L5 +Massaro, E. Tramacere, A. Perri, M. Giommi, P. Tosti, G. 2006, +A&A, 448, 861 +Mirzoyan R., 2019, The Astronomer’s Telegram, 12354, 1 +Misra R., Roy J., Yadav J. S., 2021, Journal of Astrophysics and +Astronomy, 42, 55 +Mukherjee R., VERITAS Collaboration 2019, The Astronomer’s +Telegram, 12360, 1 +Nalewajko K., Begelman M. C., Sikora M., 2014, The Astrophysi- +cal Journal, 789, 161 +Negi V., Joshi R., Chand K., Chand H., Wiita P., Ho L. C., Singh +R. S., 2022, MNRAS, 510, 1791 +Prince R., 2019, ApJ, 871, 101 +Prince R., 2020, The Astrophysical Journal, 890, 164 +Prince R., Majumdar P., Gupta N., 2017, The Astrophysical Jour- +nal, 844, 62 +Prince R., Gupta N., Nalewajko K., 2019, ApJ, 883, 137 +Prince R., Khatoon R., Stalin C. S., 2021, MNRAS, 502, 5245 +Prince R., Khatoon R., Majumdar P., Czerny B., Gupta N., 2022, +Monthly Notices of the Royal Astronomical Society, 515, 2633 +Priya S., Prince R., Agarwal A., Bose D., Özdönmez A., Ege E., +2022, Monthly Notices of the Royal Astronomical Society, 513, +2239 +Ramazani V. F., Bonneli G., Cerruti M., 2019, The Astronomer’s +Telegram, 12365, 1 +Rybicki G. B., Lightman A. P., 1979, Radiative processes in astro- +physics +Rüger M., Spanier F., Mannheim K., 2010, Monthly Notices of the +Royal Astronomical Society, 401, 973 +Sahakyan N., 2020, MNRAS, 496, 5518 +Schlafly E. F., Finkbeiner D. P., 2011, The Astrophysical Journal, +737, 103 +Schlickeiser R., 1989a, ApJ, 336, 243 +Schlickeiser R., 1989b, ApJ, 336, 264 +Shappee B. J., et al., 2014, ApJ, 788, 48 +Shukla A., Mannheim K., 2020, Nature Communications, 11, 4176 +Singh K. P., et al., 2016, in den Herder J.-W. A., Takahashi T., +Bautz M., eds, Society of Photo-Optical Instrumentation Engi- +neers (SPIE) Conference Series Vol. 9905, Space Telescopes and +Instrumentation 2016: Ultraviolet to Gamma Ray. p. 99051E, +doi:10.1117/12.2235309 +Singh K. P., et al., 2017, Journal of Astrophysics and Astronomy, +38, 29 +Singh K. K., Bisschoff B., van Soelen B., Tolamatti A., Marais +J. P., Meintjes P. J., 2019, Monthly Notices of the Royal As- +tronomical Society, 489, 5076 +Sun S.-S., Li H.-L., Yang X., Lü J., Xu D.-W., Wang J., 2021, +Research in Astronomy and Astrophysics, 21, 197 +Tramacere A., 2020, JetSeT: Numerical modeling and SED fit- +ting tool for relativistic jets, Astrophysics Source Code Library, +record ascl:2009.001 (ascl:2009.001) +Tramacere A., Giommi P., Perri M., Verrecchia F., Tosti G., 2009, +A&A, 501, 879 +Tramacere A., Massaro E., Taylor A. M., 2011, ApJ, 739, 66 +Urry C. M., Padovani P., 1995, PASP, 107, 803 +Vaughan S., Edelson R., Warwick R. S., Uttley P., 2003, MNRAS, +345, 1271 +Villata M., et al., 2006, A&A, 453, 817 +Wierzcholska A., Wagner S. J., 2016, Monthly Notices of the Royal +Astronomical Society, 458, 56 +Wood M., Caputo R., Charles E., Di Mauro M., Magill J., +Perkins J. S., Fermi-LAT Collaboration 2021, in 35th In- +ternational +Cosmic +Ray +Conference +(ICRC2017). +p. +824 +(arXiv:1707.09551), doi:10.22323/1.301.0824 +Yadav J. S., et al., 2016, in den Herder J.-W. A., Takahashi T., +Bautz M., eds, Society of Photo-Optical Instrumentation Engi- +neers (SPIE) Conference Series Vol. 9905, Space Telescopes and +Instrumentation 2016: Ultraviolet to Gamma Ray. p. 99051D, +doi:10.1117/12.2231857 +Zech A., Lemoine M., 2021, A&A, 654, A96 +This paper has been typeset from a TEX/LATEX file prepared by +the author. +MNRAS 000, 1–14 (2021) + diff --git a/5NAzT4oBgHgl3EQfEPrI/content/tmp_files/load_file.txt b/5NAzT4oBgHgl3EQfEPrI/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f267ca245daacabeee29328df70311e3e81f9e8c --- /dev/null +++ b/5NAzT4oBgHgl3EQfEPrI/content/tmp_files/load_file.txt @@ -0,0 +1,1369 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf,len=1368 +page_content='MNRAS 000, 1–14 (2021) Preprint 4 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 Multi-wavelength study of TeV blazar 1ES 1218+304 using gamma-ray, X-ray and optical observations Rishank Diwan,1⋆ Raj Prince,2 Aditi Agarwal,3 Debanjan Bose,4† Pratik Majumdar,5 Aykut Özdönmez,6 Sunil Chandra,7,8 Rukaiya Khatoon,8 Ergün Ege,9 1Laboratory for Space Research, The University of Hong Kong, 405B Cyberport 4, 100 Cyberport Road, Cyberport, Hong Kong 2Center for Theoretical Physics, Polish Academy of Sciences, Al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Lotników 32/46, 02-668 Warsaw, Poland 3 Raman Research Institute, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Raman Avenue, Sadashivanagar, Bengaluru - 560080, India 4 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Bose National Centre for Basic Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Block-JD,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Sector-III,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Salt Lake,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Kolkata-700106 5 Saha Institute of Nuclear Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' a CI of Homi Bhabha National Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Kolkata 700064,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' West Bengal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' India 6 Ataturk University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Faculty of Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Department of Astronomy and Space Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 25240,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Yakutiye,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Erzurum 7 South African Astronomical Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Observatory Road,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Cape Town 7925,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' South Africa 8 Center for Space Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' North-West University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Potchefstroom,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2520,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' South Africa 9 Istanbul University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Faculty of Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Department of Astronomy and Space Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 34116,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Beyazıt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Istanbul,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Turkey Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' in original form ZZZ ABSTRACT We report the multi-wavelength study for a high-synchrotron-peaked BL Lac 1ES 1218+304 using near-simultaneous data obtained during the period from January 1, 2018, to May 31, 2021 (MJD 58119-59365) from various instruments including Fermi-LAT, Swift-XRT, AstroSat, and optical from Swift-UVOT & TUBITAK observatory in Turkey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source was reported to be flaring in TeV γ-ray during 2019 but no significant variation in Fermi-LAT is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A minute scale variability is seen in SXT light curve suggesting a compact emission region for their variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, Hour’s scale variability is observed in the γ-ray light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A "softer-when-brighter" trend is observed in γ-ray and an opposite trend is seen in X-ray suggesting both emissions are produced via two different processes as expected from an HBL source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have chosen the two epochs in January 2019 to study and compare their physical parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A joint fit of SXT and LAXPC provides a great constraint on the synchrotron peak roughly estimated to be ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='68×1017 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A clear shift in the synchrotron peak is observed from 1017−18 to 1020 Hz revealing its extreme nature or behaving like an EHBL-type source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The optical observation provides color-index variation as "blue-when-brighter".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The broadband SED is fitted with a single-zone SSC model and their parameters are discussed in the context of a TeV blazar and possible mechanism behind the broadband emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Key words: galaxies: active – galaxies: jets – gamma-rays: galaxies – radiation mechanisms: non-thermal – BL Lacertae objects: individual: 1ES 1218+304 1 INTRODUCTION Active galactic nuclei (AGN) host a supermassive black hole (SMBH) at the center which accretes matter from the sur- rounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The matters are in Keplerian orbit and fall into the SMBH via an accretion disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The mechanism proposed in Blandford & Znajek (1977) suggests that the magnetic field lines from the accretion disk get twisted and collimated due to the high spin of SMBH and eject the matter through a bipolar jet perpendicular to the accretion disk plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Later, the AGNs were classified based on how they are viewed commonly known as the AGN unification scheme (Urry & Padovani 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Blazars are a subclass of active galactic nu- clei that have their relativistic jet pointed to the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' ⋆ E-mail: rishank2610@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='com † E-mail: debaice@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='com They are characterized by rapid variability from hours to days’ timescales across all wavelengths, high polarization, and superluminal jet speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Blazars can be further subdivided into two classes: flat spectrum radio quasars (FSRQs) and BL Lacertae (BL Lac) objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The broad-band continuum spectra of blazars are dominated by non-thermal emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The spectral energy distribution of blazars is characterized by a double hump structure: the first hump is generally at- tributed to the synchrotron radiation in the radio to X-ray bands whereas there is intense debate about the origin of the second hump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The commonly accepted emission mech- anism is via inverse Compton scattering of the low-energy photons by high-energy electrons in the system from GeV to TeV energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' There are alternative scenarios proposed by several authors which involve hadronic interactions pro- ducing neutral pions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' These pions decay to generate photons in the GeV-TeV energies (Mannheim 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Aharonian 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' © 2021 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='00991v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='HE] 3 Jan 2023 2 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Böttcher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The BL Lac-type sources are further subdivided into three main classes depending on the position of their low-energy peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' If the synchrotron peak is observed at < 1014Hz, those BL Lacs are called low-frequency peaked BL Lacs (LBLs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' If the synchrotron peak is observed be- tween 1014Hz and 1015Hz, then they are called intermediate- frequency peaked BL Lacs (IBLs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Finally, BL Lacs with syn- chrotron peak ≥ 1015Hz is called high-frequency peaked BL Lacs (HBLs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' There is also a newly defined class of ultra- high-frequency peaked BL Lacs (UHBLs) with the spectral peak of the second bump (high energy peak) in the SED lo- cated at an energy of 1 TeV or above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' These blazars are also known as "extreme blazars" or EHBLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (Abdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Multiwavelength observation of blazars is a very important tool for investigating the various properties of the blazars and the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' For example, the shortest variability timescale allows one to put strong constraints on the size of the emission re- gion of the blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The location of the emission region along the jet axis is another challenging problem in blazar physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Many studies have been done in the past to locate the emis- sion region, in some cases, it has been found that the emission happens very close to the SMBH within the broad-line region (BLR) (Prince 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Prince et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, in some studies, it has been proposed to be at higher distances be- yond the broad-line region (Cao & Wang 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Nalewajko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Barat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The break or curvature in the γ-ray spectrum above 10-20 GeV suggests the emission region within the BLR as the BLR is opaque to high energy pho- tons above 10 GeV ( Liu & Bai 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The cross-correlation studies among the various wavebands are another way to lo- cate the emission region along the jet axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In many studies, it has been reported that simultaneous broadband emissions generally have a co-spatial origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, in some cases, a significant time lag has been reported strongly suggesting the different locations for the different emissions (Prince 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the first case scenario, one zone emission model is favored to explain the broadband SED, and in the later case, the multi-zone emission model is preferred (Prince et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The production of high-energy γ-rays in blazar suggests an acceleration of charged particles to very high energy and many models have been proposed to explain the acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The most accepted mechanisms are the diffusive shock accel- eration (Schlickeiser 1989a,b) and the magnetic re-connection (Shukla & Mannheim 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In many studies shock accelera- tion has been favored which also demands the emission region close to the SMBH within the BLR because the shocks are produced and are strong at the base of the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' On the other hand, the magnetic reconnection happens due to external per- turbation and hence demands the jet to be less collimated i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' the emission region is farther from the base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In this paper, we report on a multiwavelength study of the TeV blazar 1ES1218+304 to understand the broadband prop- erties of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It is located at a redshift, z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='182 with R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' = 12 21 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 (hh mm ss), Dec = +30 11 29 (dd mm ss).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It has been observed in TeV energy with VERITAS (Fortin 2008, Acciari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2009) and MAGIC (Albert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2006, Lombardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2011) and are part of TeV Catalog1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The paper is arranged in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We discuss the multiwavelength observations and the data analysis proce- 1 http://tevcat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='uchicago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='edu/ dures from different instruments used in this study in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In section 3, we have discussed the results from Astrosat alone and the broadband light curves and spectral energy dis- tributions at length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In Section 4 we summarise and discussed the important findings in the context of blazar physics and eventually conclude our work in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2 MULTIWAVELENGTH OBSERVATIONS, DATA ANALYSIS AND DATA REDUCTION The following section describes the data analysis technique used to generate a multi-waveband light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the sub- sections, we provide a description of the data analysis tech- nique of γ-ray data collected from Fermi-Lat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' X-ray, and UV-optical data were collected from Swift-XRT and Swift- UVOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Also, soft X-ray and hard X-ray data were collected from AstroSat-SXT and AstroSat-LAXPC, respectively and Optical Data from TUBITAK National Observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 Fermi-LAT γ-ray Observatory Large Area Telescope (LAT) is a gamma-ray telescope placed on Fermi gamma-ray space observatory2 which was launched in 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It has a working energy range of 20 MeV to 1 TeV with a field of view of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 Sr (Atwood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The orbital period of the telescope is around ∼ 96 mins in each hemisphere and covers the entire sky in total ∼ 3 hr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Blazar 1ES 1218+304 is continuously being monitored since 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In this study, we have analyzed the data from 1st January 2018 - 31st May 2021 when the source was reported to be flaring in gamma-ray (January 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The analysis was performed using Fermipy v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='43(Wood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2021) and the standard Fermi tools software (Fermitools v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='23)4 between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A 15◦ circular region was chosen around the source to extract the photon events with evclass=128 and evtype=3 and the time intervals were re- stricted using ‘(DATA_QUAL>0)&&(LAT_CONFIG==1)’ as recommended by the Fermi-LAT team in the fermitools documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source model file was generated using the Fermi 4FGL catalog (Abdollahi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2020) and the back- ground gamma-ray emission was taken care of by using the gll_iem_V07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='fits file along with the isotropic background emission by using the iso_P8R3_SOURCE_V2_v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='txt file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In addition, the zenith angle cut was chosen as 90◦ to reduce the contamination from the Earth limb’s γ-ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source and background were modeled by the binned Likelihood method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Initially, the spectral parameters of all the sources were kept free to optimize the γ-ray emission from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Eventually, we generated the γ-ray light curves for 7, 15, and 30 days of binning for our scientific purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' To extract lightcurve and perform spectral fitting normalization of the sources only within 2◦ of ROI were kept free, and the rest of the param- eters and other source models were frozen, except that of Source of Interest, in this case, blazar 1ES 1218+304 and a high flux source 4FGL J1217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='9+3007, with an offset of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='753◦ from 1ES 1218+304, which constitutes to 10 parameters for 2 https://fermi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='gsfc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='nasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='gov/ 3 Fermipy webpage 4 Fermtools Github page MNRAS 000, 1–14 (2021) Multi-wavelength study of 1ES 1218+304 3 likelihood analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' PowerLaw model was used for the source as given below: dN(E) dE = No × � E Eo �−α (1) where Eo and No are the scale factor and the prefactor, re- spectively provided in the 4FGL catalog and α is the spectral index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 AstroSat On January 03, 2019 MAGIC reported a gamma-ray activ- ity and detection of very high energy γ ray from blazar 1ES 1218+304 (Mirzoyan 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Later, VERITAS also detected a γ-ray flare from this source (Mukherjee & VERITAS Collab- oration 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Following these two events, we proposed a tar- get of opportunity proposal in India’s first space-based multi- wavelength observatory, AstroSat5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Observations were car- ried out from 17th to 20th January with a soft-Xray telescope (SXT) and large area X-ray proportional counter (LAXPC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 SXT The SXT working energy range is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV and the ob- servation was performed with photon counting mode (PC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The level-1 data was downloaded from the webpage and fur- ther reduction was performed with the latest SXT pipeline, sxtpipeline1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4b (Release Date: 2019-01-04).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It produces the cleaned level-2 data products which were used for fur- ther analysis (Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016, Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The ob- servations were done in various orbits and therefore it was merged together with the help of SXTEVTMERGERTOOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The X-ray light curve is extracted using XSELECT with a circular region of 16′ centered on the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The energy selection of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV was applied in XSELECT itself using the chan- nel filtering through pha_cutoff filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source spectrum was extracted for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV energy range and the back- ground spectrum file was used provided by the AstroSat SkyBkg_comb_EL3p5_Cl_Rd16p0_v01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='pha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The spectrum was grouped in GRPPHA in order to have good photon statistics in each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The ancillary response file (arf) was generated using sxtARFModule and the RMF file (sxt_pc_mat_g0to12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='rmf) was provided by the SXT-POC (Payload Operation Cen- ter) team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Eventually, the X-ray spectra from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 KeV with proper background and response files were loaded in XSPEC and fitted with the simple absorbed power-law and log-parabola spectral models with the correction of ISM ab- sorption model at NH = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='91×1020 cm−2 (HI4PI Collabora- tion et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 LAXPC LAXPC works in the hard X-ray energy range from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0-80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV (Yadav et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016) consisting of three identical detec- tors namely LAXPC10, LAXPC20, and LAXPC30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Unfor- tunately, LAXPC 10 was operating at a lower gain during the time of observation period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Also, the LAXPC30 detec- tor has a gain instability issue caused by substantial gas 5 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='isro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='in/AstroSat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='html leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Therefore, we used only LAXPC20 for the analy- sis, and the corresponding results are presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The Level-1 data were processed using the LaxpcSoft package available in AstroSat Science Support Cell (ASSC)6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We generated the Level-2 combined event file using the com- mand laxpc_make_event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' During the data processing, a good time interval was applied to exclude the time inter- vals corresponding to the Earth occultation periods, SAA passage, and standard elevation angle screening criteria by using the laxpc_make_stdgti tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Finally, the tools laxpc_make_spectra and laxpc_make_lightcurve were used to produce the spectra and lightcurve of the source, using the gti file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We restricted the spectra to the energy range of 4-20 keV since the background dominates the spectra above this energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the spectral analysis, a 3% systematic un- certainty was added to the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The obtained lightcurve is not background subtracted, therefore we estimated the back- ground following the faint source routine (Misra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, due to insignificant variations observed in the ex- tracted lightcurve from LAXPC20, we did not use them in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 The Neil Gehrels Swift Observatory Simultaneous to AstroSat, blazar 1ES 1218+304 was also ob- served in X-ray with Swift-XRT and in optical-UV by Swift- UVOT telescopes7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It provides a unique opportunity to have simultaneous broadband light curves and spectrum which is important to decipher the cause behind the flare and the broadband emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 XRT X-ray telescope (XRT) works in an energy range between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3- 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Multiple observations were done during this period with an average of 2ks exposure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have analyzed the data following the standard Swift xrtpipeline and the details can be found on Swift webpage8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The cleaned event files were pro- duced and a circular region of 10” was chosen for the source and background around the source and away from the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Tool XSELECT was used to extract the source light curve and the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The spectrum was binned by using the tool GRPPHA to have a sufficient number of counts in each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A proper ancillary response file (ARF) and the redistribution matrix files (RMF) were used to model the X-ray spectra in XSPEC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A simple unabsorbed power law was used to fit the X- ray 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV spectra and extract the X-ray flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The soft X-ray (below 1 keV) is prone to go through interstellar ab- sorption in Milky-way and hence a correction is applied with NH = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='91×1020 cm−2 (HI4PI Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 UVOT Having an ultraviolet-optical telescope has the advantage of getting simultaneous observations to X-ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' UVOT has six filters namely U, B, and V in optical and W1, M2, and W2 in the ultraviolet band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The image files were opened in DS9 6 http://astrosat-ssc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='iucaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='in 7 https://swift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='gsfc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='nasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='gov/ 8 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='swift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='uk/analysis/xrt/ MNRAS 000, 1–14 (2021) 4 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Best fit spectral parameters of 1ES 1218+304 from SXT observations of 17-20 January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' X-ray flux is presented in the unit (erg cm−2 s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The spectrum is fitted with both the power-law and log-parabola models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the last row, we show the joint fit of the SXT and LAXPC spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also added a 3% systematic in the fit as suggested by the AstroSat team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The parameters are compared for free and fixed NH (HI4PI Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016) values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The overall fit provide better fit with free NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Model Parameters Value Power-law Fixed nH Free nH TBabs NH(1022cm−2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0191 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='057±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='005 Index Γ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='95±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='01 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='11±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='02 Flux F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='427 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='004) × 10−10 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='474 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='006) × 10−10 χ2/dof 777/434 595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75/433 Logparabola TBabs NH(1022cm−2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0191 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='075±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='014 Index α 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='90±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='21±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='08 β 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='28±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='15±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='11 Flux F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='300 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='009) × 10−10 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='585 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='037) × 10−10 χ2/dof 642.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='28/433 590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='55/432 Logparabola joint fit SXT + LAXPC TBabs NH(1022cm−2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0191 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='042±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='010 Index α 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='85±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='98±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='06 β 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='33±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='22±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='06 Norm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0262±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0281 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0009 Constant factor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='96±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='96±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='04 χ2/dof 601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='16/402 587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='72/401 software and the source and background region of 5" and 10" were selected around the source and away from the source, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The task UVOTSOURCE has been used to get the magnitudes which were later corrected for galactic reddening, E(B-V)=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0176 (Schlafly & Finkbeiner 2011) and converted into the fluxes using zero points and the conversion factor (Giommi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 Optical The optical observations of our source were performed in the Johnson BVRI bands using the three ground-based facilities in Turkey, namely, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6m RC robotic (T60) and the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0m RC (T100) telescopes at TUBITAK National Observatory, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5m RC telescope at Ataturk University in Turkey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Techni- cal details of these telescopes are explained in Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The standard data reduction of all CCD frames, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' the bias subtraction, twilight flat-fielding, and cosmic-ray re- moval, was done as mentioned in (Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2019a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 Archival We have used the archival optical data from ASAS-SN (All- Sky Automated Survey for Supernovae) (Shappee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Kochanek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='We have also used long-term high flux observation in UV/Optical range from NASA/IPAC Extra- galactic Database (NED)9 for providing the reference points in our SED analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have also extracted the NuSTAR SED data points from (Sahakyan 2020) and plotted them alongside our SED analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 9 https://ned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='ipac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='edu/ 3 RESULTS In this section, we provide the main results of our work using the above broadband observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have explained various characteristics of broadband light curves and spectral energy distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 Astrosat results Astrosat observations in SXT and LAXPC were done dur- ing 17-20 January 2019 after two weeks of TeV detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have produced the SXT light curve and the spectrum as shown in Figure 1 and Figure 2 for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV energy band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source appears to be variable on a short-time scale and the corresponding fractional variability and vari- ability time is estimated in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A spectrum is ex- tracted in the energy range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7 keV and fitted with the power law and log-parabola models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The best-fit parame- ters are presented in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We started with a power-law with fixed hydrogen column density, NH = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0191×1020 cm−2 and ended up getting χ2/dof = 777/434 with photon spec- tral index, Γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='95±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7 keV flux, F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3−7keV = (14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='27±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='04)×10−11 ergs/cm2/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Next, we keep NH as a free parameter and the best fit value is estimated as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='057±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='005 in units of 1020 cm−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The χ2/dof has improved to 595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75/433 and the spectral index was found to be 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='11±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='02 with almost the same 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7 keV flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We repeat the same procedure with the log parabola model and with both the cases of fixed and free NH and it gives a better fit than the power law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' With the free NH parameter we achieved a better fit with χ2/dof = 590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='55/432 compared to the power-law case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The best-fit spectral index is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='21±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='08 a bit softer than the power-law index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The details about the other parameters are provided in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' MNRAS 000, 1–14 (2021) Multi-wavelength study of 1ES 1218+304 5 0 20000 40000 60000 80000 100000 120000 Time(s) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 Counts/sec SXT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' AstroSat-SXT light curve for energy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The bin size is taken as 856 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We could not get a good light curve in LAXPC but ex- tracted the spectrum from 4-20 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The SXT and LAXPC spectra are jointly fitted with Power law and Log-parabola models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the case of the Power-law, we get the χ2/dof = 948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='46/403 and 623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='25/402 for fixed and free NH val- ues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In both cases, the reduced-χ2 is much higher than the case of Log-parabola (Table 1) and hence not pur- sued further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' For the joint fit, we used the total model as constant*tbabs*logpar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The constant factor is fixed at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 for data group 1 and kept as a free parameter for data group 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The best fit value for the constant factor is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='96±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='04 for both fixed and free NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The overall reduced-χ2 is improved when the NH is free and it is estimated as 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 (×1020 cm−2), almost two times higher than the fixed NH value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Fig- ure 3 shows the best fit plot with a log-parabola model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We found that the spectral index, α, and the curvature parame- ter, β are a bit different during fixed and free NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The math- ematical representation of the log-parabolic model is given as, F(E) = K(E/E1)(−α+βlog(E/E1))ph cm−2 s−1 keV, (2) where K is the normalization and the E1 is the reference energy fixed at 1 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Using the best-fit parameters of the log-parabola model we can estimate the location of the syn- chrotron peak, which is given as Ep = E1 10(2−α)/2β keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' For α=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='98 and β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='22, the Ep is estimated as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='11 keV or 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='68×1017 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The peak of the synchrotron emission is mostly constrained by the X-ray as shown in Figure 3 which peaks at ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='68×1017 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 Broadband Light curves We have collected the γ-ray data between 2018 to 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source was found to be in a flaring state in γ-ray during Jan 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Simultaneous observation in Swift-XRT and UVOT also confirms the flaring behavior in X-ray as well as in optical-UV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' On 02 January 2019 source was reported to be flaring in very high energy gamma-ray by MAGIC (Mirzoyan 2019) which was followed by VERITAS (Mukherjee & VERITAS Collaboration 2019) and observation was done on 4, 5, and 6 January 2019 show high flux state above 100 GeV and the corresponding period is marked by light pink color in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We identify this period as Flare A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In X-ray 10−3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 1 normalized counts s−1 keV−1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 ratio Energy (keV) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 - 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV energy spectrum of 1ES 1218+304 fitted with Logparabola spectral model with free galactic absorp- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The SXT data were taken during the period 17-20 January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 10−10 2×10−11 5×10−11 ν Fν (ergs cm−2 s−1) 1017 1018 2×1017 5×1017 2×1018 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2 ratio Energy (Hz) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The joint SXT (red) and LAXPC (blue) spectra are modeled together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The SXT energy range is taken as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 - 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV and LAXPC is taken from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0-20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The joint spectra are fitted with a log parabola spectral model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Both spectra were taken simultaneously during the period of 17-20 January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' and optical source was reported to be historically bright with flux around ∼ 2×10−10 erg cm−2 s−1 in X-ray and with R band flux 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='35±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='05 mJy (Ramazani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also proposed this source in India’s first space mission, AstroSat for broadband observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Our observation was done between 17-20 January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This period is marked as a vertical green line in Figure 4 and identified as Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The first two panels of Figure 4 represent the long-term γ-ray (GeV) light curve and corresponding photon spectral index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The source is not very bright in Fermi-LAT but a clear variability in the flux is seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Panel 3 & 4 represent the long-term Swift-XRT light curve and corresponding photon spectral index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A clear X-ray brightening during Jan 2019 is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' During this period, we do not have many optical observations (panel 5), and hence it’s difficult to comment on the flux level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, in UV (W1, M2, W2) bands (panel 6) high flux state is observed corresponding to TeV and X-ray activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In panel 7, we show the archival optical data from ASAS-SN, and no short time scale variability MNRAS 000, 1–14 (2021) 6 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' is seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also have optical data from the ground-based observatory (panel 5) which covers the last part of the light curve showing a nice variation from a high flux state to a low flux state, suggesting a long-term variation in optical bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 Variability Study In general, blazar shows significant variability during the flar- ing period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The properties of these flares can depend on var- ious factors like particle injection, particle acceleration, and energy dissipation in the jets of the blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' To study this in- trinsic property we calculate the Fractional Variability Am- plitude (Fvar) from the multi-wavelength light curve of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The relation given in (Vaughan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2003) is used to determine the fractional variability (Fvar) Fvar = � S2 − E2 F 2 (3) err(Fvar) = � � � � �� 1 2N E2 F 2Fvar �2 + �� E2 N 1 F �2 (4) where S2 is the variance of the light curve, F is the aver- age flux, E2 is the mean of the squared error in the flux measurements and N is the number of flux points in a light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have estimated the Fvar for all the light curves and the corresponding values are tabulated in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We found that the source is more variable in UV followed by X- ray and gamma-ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also plot the Fvar with respect to the corresponding frequency in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A similar behavior is also seen for another TeV blazar 1ES 1727+502 for one of the states (Prince et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In past studies, it has also been argued that the variability pattern resembles the shape of the broadband SED seen in blazar if the source is observed from radio to very high energy gamma-ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' One of the best examples is Mrk 421 which is also a TeV source, where the variability pattern during its two flaring states resembles the blazar SED (Aleksić et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2015a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A long-term study, using 10 yrs data, is done on 1ES 1218+304 by Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2019) using the multi-wavelength data from radio to γ-ray and the Fvar estimated on long-term period is different from what we have found in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2019) have found that source is more variable in radio at 15 GHz followed by X-ray and then optical-UV and γ-ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The timescale of variability is yet another important pa- rameter that sets the bound on the size of the emission re- gion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Doubling/Halving timescales are calculated for all time bins from MJD 58119 to 59365 for the 7-day binned γ-ray light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The formula used is: F(t2) = F(t1) × 2(t2−t1)/Td (5) Here F(t1) and F(t2) are the fluxes measured at time t1 and t2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Td is the flux doubling/halving time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The fastest doubling/halving time (Tf) in γ-ray was found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='396 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The value for tvar can be given by tvar = ln(2)×Tf which is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='275 days or 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The hour’s scale variability is very common in blazar suggesting a com- pact emitting region close to the central supermassive black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Waveband Fvar err(Fvar) Fermi γ-ray 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2601 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0964 AstroSat-SXT X-ray 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0421 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0058 Swift X-ray 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='01513 W1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='9448 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0006 W2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0005 M2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='9448 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0007 U 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0242 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3185E-05 V 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0147 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0002 B 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0171 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0002 R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0144 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5188E-05 I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0120 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2755E-05 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Fractional variability amplitude (Fvar) parameter for the blazar 1ES 1218+304 from optical to HE γ-rays using observa- tions during January 1, 2018 - May 31, 2021 (MJD 58119-59365) with different instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Using the same equation we also calculate the time-scale vari- ability for the 856 sec binned AstroSat SXT light curve shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The flux doubling/halving time is estimated as Tf = 1848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='645 sec and the tvar is 1281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='29 sec (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 ksec) or 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='35 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A similar flux variability time of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 ksec is also estimated for Mrk 421 in SXT light curve by Chatter- jee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Considering the fact that 1ES 1218+304 is a high synchrotron peaked blazar the X-ray will explain the synchrotron emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' As argued by many authors that the variability time can be associated with the characteristic time scale in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Here, we consider that the X-ray variability timescale can be linked with the radiation cooling time scale due to synchrotron only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Under this assumption the cooling time can be the fast X-ray variability time and can be defined as (Rybicki & Lightman 1979), tcool ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='74 × 108 (1 + z) δ B−2γ−1 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (6) Where, B is the strength of the magnetic field in Gauss and tcool is the synchrotron cooling timescale in seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Follow- ing Rybicki & Lightman (1979), We can also derive the char- acteristic frequency of the electron population responsible for the synchrotron emission at the peak frequency, νch,e = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 × 106 δ (1 + z)Bγ2 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (7) Using the above two equations, we eliminate the γ since it changes with different states and derives a single equation given as, B3δ ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5(1 + z)(νch,e/1018)−1τ −2 d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (8) Using the above equation we derive the magnetic field strength for Doppler factor, δ, =30 and variability time scale of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 ksec and it is found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The strength of the magnetic field derived from the broadband SED modeling is a factor lower than this estimated value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This discrepancy could be because of the many assumptions made in deriving the eqn (7) or due to the degeneracy in the SED modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 Flux-Index Correlation We computed flux-index correlation for the γ-ray and X-ray data to study index hardening/softening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The flux vs index plot is shown in Figure 6 with γ-ray on the upper panel and MNRAS 000, 1–14 (2021) Multi-wavelength study of 1ES 1218+304 7 0 1 2 3 4 5 Flux0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 300 GeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 Index 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 Flux0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 10 KeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 Index 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 Optical (mag) U B V R I 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 UV (mag) W1 M2 W2 58200 58400 58600 58800 59000 59200 MJD 14 15 16 17 Optical (mag) ASAS-SN Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Multi-wavelength light curve of 1ES 1218+304 from January 2018 to May 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 7-day binned γ-ray flux are presented in units of 10−8 ph cm−2 s−1, and X-ray fluxes are in units of 10−10 erg cm−2 s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The vertical red line represents the Flare period from 5-7 January 2019 and the vertical green line represents the Flare period from 15-20 January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This period also includes the data from AstroSat for the period 17-20 January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We identify these periods as Flare A and Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' X-ray on the lower panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the case of γ-ray, we have taken data points with TS≥16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also observe a positive corre- lation between the flux and index, with Pearson correlation coefficient, R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='644 and p-value ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The trend follows the linear function with slope = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In contrast to the above plot, X-ray data shows an inverse trend i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='e;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' a negative correlation between flux and index, with Pearson correlation coefficient, R = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='748 and p-value ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It can also be fit- ted by a linear function with a slope = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This plot shows two contrasting trends, we can see the ’harder-when- brighter’ trend in the X-ray energy range and the ’softer- when-brighter’ trend in the γ-ray energy range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A similar trend is also observed for one of the TeV blazar 1ES 1727+502 (Prince et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' One of the possible explanations for hav- ing different trends in X-ray and gamma-ray is that they are produced via two different processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' For BL Lac-type sources such as 1ES 1218+304, it is well-known that the X-rays are produced by the synchrotron process and γ-rays are produced via the inverse-Compton process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A long-term study done by Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2019) also found a mild harder-when-brighter MNRAS 000, 1–14 (2021) 8 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 1016 1018 1020 1022 1024 1026 Frequency (Hz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='8 Fractional Variability amplitude Gamma-ray SWIFT X-ray Optical SWIFT-UV AstroSat SXT Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Fractional variability for various wavebands is plotted with respect to their frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 0 1 2 3 4 5 6 7 Photon Flux (10 8 ph cm 2 sec 1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 Index ray r= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='644, p-value= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='04×10 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='00 Flux_(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-10 KeV) (10 10 erg cm 2 sec 1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 Index X-ray r= -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='748, p-value= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='139×10 5 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Scatter plot for the correlation between flux and index of the blazar 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The top plot represents the 7-day binned Fermi-Lat data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The slope is positive and the Person correlation coefficient is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='644.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The bottom plot represents Swift-XRT data for Flux (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-10 KeV) vs Photon Index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The slope is negative and the Pearson correlation coefficient is -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='748, it follows an inverse trend as the γ-ray data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The orange line is a linear fit for reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' trend in X-rays using almost 10 yrs of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The average spectral index is estimated as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='99±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='16 which is consistent with our estimated value as ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' These results are also con- sistent with the long-term study done by Wierzcholska & Wagner (2016) where they found the average photon spec- tral index as ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='01 for different values of galactic ab- sorption taken from different models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A recent study done by Sahakyan (2020) estimated the average photon spectral index ≥2 for the period considering from 2008 to 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The spec- tra can be even harder during the bright state as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='60±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='05 which is consistent with our result (see Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 103 104 105 Energy (MeV) 10 6 10 5 10 4 E2 dN dE [MeV cm 2 s 1] Likelihood Fit 5-7 Jan 15-20 Jan Total Time Period Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The γ-ray SED extracted for both the period and fit- ted with power-law using the Likelihood fit method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The fitting parameters are discussed in the corresponding Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 Fermi-LAT γ-ray spectral fitting The process for data extraction and fitting is provided in subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have used the fermipy to extract the γ- ray SED for the two periods (5-7 and 15-20 January 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The SEDs are then fitted with a simple power law spectral model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We noticed that the spectra are very hard and still increasing with energy suggesting the involvement of high- energy particles in their production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The fitted parameters are given in Table 3 and the spectral index for period A (Γ=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='55±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='23) and B (Γ=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='54±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='19) are much harder than the average power law index, (Γ=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='03) for the total pe- riod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The harder spectra suggest that the IC peak is even at higher energy which is clearly seen in broadband SED model- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A study by Costamante et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2018) also shows a harder gamma-ray spectrum for many TeV blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A harder gamma- ray spectrum is also seen in another TeV extreme blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In- cluding the TeV data in broadband SED Aguilar-Ruiz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2022) modeled the SED for six such sources with a two- zone emission model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Few new EHBL types sources are also discovered with the MAGIC telescope and the Fermi-LAT gamma-ray spectra were found to be very hard for all the sources suggesting an extreme location of the second SED peak above 100 GeV energy range (Acciari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A long-term gamma-ray spectral index was also estimated for 1ES 1218+304 by Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2019) and they found it to be harder with 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='67±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='05, similar to our estimated value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Sa- hakyan (2020) also estimated the γ-ray spectra averaged over ∼11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7 years which found to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='71±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='02 mostly consistent with above discussed results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' These values are also consistent with the long-term average photon spectral index reported in the recent 4FGL catalog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 Color-Magnitude Variations The color-magnitude relation helps us understand the differ- ent variability scenarios of the blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Fluctuations in optical flux are often followed by spectral changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Therefore study- ing the color-magnitude (CM) relationship can further shed light on the dominant emission mechanisms in the blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' To obtain a better understanding of the CM relation for our source, we fit a linear plot (CI = m V +c) between the color MNRAS 000, 1–14 (2021) Multi-wavelength study of 1ES 1218+304 9 Parameter Flare A Flare B Whole Time Period Units Spectral Index (α) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='547 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='230 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='540 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='191 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='745 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='030 Flux (F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3−300GeV ) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='306 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='063 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='310 10−8× photon(s) cm−2 s−1 Prefactor (N0) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='538 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='633 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='902 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='796 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='966 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='122 10−13× photon(s) cm−2 s−1 MeV−1 TS 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='497 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='297 2913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='496 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Best fit spectral parameters of 1ES 1218+304 from Fermi-Lat observations using equation 1 for two flaring periods 58488-58490 MJD (Flare A), 58498-58503 MJD (Flare B) and whole time period MJD 58119-59365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='8 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 (B+V)/2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='00 Color Indices B-V + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 B-I R-I + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 V-R Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Colour magnitude plot for 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The various color indices are plotted against (B+V)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' indices (CI) and (B+V)/2 magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We then estimate the fit values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', slope (m), constant (c), along with the corre- lation coefficient (r) and the respective null hypothesis prob- ability (p) using two methods, Pearson and Spearman, as listed in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The generated CM plots are shown in Fig- ure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Offsets of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 are used for (B-V) and (R-I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A positive slope with p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='05 implies a bluer-when-brighter (BWB) trend or a redder-when-fainter trend (Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2021) while a negative slope indicates a redder-when-brighter trend (RWB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' As evident from Table 4, a significant BWB is dominant during our observation period for all possible color indices, namely;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (B-V), (B-I), (R-I), and (V-R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Blazars, in general, display BWB from their quasi-simultaneous optical observations (Ghosh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The BWB trend can be attributed to the process of elec- tron acceleration to higher energies at the shock front, fol- lowed by losing energy by radiative cooling while propagat- ing away (Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' On the other hand, the opposite trend of redder when brighter is observed more commonly in FSRQs due to the contribution of bluer thermal emission from the accretion disc (Villata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In addition to BWB and RWB trends, other optical studies have revealed cycle or loop-like trends (Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2021), a mixed trend where BWB is dominant during higher state while RWB dur- ing the fainter state, or a stable-when-brighter (SWB) which is no significant color-magnitude correlation in the data at any timescale (Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2016b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Isler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Negi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, due to the lack of simultaneous observations for a larger sample of blazars, color-magnitude trends are still a topic of debate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7 Broadband SED modeling The broadband SED modeling in blazar is used to un- derstand the simultaneous multi-wavelength emission from the source along with the possible physical mechanism re- sponsible for broadband flaring event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Simultaneous multi- wavelength SEDs were generated for two time periods, which overlapped with proposed flaring periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The model fit- ting was done using a publicly available code JetSet10 (Tra- macere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2009, 2011, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Massaro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Broadband emission of BL Lac sources like 1ES 1218+304 is better explained by the one-zone Synchrotron-Self Compton (SSC) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Leptonic models assume that relativistic lep- tons (mostly electrons and positrons) interact with the mag- netic field in the emission region and produce synchrotron photons in the frequency region of radio to soft-X-ray or the first hump of the SED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The emission in the frequency region of X-ray to γ-ray or the second hump of the SED is pro- duced by inverse Compton (IC) scattering of a photon popu- lation further classified into synchrotron-self Compton (SSC) or external Compton (EC) categories based on the source of the seed photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In the case of SSC models (Ghisellini 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Maraschi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 1992) relativistic electrons up-scatter the same synchrotron photons which they have produced in the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The model assumes a spherically sym- metric blob of radius (R) in the emission region, surrounded by relativistic particles accelerated by the magnetic field (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The blob makes an angle θ with the observer and moves along the jet with the bulk Lorentz factor Γ, affecting emission re- gion by the beaming factor δ = 1/Γ(1 − β cos θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The blob is filled with a relativistic population of electrons following an empirical lepton distribution relation and the power law with an exponential cut-off (PLEC) distribution of particles is assumed: Ne(γ) = N0γ−αexp(−γ/γcut) (9) where γcut is the highest energy cut-off in the electron spec- trum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We see that the optical/UV measurements are higher than the non-thermal emission from the jet predicted by the SSC model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also see high flux points in UV/optical range from the long-term observation of 1ES 1218+304, from NASA/IPAC Extragalactic Database (NED)11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' These obser- vations suggest that the stellar emission from the host galaxy of the source is dominant at optical/UV frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In order to accurately account for this emission due to the host galaxy, we have added the host galaxy component during modeling the SED using JetSet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Modeling of blazar 1ES 1218+304 is based on the SSC model in reference to equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Results 10 https://jetset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='readthedocs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='io/en/latest/ 11 https://ned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='ipac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='edu/ MNRAS 000, 1–14 (2021) 10 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Colour In- dices Slope Intercept Pearson Coeffi- cient Pearson P-value Spearman Coeffi- cient Spearman P-value (B-V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='216 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='024 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='152 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='390 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='752 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='88E- 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='774 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='33E- 14 (B-I) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='446 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='031 −6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='002 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='506 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='893 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='15E- 19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='928 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='06E- 24 (R-I) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='156 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='019 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='982 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='317 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='550 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='67E- 05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='734 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='65E- 10 (V-R) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='085 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='018 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='070 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='292 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='745 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='52E- 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='787 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='77E- 12 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Colour magnitude fitting and correlations coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2 0 2 4 6 8 10 12 14 log(E) (eV) 12 14 16 18 20 22 24 26 28 log( ) (Hz) 14 13 12 11 10 9 8 log( F ) (erg cm 2 s 1) Sync SSC host_galaxy Total SED FERMI SWIFT UVOT SWIFT XRAY archived Nustar Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Broadband SED Modelling for 5-7 January 2019 (Flare A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Optical data are fitted with the host galaxy template available in JetSet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Archival NuSTAR data are also plotted in cyan color which does not match with the current state X-ray spectral shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Due to the hard X-ray spectral index, the synchrotron peak is shifted to higher energy (∼1020 Hz) compared to the synchrotron peak location (1017−18 Hz) during 15-20 January as constrained by AstroSat observation in Figure 3 and also visible in Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' for the SSC model are shown in Figure 9 and Figure 10 for Flare A and Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The model parameters are given in table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 The constraint on Doppler factor We can calculate the minimum value of the Doppler factor using the detection of high-energy photons from the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This calculation assumes the optical depth, τγγ(Eh), of the highest energy photon, Eh, to γγ interaction is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The formula for calculating the minimum value of the Doppler factor is δmin = �σtd2 l (1 + z)2fϵEh 4tvarmec4 �1/6 (10) where σt is the Thomson scattering cross-section for the elec- tron (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='65 × 10−25cm2), dl is the luminosity distance of the source, fϵ is the X-ray flux in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3-10 KeV energy range, Eh is the highest energy photon, tvar is the observed variability time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' For 1ES 1218+304, z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='182, dl is 924 Mpc and tvar is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='275 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Using the value of highest energy photon Eh = 162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='822 GeV for Flare A and 278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='132 GeV for Flare B, and fϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='94 × 10−10 for Flare A and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='55 × 10−10 for Flare B, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 log(E) (eV) 12 14 16 18 20 22 24 26 28 log( ) (Hz) 14 13 12 11 10 9 log( F ) (erg cm 2 s 1) Sync SSC host_galaxy Total SED FERMI SWIFT UVOT archived Nustar AstroSat-SXT SWIFT XRAY Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The plot is the same as Figure 8 but for 15-20 January 2019 (Flare B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Here also the archival NuSTAR spectrum does not match the current state X-ray spectral shape which suggests that the NuSTAR spectrum was taken in low-flux states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Here the synchrotron peak is decided by both the XRT and SXT spectra plotted on top of each other which peaks at roughly ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='68×1017 Hz as estimated in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1 using AstroSat data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' we get the δmin value to be 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='725 for Flare A and 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='455 for Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2 The size of emission region The information on the size and location of the emission re- gion is very important for performing the SED modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The variability time scale estimated from the γ-ray light curve is used to estimate the size of the emission region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The radius R can be estimated by using the equation, R = cδmintvar/(1 + z), (11) where R is estimated to be 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='27 − 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='71 × 1015cm, using the δmin calculated in the previous section, and tvar is calculated in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' During SED modeling we have used the values 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='06 × 1016 cm for Flare A and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='40 × 1016 cm for Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The location of the emission region along the jet axis from the supermassive black hole can also be estimated from the variability time assuming a spherical emission region by using the expression d ∼ 2cΓ2tvar/(1+z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Using the Lorentz factor, Γ = δmin and tvar = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='275 days and z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='182, the location is estimated to be, d ∼ 2×1017 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' To optimize the broadband SED modeling, we have fixed the location of the emission region to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 × 1017 cm along the jet axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' MNRAS 000, 1–14 (2021) Multi-wavelength study of 1ES 1218+304 11 Sr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Model Parameters Unit Flare A Flare B 5-7 Jan 15-20 Jan 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' γmin 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='342 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='9990 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' γmax 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3346 × 107 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2115 × 107 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' γcut 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='8153 × 107 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2216 × 105 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' RH 1017cm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' R 1016cm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0658 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' α 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='482500 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='530156 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' N cm−3 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='34312 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='58231 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' B G 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7378 × 10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3035 × 10−2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' z 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='182 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='182 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' δ 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='97827 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='30340 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Ue erg cm−3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='470401 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='179746 × 10−2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' UB erg cm−3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='982449 × 10−7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='760266 × 10−6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Pe erg s−1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='460334 × 1045 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='081457 × 1044 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' PB erg s−1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='130172 × 1038 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='145346 × 1041 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Pjet erg s−1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='060629 × 1046 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='370064 × 1044 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Reduced Chi-Squared 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='079990 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='707362 Host Galaxy 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' nuFnu_p_host erg cm−2 s−1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='373 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='373 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' nu_scale Hz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='496 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='493 Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' [1-3] Minimum, maximum and cut Lorentz factor of injected electron spectrum [4] The position of the region [5] The size of emission region [6] Spectral Index [7] Particle density [8] Magnetic field [9] Red Shift [10] Doppler factor [11] Electron energy density [12] Magnetic field energy density [13] Jet power in electrons [14] Jet power in magnetic field [15] Total jet power 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 Jet Power We have estimated the power carried by individual compo- nents (leptons, protons, and magnetic fields) and the total jet power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The total power of the jet was estimated using Pjet = πR2Γ2c(U ′ e + U ′ p + U ′ B) (12) Here Γ is the bulk Lorentz factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' U ′ e, U ′ p, U ′ B are the energy densities of electrons-positrons, cold protons and the mag- netic field respectively in the co-moving jet’s frame (primed quantities are in the co-moving jet frame while unprimed quantities are in the observer frame).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The power in leptons is given by Pe = 3Γ2c 4R � Emin Emax EQ(E)dE (13) where Q(E) is the injected particle spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The integration limits, Emin and Emax are calculated by multiplying the min- imum and maximum Lorentz factor (γmin and γmax) of the electrons with the rest-mass energy of the electron respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The power in the magnetic field is calculated using PB = R2Γ2cB2 8 (14) where B is the magnetic field strength obtained from the SED modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The energy densities for electron-positron and magnetic field for both Flare events were returned by our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The energy density for cold proton was not estimated as it was too small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We calculated Pe, PB which are the power carried by the leptons and the magnetic field respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The total power Pjet ≈ Pe + PB along with the power of the in- dividual components has been mentioned in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The jet is dominated by the lepton’s power and its value decreases for the second flare period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The luminosities have been com- puted for a pure electron/positron jet since the proton con- tent is not well known, and can be considered as the lower limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The absolute jet power Ljet ≃ 1×1046ergs−1 for Flare A and is below the Eddington luminosity for a 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6 × 108M⊙ black hole mass (LEdd = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3 × 1046ergs−1) estimated from the properties of the host galaxy in the optical band (Rüger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' For Flare B, Ljet ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='37 × 1044ergs−1 is signifi- cantly below the LEdd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 Broadband emission during flaring states We choose two flaring periods during the month of January 2019, MJD 58488-58490 (5-7 January 2019, Fig 9) and MJD 58498-58503 (15-20 January 2019, Fig 10) were modeled with a one-zone leptonic scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The modeled parameters are mentioned in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The model parameters inferred from this fitting suggest that Flare A had more activity compared to Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Although the γmax and α are almost the same for both the flares inferring that there was very little variability in VHE γ-ray band, we see from Table 5 that γmin, γcut have significantly higher values for Flare A compared to Flare B, which may be due to the flaring seen in the X-ray band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The magnetic field (B) for Flare A (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='73×10−3) is also less than that of Flare B (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='30×10−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' During the fitting of SED, we kept RH and δ as free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We find that the value of RH is close to the value we calculate using equation 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also calculate the minimum doppler factor δmin between the range (13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='725-14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='455), but during the SED modeling, we find that for Flare A δ = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='98 and for Flare B it is much higher δ = 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='30 then the calculated value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It suggests that variation in δ could be one of the reasons for different flux states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' During these flares, the optical-UV emission is dominated MNRAS 000, 1–14 (2021) 12 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' by thermal emission from the host galaxy and hence has been modeled using the host galaxy model using JetSet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' It is also seen that the X-ray data is better explained by synchrotron radiation of electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The SSC component of SED model- ing dominates above 1020 Hz (∼ 1 MeV) and it is useful in describing the data up to the VHE γ-ray band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 4 SUMMARY AND DISCUSSIONS In our work, we present the multi-wavelength study of HBL blazar 1ES 1218+304 from 1st January 2018 to 31st March 2021 (58119-59365), which also include the high flux event in VHE γ-rays detected by both MAGIC and VERITAS obser- vatories during January 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This high flux rate was also seen in Swift-XRT and UVOT instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Hence we di- vided our SED analysis into two flaring periods 5-7 Jan- uary 2019 and 15-20 January 2019 for simultaneous multi- wavelength observation of 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The fastest vari- ability timescale was found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='275 days from analyzing the γ-ray light curve, constraining the size of the emission region to 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='27 − 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='71 × 1015 cm, which came out to be higher than previous modeling results (Rüger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2010, Sahakyan 2020, Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2019) but comparable to SED modeled results in our case, see Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The location of the emis- sion region is estimated to be d ∼ 2 × 1017cm was similar to that used for SED modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The highest energy photon detected was 278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='132 GeV which arrived during Flare B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We can also see the ’harder-when-brighter’ trend in the X-ray en- ergy range and the ’softer-when-brighter’ trend in the γ-ray energy range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The broadband SED modeling of the source was repro- duced by a leptonic simple one-zone SSC model with the electron energy distribution described by a Power-law with an exponential cut-off (PLEC) function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Parameters like the magnetic field, injected electron spectrum, and minimum and maximum energy of injected electrons have been optimized to get a good fit to the SEDs data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' So this study sug- gests that a single-zone model can also be good enough to explain the multi-waveband emissions from 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The optical and UV emissions from the source are found to be dominated by the stellar thermal emissions from the host galaxy and can be modeled using the JetSet code by a simple blackbody approximation (Rüger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Costamante et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2018) argued that the broadband SED modeling in hard-TeV blazar can be explained by the one- zone SSC model at the expense of extreme electron ener- gies with very low radiative efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The maximum elec- tron Lorentz factor estimated in their modeling for all the six sources is orders of 107 which is consistent with our results for 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The other modeling parameters such as the size of the emission region, magnetic field strength, and the magnetization parameters (UB/Ue) are very similar to our SED modeling result for 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In our case, the UB/Ue = 10−4 - 10−6 and in Costamante et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2018) it order of 10−2 - 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Similar results were also obtained by Kauf- mann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2011) where they model the broadband SED of extreme TeV source 1ES 0229+200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The magnetic field and the magnetization parameter (10−5) are consistent with our results for 1ES 1218+304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' But their model requires a narrow electron energy distribution with γmin ∼ 105 to γmax ∼ 107 rather than the broad energy range obtained in our study, Costamante et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2018), and Acciari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Acciari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2020) have observed ten new TeV sources with MAGIC from 2010 to 2017 for a total period of 262 hours and the simultaneous X-ray observations confirm that out of 10, 8 sources are of extreme nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Their γ-SED was found to be very hard between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='4 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Blazar 1ES 1218+304 is also an extreme TeV blazar and in our study, the gamma-ray SED is found to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 consistent with the above TeV sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' They have modeled all the sources with a sin- gle zone conical-jet SSC model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Additionally, they also used the proton-synchrotron and a leptonic scenario with a struc- tured jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' They also argue that all the model provides a good fit to the broadband SED but the individual parameters in each model differ substantially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Comparing their SSC model results to our SSC modeling the maximum electron energy is consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The electron spectral index in our case is harder than their results and also the magnetic field in our case is much smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The estimated Lorentz factor is more or less consistent with the Γ used for all the sources in their study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In their recent work Aguilar-Ruiz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2022) have modeled the six well-known extreme BL Lac sources with a lepto- hadronic two-zone emission model to explain the broadband SED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' In another study, Zech & Lemoine (2021) have shown that the broadband SED of extreme BL Lac sources can be explained by considering the co-acceleration of electrons and protons on internal or recollimation shocks inside the rela- tivistic jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Sahakyan (2020) has modeled the average state of 1ES 1218+304 with one-zone SSC model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The parameter estimated in their study is mostly consistent with ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' How- ever, our study focuses on the smaller period including two flaring events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' During the flaring event (15-20 Jan) the mag- netic field and the magnetization parameters are estimated as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='30×10−2 Gauss and ∼10−4 which is comparable to the value for the same parameters estimated by modeling the av- erage state of the source in Sahakyan (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, the Doppler factor required in Sahakyan (2020) is much higher than the Doppler factor needed to fit the flaring state in our case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2019) also modeled the average broadband SED collected for almost 10 years with a one-zone SSC model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The required γmin, γmax and Doppler factor are consistent with our result but the size of the emission region is one order of magnitude smaller than ours, and also the magnetic field estimated in their model is much higher than what we found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The difference in some of the parameters could be because they modeled the average SED and in our case, we are more focused on a short period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The optical-UV SED is mostly off to the general trend of broadband SED of blazar and hence in both cases is fitted with a host-galaxy contri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' (2019) used a specific model to fit the host-galaxy and estimated the black hole mass of the source, however, in JetSet we can not include a specific model, and hence host-galaxy is fitted as a free parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The above discussion suggests that the known extreme BL Lac sources are very less in number and need careful attention and more broadband study to exactly quantify their nature and the physical emission mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' MNRAS 000, 1–14 (2021) Multi-wavelength study of 1ES 1218+304 13 5 CONCLUSIONS In this work, we present the long-term study of the blazar 1ES 1218+304 using 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='5 years of near-simultaneous multi- wavelength data from Fermi-LAT, SWIFT-XRT, SWIFT- UVOT, AstroSat, and TUBITAK observations taken between January 1, 2018, and March 31, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This study explores the broadband temporal and spectral behavior of the source dur- ing flaring states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The main results of our study are provided below: During the month of January 2019, VHE γ-rays detected by both MAGIC and VERITAS observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This high flux state was also seen in Fermi, Swift-XRT, and UVOT instru- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The fractional variability estimated across the wave- bands suggests that UV is more variable followed by X-ray, γ-ray, and optical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The fast flux variability in γ-ray is calculated to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='275 days, the size of the emission region is estimated to be ∼8×1015 cm, and the emission region is located at a dis- tance of ∼ 2 × 1017 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A "harder-when-brighter" trend was seen in X-ray whereas a "softer-when-brighter" trend was in γ-ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The γ-ray emission from 1ES 1218+304 can also be described by a power law with a spectral index of ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='745.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The Astrosat SXT light curve reveals a minute scale of variability of the order of 20 minutes and the X-ray spectrum is well fitted with both power-law and the log parabola mod- els.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' However, the LP provides a better fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A joint fit with the LAXPC spectrum provides a great constrain on the location of synchrotron peak roughly around 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='68×1017Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' As seen in many other TeV blazars, a shift in syn- chrotron peak is observed from one state to another state from ∼1017−18 Hz to ∼1020 suggesting an extreme nature of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The broadband SED modeling of the source is repro- duced by a one-zone leptonic SSC model with the electron energy distribution described by a Power-law with an expo- nential cut-off (PLEC) function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We also find that the Opti- cal/UV emissions from the source are dominated by the stel- lar thermal emissions from the host galaxy which are modeled by a simple blackbody approximation (Rüger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2010) us- ing JetSet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' The JetSet code uses an approximation of the host galaxy model to help fit the SED modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We need more precise and dedicated observation in the UV/Optical band for a better understanding of the host galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 1ES 1218+304 is also an important source for obser- vations within the upcoming high-energy ground-based tele- scopes like CTA (Cherenkov Telescope Array)12 observatory to establish the link beyond the GeV energy range, in the realm of TeV γ-ray emission and MeV-GeV emission mea- sured from the Fermi-LAT and its extreme blazar behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' ACKNOWLEDGEMENTS D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Bose acknowledges the support of Ramanujan Fellowship- SB/S2/RJN-038/2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Prince is grateful for the support of the Polish Funding Agency National Science Centre, project 2017/26/A/ST9/-00756 (MAESTRO 9) and MNiSW grant DIR/WK/2018/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This work made use of Fermi telescope 12 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='cta-observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='org data and the Fermitool package obtained through the Fermi Science Support Center (FSSC) provided by NASA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This work also made use of publicly available packages JetSet, Fer- mipy, and PSRESP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This publication uses the data from the AstroSat mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data Centre (ISSDC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This work has used the data from the Soft X-ray Telescope (SXT) developed at TIFR, Mumbai, and the SXT POC at TIFR is thanked for verifying and releasing the data via the ISSDC data archive and providing the necessary soft- ware tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We thank the LAXPC Payload Operation Center (POC) at TIFR, Mumbai for providing the necessary soft- ware tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have also made use of the software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' DATA AVAILABILITY For this work, we have used data from the Fermi-LAT, Swift- XRT, Swift-UVOT, and AstroSat which are available in the public domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' We have also used optical data collected by the TUBITAK telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' This optical data was given to us on request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Details are given in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' REFERENCES Abdo A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2010, The Astrophysical Journal, 716, 30 Abdollahi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2020, The Astrophysical Journal Supplement Series, 247, 33 Abhir J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Joseph J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Patel S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bose D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021a, MNRAS, 501, 2504 Abhir J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Joseph J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bose D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Gupta N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021b, ApJ, 915, 26 Acciari V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2009, ApJ, 695, 1370 Acciari V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2020, ApJS, 247, 16 Agarwal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2015, MNRAS, 451, 3882 Agarwal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019a, MNRAS, 488, 4093 Agarwal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019b, Monthly Notices of the Royal Astronom- ical Society, 488, 4093 Agarwal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021, A&A, 645, A137 Agarwal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Pandey A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Özdönmez A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Ege E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Kumar Das A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Karakulak V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, ApJ, 933, 42 Aguilar-Ruiz E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Fraija N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Galván-Gámez A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Benítez E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, MNRAS, 512, 1557 Aharonian F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2000, New Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 5, 377 Albert J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2006, ApJ, 642, L119 Aleksić J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2015a, A&A, 576, A126 Aleksić J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2015b, A&A, 578, A22 Atwood W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2009, ApJ, 697, 1071 Barat S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Chatterjee R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Mitra K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, Monthly Notices of the Royal Astronomical Society, 515, 1655 Blandford R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Znajek R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1977, MNRAS, 179, 433 Bose D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Chitnis V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Majumdar P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Acharya B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, The European Physical Journal Special Topics, 231, 3 Böttcher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Reimer A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Sweeney K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Prakash A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2013, ApJ, 768, 54 Cao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2013, Monthly Notices of the Royal Astro- nomical Society, 436, 2170 Chatterjee R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='00919 Costamante L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bonnoli G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Tavecchio F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Ghisellini G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Taglia- ferri G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Khangulyan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2018, Monthly Notices of the Royal Astronomical Society, 477, 4257 MNRAS 000, 1–14 (2021) 14 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Diwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Feng Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', VERITAS Collaboration 2022, in 37th Interna- tional Cosmic Ray Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 802 (arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='05333), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='22323/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='395.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0802 Fortin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2008, in Aharonian F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Hofmann W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Rieger F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', eds, American Institute of Physics Conference Series Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 1085, American Institute of Physics Conference Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' pp 565–568 (arXiv:0810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0301), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='3076735 Ghisellini G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1993, Advances in Space Research, 13, 587 Ghosh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Ramsey B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Sadun A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Soundararajaperumal S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2000, ApJS, 127, 11 Giommi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2006, A&A, 456, 911 Gupta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2016a, MNRAS, 458, 1127 Gupta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2016b, Monthly Notices of the Royal Astro- nomical Society, 458, 1127 HI4PI Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2016, A&A, 594, A116 Isler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Urry C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Coppi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bailyn C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Brady M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', MacPherson E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Buxton M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Hasan I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2017, ApJ, 844, 107 Kaufmann S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Wagner S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Tibolla O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Hauser M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2011, A&A, 534, A130 Kirk J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Rieger F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Mastichiadis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1998, A&A, 333, 452 Kochanek C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2017, PASP, 129, 104502 Liu H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bai J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2006, The Astrophysical Journal, 653, 1089 Lombardi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Lindfors E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Becerra Gonzalez J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Colin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Sitarek J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Stamerra A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2011, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' arXiv:1110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='6786 Mannheim K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1993, A&A, 269, 67 Maraschi L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Ghisellini G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Celotti A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1992, ApJ, 397, L5 Massaro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Tramacere, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Perri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Giommi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' Tosti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 2006, A&A, 448, 861 Mirzoyan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019, The Astronomer’s Telegram, 12354, 1 Misra R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Roy J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Yadav J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021, Journal of Astrophysics and Astronomy, 42, 55 Mukherjee R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', VERITAS Collaboration 2019, The Astronomer’s Telegram, 12360, 1 Nalewajko K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Begelman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Sikora M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2014, The Astrophysi- cal Journal, 789, 161 Negi V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Joshi R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Chand K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Chand H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Wiita P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Ho L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Singh R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, MNRAS, 510, 1791 Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019, ApJ, 871, 101 Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2020, The Astrophysical Journal, 890, 164 Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Majumdar P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Gupta N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2017, The Astrophysical Jour- nal, 844, 62 Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Gupta N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Nalewajko K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019, ApJ, 883, 137 Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Khatoon R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Stalin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021, MNRAS, 502, 5245 Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Khatoon R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Majumdar P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Czerny B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Gupta N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, Monthly Notices of the Royal Astronomical Society, 515, 2633 Priya S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Prince R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Agarwal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bose D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Özdönmez A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Ege E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2022, Monthly Notices of the Royal Astronomical Society, 513, 2239 Ramazani V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bonneli G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Cerruti M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019, The Astronomer’s Telegram, 12365, 1 Rybicki G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Lightman A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1979, Radiative processes in astro- physics Rüger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Spanier F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Mannheim K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2010, Monthly Notices of the Royal Astronomical Society, 401, 973 Sahakyan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2020, MNRAS, 496, 5518 Schlafly E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Finkbeiner D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2011, The Astrophysical Journal, 737, 103 Schlickeiser R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1989a, ApJ, 336, 243 Schlickeiser R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1989b, ApJ, 336, 264 Shappee B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2014, ApJ, 788, 48 Shukla A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Mannheim K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2020, Nature Communications, 11, 4176 Singh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2016, in den Herder J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Takahashi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bautz M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', eds, Society of Photo-Optical Instrumentation Engi- neers (SPIE) Conference Series Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 99051E, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2235309 Singh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2017, Journal of Astrophysics and Astronomy, 38, 29 Singh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bisschoff B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', van Soelen B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Tolamatti A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Marais J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Meintjes P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2019, Monthly Notices of the Royal As- tronomical Society, 489, 5076 Sun S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Li H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Yang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Lü J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Xu D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021, Research in Astronomy and Astrophysics, 21, 197 Tramacere A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2020, JetSeT: Numerical modeling and SED fit- ting tool for relativistic jets, Astrophysics Source Code Library, record ascl:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='001 (ascl:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='001) Tramacere A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Giommi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Perri M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Verrecchia F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Tosti G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2009, A&A, 501, 879 Tramacere A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Massaro E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Taylor A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2011, ApJ, 739, 66 Urry C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Padovani P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 1995, PASP, 107, 803 Vaughan S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Edelson R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Warwick R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Uttley P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2003, MNRAS, 345, 1271 Villata M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2006, A&A, 453, 817 Wierzcholska A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Wagner S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2016, Monthly Notices of the Royal Astronomical Society, 458, 56 Wood M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Caputo R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Charles E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Di Mauro M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Magill J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Perkins J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Fermi-LAT Collaboration 2021, in 35th In- ternational Cosmic Ray Conference (ICRC2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 824 (arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='09551), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='22323/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='0824 Yadav J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2016, in den Herder J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Takahashi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Bautz M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', eds, Society of Photo-Optical Instrumentation Engi- neers (SPIE) Conference Series Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' 99051D, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content='2231857 Zech A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', Lemoine M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=', 2021, A&A, 654, A96 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} +page_content=' MNRAS 000, 1–14 (2021)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQfEPrI/content/2301.00991v1.pdf'} diff --git a/5dAyT4oBgHgl3EQfQPaq/content/tmp_files/2301.00042v1.pdf.txt b/5dAyT4oBgHgl3EQfQPaq/content/tmp_files/2301.00042v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..06ae9c459dfa87031000e489b988700a2d04d5c0 --- /dev/null +++ b/5dAyT4oBgHgl3EQfQPaq/content/tmp_files/2301.00042v1.pdf.txt @@ -0,0 +1,3502 @@ +Fundamental Limits to Expressive Capacity of Finitely Sampled Qubit-Based Systems +Fangjun Hu,1, ∗ Gerasimos Angelatos,1, ∗ Saeed A. Khan,1 Marti Vives,1, 2 Esin T¨ureci,3 +Leon Bello,1 Graham E. Rowlands,4 Guilhem J. Ribeill,4 and Hakan E. T¨ureci1 +1Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA +2Q-CTRL, Santa Monica, CA 90401, USA +3Department of Computer Science, Princeton University, Princeton, NJ 08544, USA +4Raytheon BBN, Cambridge, MA 02138, USA +(Dated: January 3, 2023) +The expressive capacity for learning with quantum systems is fundamentally limited by the quantum sampling +noise incurred during measurement. While studies suggest that noise limits the resolvable capacity of quantum +systems, its precise impact on learning remains an open question. We develop a framework for quantifying +the expressive capacity of qubit-based systems from finite numbers of projective measurements, and calculate +a tight bound on the expressive capacity and the corresponding accuracy limit that we compare to experiments +on superconducting quantum processors. We uncover the native function set a finitely-sampled quantum system +can approximate, called eigentasks. We then demonstrate how low-noise eigentasks improve performance for +tasks such as classification in a way that is robust to noise and overfitting. We also present experimental and +numerical analyses suggesting that entanglement enhances learning capacity by reducing noise in eigentasks. +Our results are broadly relevant to quantum machine learning and sensing applications. +I. +INTRODUCTION +Learning with quantum systems is a promising application +of near-term quantum processors, with several recent demon- +strations in both quantum machine learning (QML) [1–5] and +quantum sensing [6–8]. A broad class of such data-driven ap- +plications proceed by embedding data into the evolution of +a quantum system, where the embedding, dynamics, and ex- +tracted outputs via measurement are all governed by a set of +general parameters θ. Depending on the learning scheme, dif- +ferent components of this general framework may be trained +for optimal performance of a given task. Irrespective of the +scheme, however, the fundamental role of the quantum sys- +tem is that of a high-dimensional feature generator. Given +inputs u, a set of frequencies for the occurrence of different +measurement outcomes act as a feature vector to learn a func- +tion f(u) that minimizes the chosen loss function (see Fig. 1). +The relationship between the physical structure of the model +and the function classes that can be expressed with high accu- +racy, referred to as expressivity, is a fundamental question of +basic importance to the success of quantum models. Recent +results have begun to shed light on this important question +and provide guidance on the choice of parameterized quantum +models [9–16]. Yet when it comes to experimental implemen- +tations, the presence of noise is found to substantially curtail +theoretical expectations for performance [1–3]. +Given an input u to a general dynamical system, we de- +fine its Expressive Capacity (EC) as a measure of the accu- +racy with which K linearly independent functions {f(u)} of +the input can be constructed from K readout features. This is +a suitable generalization to noisy systems of the Information +∗ These two authors contributed equally +Processing Capacity introduced in Ref. [17]. A central chal- +lenge in determining the EC for quantum systems is the fun- +damentally stochastic nature of measurement outcomes. Even +when technical noise due to system parameter fluctuations is +minimized as in an error-corrected quantum computer, there +is a fundamental level of noise, the quantum sampling noise +(QSN), which cannot be eliminated in learning with quantum +systems. QSN therefore sets a fundamental limit to the EC +of any physical system. Although QSN is well-understood +theoretically, a formulation of its impact on learning is a chal- +lenging task as it is strongly determined by the quantum state +of the system relative to the measurement basis, and is highly +correlated when entanglement is present. Consequently, the +impact of QSN is often ignored [18–21] (with a few excep- +tions [14, 22]), even though it can place strong constraints on +practical optimization [23] and performance [22]. In this ar- +ticle, we develop a mathematical framework to quantify the +EC that exactly accounts for the structure of QSN, providing +a tight bound for an L-qubit system under S measurements, +and illustrate how a mathematical framework for its quantifi- +cation can guide experimental design for QML applications. +Our work goes beyond simply defining the EC as a figure of +merit, however. In particular, we offer a methodology to iden- +tify the native function set that is most accurately realizable +by a given encoding under finite sampling. Equivalently, we +show that this defines a construction of measured features that +is optimally robust to noise in readout, thereby revealing how +such a quantum system can be optimally employed for learn- +ing tasks. Finally, while the strength of the EC lies in its gener- +ality, we provide numerical examples that suggest that higher +EC is typically indicative of improved performance on spe- +cific QML tasks. As such, the EC provides a metric whose op- +timization can be targeted for improved learning performance +in a task-agnostic and parameter-independent manner. +This strategy for defining the noise-constrained EC natu- +arXiv:2301.00042v1 [quant-ph] 30 Dec 2022 + +2 +Entangled +system +Increased +sampling +Product +system +Input + dimensional + input domain +Output under finite sampling +Feature generator +(a) +(b) +Individual function capacity: +Function approximation +features +(Probabilities) +Quantum system +Quantum annealers +Quantum Neural Networks/ +Variatonal Quantum Algorithms +Quantum Kernel Methods +Target: +Learned Estimate: +Learned linear weights +e.g. -Qubit system +Computational basis measurement +FIG. 1. (a) Representation of the learning framework considered in +this work – inputs u are transformed to a set of outputs via a feature +generator, here implemented using a finitely-sampled quantum sys- +tem as shown in (b). Inputs are encoded in the state of a quantum +system via a general quantum channel U. Information is extracted +from the quantum system via projective measurements in the com- +putational basis. The geometric structure of the quantum sampling +noise in the high-dimensional measured feature space can strongly +depend on the encoding, and the degree of entanglement generated +upon parametric evolution. The learning scheme discussed in the +present work optimally leverages the geometric structure of corre- +lated noise. +This framework describes a wide range of practical +quantum systems, from quantum circuits used in QML, to quantum +annealers exhibiting continuous evolution, and beyond, all defined by +general parameters θ. As shown in (a), learned estimates for desired +functions are constructed via a trained linear estimator ˜w applied to +K measured observables ¯ +X of the quantum system, with a resolu- +tion limited by quantum sampling noise with finite shots S. Capacity +then quantifies the error in the approximation of a target function via +this scheme. +rally focuses on accessible noisy output features under a spec- +ified measurement scheme, as opposed to unmeasured degrees +of freedom. +This makes the EC an efficiently-computable +quantity in practice, as we demonstrate using both numerical +simulations and experiments on IBM Quantum’s supercon- +ducting multi-qubit processors [24]. Our work also identifies +enhancement in measurable quantum correlations as a general +principle to increase the EC of quantum systems under finite +sampling. +II. +LEARNING WITH QUANTUM SYSTEMS +The most general approach to learning from data using a +generic quantum system is depicted schematically in Fig. 1. +A table with symbols and abbreviations used in the text can +be found in Appendix A. For concreteness, we detail a specific +realization for L-qubit systems that are measured projectively, +which will be analyzed in the remainder of this work. Any +learning scheme begins with embedding the data u through a +quantum channel parameterized by θ acting on a known initial +state, ˆρ(u; θ) = U(u; θ)ˆρ0. For an L-qubit quantum system, +for example, we consider ˆρ0 = |0⟩⟨0|⊗L. +Any computation must be performed using outputs ex- +tracted from the quantum system via measurements in a +specified basis parameterized by K operators { ˆ +Mk}, k = +0, · · · , K − 1. For a projectively measured L-qubit system, +the measurement basis is defined by the K = 2L projectors +ˆ +Mk = |bk⟩⟨bk| corresponding to measurement of bitstrings +bk. A single measurement or “shot” yields a discrete out- +come b(s)(u) for each observable: if the outcome of shot s +is state k, then b(s)(u) ← bk. Measured features are then +constructed by ensemble-averaging over S repeated shots: +¯Xk(u) = 1/S � +s δ(b(s)(u), bk). Hence ¯Xk(u) in this case +is the measured frequency of occurrence of the bitstring bk in +S repetitions of the experiment with the same input u. These +measured features are formally random variables that are un- +biased estimators of the expected value of the corresponding +observable as computed from ˆρ(u): explicitly, +limS→∞ ¯Xk(u) ≡ xk(u) = Tr{ ˆ +Mk ˆρ(u; θ)}, +(1) +so that xk is the quantum mechanical probability of occur- +rence of the kth bitstring. +In QML theory, it is standard to consider the limit S → ∞, +and to thus use expected features {xk(u)} for learning. How- +ever, for any practical implementation, measured features +{ ¯Xk(u)} must be constructed under finite S, in which case +their fundamentally quantum-stochastic nature can no longer +be ignored. +This quantum sampling noise, like any other +source of noise, can unsurprisingly limit the EC. Completely +unlike classical noise sources however, the statistics of quan- +tum sampling noise are strongly determined by the state of +the quantum system itself. This leads to a rich noise structure +that changes dramatically based on, for example, the entan- +glement of the generated quantum state, as depicted in Fig. 1. +In this work, we exactly account for this structure of quantum +sampling noise to quantify its fundamental impact on EC. By +further leveraging the complexity and quantum state depen- +dence of sampling noise, we provide a practical, experimen- +tally applicable methodology that maximizes the capacity for +learning functions using finitely-sampled quantum systems, +and also avoids overfitting in ML tasks. +We begin by observing that ¯ +X are samples from a multino- +mial distribution with S trials and K = 2L categories, which +can be decomposed into their expected value and an input- +dependent sampling noise: +¯ +X(u) = x(u) + +1 +√ +S +ζ(u), +(2) +where ζ(u) is a zero-mean random vector obeying multino- +mial statistics. +As discussed in Appendix B and C, what +makes quantum systems special is the fundamental relation- +ship between the noise ζ(u) and the ‘signal’ x(u). +Pre- +cisely, the covariance Σ(u) of ζ(u) depends on the gen- +erated quantum state: +Σkk′(u) += +Tr{ ˆ +Mk ˆ +Mk′ ˆρ(u)} − +Tr{ ˆ +Mk ˆρ(u)}Tr{ ˆ +Mk′ ˆρ(u)}. This quantum covariance of the +measured observables therefore comprises non-linear func- +tions of the signal x(u) itself; at a given S, we will show +that this allows for more information to be extracted from sys- +tems with more quantum correlations between observables. +Note that ζ can be straightforwardly modified to include other + +3 +noise sources, such as gate or measurement errors (see Ap- +pendix B 2), with 1/ +√ +S then interpreted as a general noise +strength. However our focus here remains on quantum sam- +pling noise and its fundamental role in learning with quantum +systems. +The use of such a quantum system for the learning of func- +tions under finite sampling is then depicted schematically in +Fig. 1. For a target function f(u), an approximation fW (u) +is obtained via a linear (for reasons clarified shortly) esti- +mator applied to readout features under finite S, fW (u) = +W · ¯ +X(u), where +¯ +X = ( ¯X0, . . . , ¯XK−1)T . +To quantify +the fidelity of this approximation, we introduce the capac- +ity [14, 17, 20] to construct the target function as the minimum +achievable (normalized) mean squared error between the tar- +get and its estimate: +C[f] = 1 − min +W ∈RK +Eu[|f(u) − fW (u)|2] +Eu[|f(u)|2] +. +(3) +In the above, Eu refers to the expected value with respect to an +input distribution p(u) over a compact input domain, which +can be continuous or discrete: Eu[f] ≡ +� +du p(u)f(u) ≃ +1 +N +� +n f(u(n)) for i.i.d. sampling obeying u(n) ∼ p(u) for +all n ∈ [N]. +Minimizing error in the approximation of +f(u) by fW (u) over the input domain to determine capac- +ity thus requires finding ˜w = argminW Eu[|f − fW (u)|2] +(via a resource-efficient pseudoinverse). This capacity is con- +structed such that 0 ≤ C[f] ≤ 1. +The choice of a linear estimator and a mean squared er- +ror loss function may appear restrictive at first glance, but the +generality of our formalism averts such limitations. For ex- +ample, the use of a linear estimator applied directly to readout +features precludes classical nonlinear post-processing of mea- +surements; however, this is simply to ensure the calculated +capacity is a measure of the quantum system itself, and not of +a classical nonlinear layer. Importantly, our formalism is gen- +eral enough to incorporate such processing in a calculation +of capacity, via a simple redefinition of readout features ¯ +X. +Hence the use of a linear estimator does not necessarily lose +generality. Secondly, while higher-order loss functions may +be used, the mean squared loss effectively describes the Tay- +lor expansion of a wide range of loss functions (see Appendix +C 5). +To extend the notion of capacity to a task-independent mea- +sure of the expressivity of a physical system, we can eval- +uate the function capacity over a complete orthonormal set +of basis functions {fℓ}ℓ∈N, equipped with the inner product +⟨fℓ, fℓ′⟩p = +� 1 +−1 fℓ(u)fℓ′(u)p(u)du = δℓℓ′. The total Ex- +pressive Capacity (EC) is then CT ≡ �∞ +ℓ=0 C[fℓ], which ef- +fectively quantifies how many linearly-independent functions +can be expressed from a linear combination of { ¯Xk(u)}. Our +main result, which is proven in Appendix C 4, is that the EC +for an L-qubit system whose readout features are stochastic +variables of the form of Eq. (2) is given by +CT (θ) = Tr +�� +G + 1 +S V +�−1 +G +� += +K +� +k=1 +1 +1 + β2 +k(θ)/S . (4) +The first equality is written in terms of the expected feature +Gram and covariance matrices G ≡ Eu[xxT ] and V ≡ +Eu[Σ] respectively; we later demonstrate that these expected +quantities can be accurately estimated under finite S sam- +pling. +The second equality expresses the total capacity in +a finite-dimensional linear space, in terms of the eigenval- +ues {β2 +k}k∈[K] satisfying the generalized eigenvalue prob- +lem Vr(k) = β2 +kGr(k). Inspecting this expression, we first +note that it is independent of the particular set {fℓ}ℓ∈N cho- +sen, which would have required an evaluation over an infi- +nite set of functions and its numerical evaluation therefore +would be subject to inaccuracies due to truncation [17]. In- +stead, CT can be interpreted as the sum of capacities to con- +struct K individual functions living in an otherwise infinite- +dimensional function space; the identity of these special func- +tions is closely connected with the generalized eigenvectors +{r(k)}, and will be clarified shortly. Secondly, in the absence +of noise, limS→∞ CT = Rank{G} = K = 2L, provided no +special symmetries exist (see Appendix C 6). Such theoreti- +cal exponential growth in expressive capacity with L is often- +cited as a motivator for ML on quantum systems [14, 20, 25]. +From the perspective of infinite-shot capacity, this also im- +plies that all L-qubit systems with K measured features are +equivalent, regardless of encoding. Such universality has also +been pointed out for classical dynamical systems subject to +zero input and output noise [17]. +However, our expression for CT is also valid for any noisy +physical system, corresponding to finite S. +In particular, +Eq. (4) shows that the EC of a qubit-based physical system +satisfies CT ≤ K at finite S, and can be fully characterized in +terms of the spectrum {β2 +k}, which is ultimately determined +by parameters θ governing the physical system and embed- +ding via the Gram (G) and covariance (V) matrices. Related +characterizations of noise-constrained capacity have been at- +tempted for Gaussian quantum systems [22], but to our knowl- +edge no precise formulation exists that also encompasses non- +Gaussian systems such as qubit systems. Furthermore, from +the perspective of capacity, what makes one embedding or +physical system different from another is simply its ability to +accurately express functions in the presence of noise. Our +expression for CT thus provides a general, comprehensive, +and straightforward metric to assess and compare this capac- +ity across physical systems and their associated embedding +under finite S. +Furthermore, via the associated eigenvectors {r(k)}, our +analysis uncovers a finite set of orthogonal functions native +to a particular encoding that is maximally resolvable through +S measurements. This set of K orthonormal functions, the +eigentasks y(k)(u) = � +j r(k) +j +xj(u), can be estimated from +measured readout features as described in Appendix D 1. The +eigentasks characterize an ordered set of functions that can be +constructed with mean squared error β2 +k/S, leading to a natu- +ral interpretation of β2 +k as noise-to-signal (NSR) eigenvalues, +determined by fundamental sampling noise. As we will show, +this experimentally extractable information can be utilized for +optimal learning (with minimal degrees of freedom) with a +noisy quantum system. + +4 +III. +EXPERIMENTAL RESULTS +To demonstrate the above results in practice, we now show +how the spectrum {β2 +k}, the EC, and eigentasks can all be +computed for real quantum devices in the presence of param- +eter fluctuations and device noise. +We emphasize at the outset that our approach for quantify- +ing the EC of a quantum system is very general, and can be +applied to a variety of quantum system models. For practical +reasons, we perform experiments on IBM Quantum (IBMQ) +processors, whose dynamics is described by a parameterized +quantum circuit containing single and two-qubit gates. How- +ever, as an example of the general validity of our approach, +in Appendix E we compute the EC for L-qubit quantum an- +nealers via numerical simulations, governed by the markedly +different model of continuous-time Hamiltonian dynamics. +On IBMQ devices, resource limitations restrict our compu- +tation of EC to 1D inputs u that are uniformly distributed, +p(u) += +Unif[−1, 1], see Fig. 2(a). +We emphasize that +this analysis can be straightforwardly extended to multi- +dimensional and arbitrarily-distributed inputs given suitable +hardware resources, without modifying the form of the Gram +and covariance matrices. +We are only now required to specify the model of the L- +qubit system in Eq. (1), which has been left completely gen- +eral thus far. The specific ansatz we consider is tailored to +be natively implementable on IBMQ processors; more gen- +eral ansatz can also be considered (see Appendix B). It con- +sists of τ ∈ N repetitions of the same input-dependent circuit +block depicted in Fig. 2(a). The block itself is of the form +Rx(θx/2)W(J)Rz(θz + θIu)Rx(θx/2), where Rx/z are +Pauli-rotations applied qubit-wise, e.g. Rz = � +l Rz(θz +l + +θI +l u). +The entangling gate acts between physically con- +nected qubits in the device and can be written as W(J) = +� +⟨l,l′⟩ exp{−i J +2 ˆσz +l ˆσz +l′}. +Note that for this ansatz, the choice J = 0 (mod π) yields +either W = ˆI or ˆσz ⊗ ˆσz, both of which ensure ˆρ(u) is a prod- +uct state and measured features are simply products of uncor- +related individual qubit observables – equivalent to a noisy +classical system. Starting from this product system (PS), tun- +ing the coupling J ̸= 0 (mod π) provides a controllable pa- +rameter to realize an entangled system (ES). This control en- +ables us to address a natural question regarding EC of quan- +tum systems under finite S: what is the dependence of EC +and realizable eigentasks on J, and hence on quantum corre- +lations? +This calculation of EC requires extracting measured fea- +tures from the quantum circuit under input u, one example of +which is shown for the IBMQ ibmq perth device in Fig. 2(a), +for S = 214. For comparison, we also show ideal-device +simulations (no device noise), where slight deviations are ob- +served. The agreement with the experimental feature is im- +proved when the effects of gate and readout errors, and qubit +relaxation are included, hereafter referred to as “device noise” +simulations, highlighting the non-negligible role of device er- ++ ++ ++ C-NOT ++ ++ ++ ++ ++ ++ ++ ++ +Input +ES +PS +Order +(a) +(b) +(c) +Shots +Coupling +IBM Perth +Output +Experiment +Experiment +Simulations +Simulations +Estimate +Calculate +Device encoding +Device encoding +Device noise +Device noise +Ideal +Ideal +Mean over 8 random +encodings: device noise +Mean over 8 random +encodings: ideal +Ideal sim. +Device noise +sim. +Experiment +FIG. 2. +(a) IBMQ Perth device and quantum circuit schematic for +EC calculation, and classification task in Fig. 3. Here τ = 3 lay- +ers, and random qubit rotation parameters are θx/z +l +∼ Unif[0, 2π] +and θI +l ∼ Unif[0, 10π]. On the right, the specific feature plotted is +¯ +X1(u) = P000001(u) for S = 214 shots. (b) Left panel: Device +NSR spectrum β2 +k for ES, J = π/2 (blue crosses) and PS, J = 0 +(brown diamonds). Ideal (solid) and device noise (dashed) simula- +tions are also shown. Note the agreement between device and simu- +lation, along with distortion from more direct exponential growth in +β2 +k with k in the ideal case, due to device errors. Right panel: CT +vs. S calculated from the left panel. At a given S, the CT can be +approximated by performing the indicated sum over all β2 +k < S. (c) +EC (top panel) and ETC (lower panel) under S = 214 from the IBM +device, and device noise simulations (dashed peach). Average met- +rics over 8 random encodings for device noise (solid peach) and ideal +(solid gray) simulations are also shown. The S → ∞ EC of these +encodings always attains the max{CT } = 64, indicated in dashed +red. +rors. +The measured features under finite S are used to estimate +the Gram and covariance matrices (see Appendix D), and to +thus solve the eigenproblem for NSR eigenvalues {β2 +k}. Typ- +ical NSR spectra computed for two random encodings on the +device are shown in Fig. 2(b), for J = 0 (PS) and J = π/2 +(ES), together with spectra from device noise simulations, +with which they agree well. We note that at lower k, the device +NSR eigenvalues are larger than those from ideal simulations, +due to device noise contributions. For larger k, device results +deviate from the pure exponential increase (with order) seen in +ideal simulations. The deviation is captured by device noise +simulations and can therefore be attributed to device errors. +The NSR spectra therefore can serve as effective diagnostic +tools for quantum processors and encoding schemes. More +examples will be provided later in the discussion. +The NSR spectra can be used to directly compute the EC of +the corresponding quantum device for finite S, via Eq. (4). As +a rule of thumb, at a given S only NSR eigenvalues β2 +k ≲ S +contribute substantially to the EC. An NSR spectrum with a +flatter slope therefore has more NSR eigenvalues below S, + +0 +1 +2 +3 +4 +5 +65 +which gives rise to a higher capacity. Fig. 2(b) shows that the +ES generally exhibits an NSR spectrum with a flatter slope +than the PS, yielding a larger capacity for function approxi- +mation across all sampled S. +To more precisely quantify the role of entanglement and +quantum correlations in EC, we introduce the expected total +correlation (ETC) of the measured state over the input domain +of u [26, 27], +¯T = Eu +� L +� +l=1 +S(ˆρM +l (u)) − S(ˆρM(u)) +� +, +(5) +where +ˆρM +is +the +measured +state: +ˆρM(u) +≡ +� +k ˆρkk(u) |bk⟩⟨bk| and S is the von Neumann entropy (see +Appendix G). We now compute EC and ETC using S = 214 +in Fig. 2(c) as a function of J, together with both ideal and +device noise simulations of the same. We note that product +states by definition have ¯T = 0 [28]; this is seen in ideal +simulations for J = 0 (mod π). However, the actual device +retains a small amount of correlation at this operating point, +which is reproduced by device noise simulations. This can be +attributed to gate or measurement errors as well as cross-talk, +especially relevant for the transmon-based IBMQ platform +with a parasitic always-on ZZ coupling. +With increasing J, ¯T increases and peaks around J ∼ +π/2 (mod π); interestingly, CT also peaks for the same cou- +pling range. From the analogous plot of EC, we clearly see +that at finite S, increased ETC appears directly correlated +with higher EC. We have observed very similar behaviour us- +ing completely different models of quantum systems (see Ap- +pendix Fig. 5 [29, 30]). This indicates the utility of enhancing +quantum correlations as a means of improving the general ex- +pressivity of quantum systems. +However, we see that at finite S, even with increased quan- +tum correlations, the maximum EC is still substantially lower +than the upper bound of K = 64. Note that this remains true +even for ideal simulations, and over several random encod- +ings, so the underperformance cannot be attributed to device +noise or poor ansatz choice respectively. These results clearly +indicate that the resulting sampling noise at finite S is the fun- +damental limitation for QML applications on this particular +IBM device, rather than other types of noise sources and er- +rors. +IV. +A ROBUST APPROACH TO LEARNING +While we have demonstrated the EC as an efficiently- +computable metric of general expressivity of a noisy quantum +system, some important practical questions arise. First, does +the general EC metric have implications for practical perfor- +mance on specific QML tasks? Secondly, given the limiting – +and unavoidable – nature of correlated sampling noise, does +the EC provide any insights on optimal learning using a par- +ticular noisy quantum system and the associated embedding? +Input +Target +Distinguish inputs from +Class 1 vs. Class 2 +ES +ES +PS +PS +Input +Eigentasks +, +(a) +(b) +(c) +Increasing noise +Learning with + +eigentasks +Class 1 +Training +Testing +Class 2 +Equiv. to learning +likelihood function +, +FIG. 3. +(a) Device eigentasks for ES (left) and PS (right), con- +structed from noisy features at S = 210 and S = 214. (b) Clas- +sification demonstration on IBMQ Perth. Binary distributions to be +classified over the input domain are shown. (c) The classification +task can be cast as learning the likelihood function separating the +two distributions; this target function is shown in the upper panel. +Lower panels show the trained estimate of this target using outputs +from the ES and PS respectively, using KL = 36 eigentasks with +S = 214. +Our formulation addresses both these important questions +naturally, as we now discuss. Beyond being a simple figure of +merit, we show in the Appendix C that the EC is precisely the +sum of capacities to approximate a particular set of orthogonal +functions native to the given noisy quantum system: the eigen- +tasks. Crucially, these eigentasks ¯y(k)(u) = � r(k) +j +¯Xj(u) can +be directly estimated from a noisy quantum system via the +generalized eigenvectors {r(k)}, and are ordered by their as- +sociated NSR {β2 +k}. We show a selection of estimated eigen- +tasks from IBMQ, for an ES (J = 5π/3) and PS (J = 0) in +Fig. 3(a). For both systems, the increase in noise with eigen- +task order is apparent when comparing two sampling values, +S = 210 and S = 214. Furthermore, for any order k, eigen- +tasks for the PS are visibly noisier than the ES; this is con- +sistent with NSR eigenvalues for PS being larger than those +for ES, as seen in Fig. 2(b). This ability to more accurately +resolve eigentasks provides a complementary perspective on +the higher expressive capacity of ES in comparison to PS. +The resolvable eigentasks of a finitely-sampled quantum +system are intimately related to its performance at specific +QML applications. To demonstrate this result, we consider +a concrete application: a binary classification task that is +not linearly-separable. Samples u(n), n ∈ [N], obeying the +same distribution p(u) for u ∈ [−1, 1] as considered for the +EC evaluation, are separated into two classes, as depicted in +Fig. 3(b). A selection of Ntrain = 150 total samples - with +equal numbers from each class - are input to the IBMQ device, +and readout features ¯ +X(u(n)) are extracted using S = 214 +shots. +A linear estimator applied to these features is then +trained using logistic regression to learn the class label associ- +ated with each input. Finally, the trained IBMQ device is used +to predict class labels of Ntest = 150 distinct input samples +for testing. +This task can equivalently be cast as one of learning the +likelihood function that discriminates the two input distribu- + +6 +Classification accuracy +Testing + Classification accuracy +No. of eigentasks used for learning, +(a) +(b) +ES +PS +Coupling +Experiment +Simulations +Device encoding +Device encoding +Testing +NSR Cutoff +Mean over +8 random encodings +Overfitting +Overfitting +Training +FIG. 4. (a) Training (light) and testing (dark) accuracy for an ES and +PS in blue and brown respectively, as a function of number of eigen- +tasks used in learning. The optimal test set performance is found near +the NSR cutoff Kc(S) (dash-dotted lines) informed by the quantum +system’s NSR spectra. In all figures, the IBMQ Perth device is sam- +pled with S = 214, and the training and test sets consist of 150 ran- +dom points. (b) Testing set classification accuracy as a function of +J for our optimal learning method. The average of simulated encod- +ings is shown in solid peach, and the horizontal line shows the best +performance of a software neural network with KL = 36 parameters +for comparison. +tions, shown in Fig. 3(c), with minimum error. The set of up +to KL eigentasks ¯y(k)(u), where KL ≤ K, serves as the na- +tive basis of readout features used to approximate any target +function using the quantum system. The noisier eigentasks of +the PS therefore limit the accuracy with which it can be used +to learn the target, in comparison to the ES. This is clear from +the learned estimates shown in Fig. 3(c), using an equal num- +ber of KL = 36 eigentasks to ensure a fair comparison. The +higher approximation capacity translates to improved classi- +fication performance, as we show via the training and testing +classification accuracy in Fig. 4(a) for both ES and PS. We +plot both as a function of the number of eigentasks KL used +for learning, from which it is clear that the maximum testing +accuracy using the ES exceeds that of the PS. +However, using eigentasks ordered by NSR reveals even +more about learning using noisy quantum systems, and pro- +vides a path towards optimal learning. While intuition sug- +gests that using more eigentasks can only be beneficial, +weights learned when training with noisier eigentasks may +not generalize well to unseen samples. For example, using +all eigentasks (KL = K) yields a test accuracy far lower than +that found in training. The observed deviation is a distinct +signature of overfitting: the optimized estimator learns noise +in the training set, and thus loses generalizability in testing. +Crucially, an optimal number of eigentasks clearly emerges, +around KL ≃ Kc(S) = maxk{β2 +k < S}, for which the NSR +eigenvalue is closest to S. Eigentasks k > Kc typically con- +tribute more ‘noise’ to the function approximation task than +‘signal’. Excluding these eigentasks therefore limits overfit- +ting without adversely impacting performance. +Fig. 4(b) also shows the classification accuracy as J is var- +ied, where we highlight the striking similarity with Fig. 2(c): +encodings with larger quantum correlations and thus higher +expressive capacity will perform generically better on learn- +ing tasks in the presence of noise, because they generate a +larger set of eigentasks that can be resolved at a given sam- +pling S. The NSR spectra and eigentasks therefore provide +a natural truncation scheme to maximise testing accuracy, +avoiding overfitting without any additional regularization (see +also Appendix H and I). +V. +DISCUSSION +We have developed a straightforward approach to quan- +tify the expressive capacity of any qubit-based system in the +presence of fundamental sampling noise. +Our analysis is +built upon an underlying framework that determines the native +function set that can be most robustly realized by a finitely- +sampled quantum system: its eigentasks. We use this frame- +work to introduce a methodology for optimal learning using +noisy quantum systems, which centers around identifying the +minimal number of eigentasks required for a given learning +task. The resulting learning methodology is resource-efficient +and robust to overfitting. We demonstrate that eigentasks can +be efficiently estimated from experiments on real devices us- +ing a limited number of training points and finite shots. We +also demonstrate across two distinct qubit evolution ans¨atze +that the presence of measured quantum correlations enhances +expressive capacity. Our work has direct application to the +design of circuits for learning with qubit-based systems. In +particular, we propose the optimization of expressive capacity +as a meaningful goal for the design of quantum circuits with +finite measurement resources. +ACKNOWLEDGEMENT +This research was developed with funding from the +DARPA contract HR00112190072, AFOSR award FA9550- +20-1-0177, and AFOSR MURI award FA9550-22-1-0203. +The views, opinions, and findings expressed are solely the au- +thors and not the U.S. government. +[1] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Sto- +jevic, A. G. Green, and S. Severini, Hierarchical quantum clas- +sifiers, npj Quantum Information 4, 1 (2018). +[2] V. Havl´ıˇcek, A. D. C´orcoles, K. Temme, A. W. Harrow, A. Kan- +dala, J. M. Chow, and J. M. Gambetta, Supervised learning with +quantum-enhanced feature spaces, Nature 567, 209 (2019). +[3] F. Tacchino, P. Barkoutsos, C. Macchiavello, I. Tavernelli, +D. Gerace, and D. Bajoni, Quantum implementation of an arti- +ficial feed-forward neural network, Quantum Science and Tech- +nology 5, 044010 (2020). +[4] J. Chen, H. I. Nurdin, and N. Yamamoto, Temporal Informa- +tion Processing on Noisy Quantum Computers, Physical Re- +view Applied 14, 024065 (2020). + +7 +[5] Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and N. Yamamoto, +Natural quantum reservoir computing for temporal information +processing, Scientific Reports 12, 1353 (2022). +[6] J. J. Meyer, Fisher Information in Noisy Intermediate-Scale +Quantum Applications, Quantum 5, 539 (2021). +[7] Z. Ma, P. Gokhale, T.-X. Zheng, S. Zhou, X. Yu, L. Jiang, +P. Maurer, and F. T. Chong, Adaptive Circuit Learning for +Quantum Metrology, arXiv:2010.08702 [quant-ph] (2021). +[8] C. D. Marciniak, T. Feldker, I. Pogorelov, R. Kaubruegger, +D. V. Vasilyev, R. van Bijnen, P. Schindler, P. Zoller, R. Blatt, +and T. Monz, Optimal metrology with programmable quantum +sensors, Nature 603, 604–609 (2022). +[9] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility +and Entangling Capability of Parameterized Quantum Circuits +for Hybrid Quantum-Classical Algorithms, Advanced Quantum +Technologies 2, 1900070 (2019). +[10] R. LaRose and B. Coyle, Robust data encodings for quantum +classifiers, Phys. Rev. A 102, 032420 (2020). +[11] M. Schuld, R. Sweke, and J. J. Meyer, Effect of data encod- +ing on the expressive power of variational quantum-machine- +learning models, Physical Review A 103, 032430 (2021). +[12] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and +S. Woerner, The power of quantum neural networks, Nature +Computational Science 1, 403–409 (2021). +[13] Y. Wu, J. Yao, P. Zhang, and H. Zhai, Expressivity of quantum +neural networks, Phys. Rev. Research 3, L032049 (2021). +[14] L. G. Wright and P. L. McMahon, The Capacity of Quantum +Neural Networks, arXiv:1908.01364 [quant-ph] (2019). +[15] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, Expressive power of +parametrized quantum circuits, Physical Review Research 2, +033125 (2020). +[16] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Connect- +ing ansatz expressibility to gradient magnitudes and barren +plateaus, PRX Quantum 3, 010313 (2022). +[17] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, Infor- +mation Processing Capacity of Dynamical Systems, Scientific +Reports 2, 514 (2012). +[18] K. Fujii and K. Nakajima, Harnessing Disordered-Ensemble +Quantum Dynamics for Machine Learning, Physical Review +Applied 8, 024030 (2017). +[19] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Parame- +terized quantum circuits as machine learning models, Quantum +Science and Technology 4, 043001 (2019). +[20] R. Mart´ınez-Pe˜na, J. Nokkala, G. L. Giorgi, R. Zambrini, and +M. C. Soriano, Information processing capacity of spin-based +quantum reservoir computing systems, Cognitive Computation +(2020). +[21] M. Schuld and F. Petruccione, Machine Learning with Quan- +tum Computers, Quantum Science and Technology (Springer +International Publishing, 2021). +[22] J. Garc´ıa-Beni, G. L. Giorgi, M. C. Soriano, and R. Zam- +brini, Scalable photonic platform for real-time quantum reser- +voir computing, arXiv:2207.14031 [quant-ph] (2022). +[23] A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and P. J. Coles, +Effect of barren plateaus on gradient-free optimization, Quan- +tum 5, 558 (2021). +[24] IBM Quantum, https://quantum-computing.ibm.com (2022). +[25] W. D. Kalfus, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, T. A. +Ohki, and L. C. G. Govia, Hilbert space as a computational +resource in reservoir computing, Physical Review Research 4, +033007 (2022). +[26] V. Vedral, The role of relative entropy in quantum information +theory, Reviews of Modern Physics 74, 197 (2002). +[27] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, +Unified view of quantum and classical correlations, Physical +Review Letters 104, 080501 (2010). +[28] M. A. Nielsen and I. Chuang, Quantum computation and quan- +tum information (Cambridge University Press, 2010). +[29] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, +Physical Review Letters 96, 010401 (2006). +[30] R. Mart´ınez-Pe˜na, G. L. Giorgi, J. Nokkala, M. C. Soriano, and +R. Zambrini, Dynamical phase transitions in quantum reservoir +computing, Phys. Rev. Lett. 127, 100502 (2021). + +8 +Appendix A: Table of Symbols and Abbreviations +Abbreviations +NISQ +Noisy Intermediate Scale Quantum +(Q)ML +(Quantum) Machine Learning +QSN +Quantum Sampling Noise +VQC +Variational Quantum Circuits +PS +Product System +ES +Entangled System +EC +Total Expressive Capacity, CT +ETC +Expected Total Correlation, ¯T +Symbols and notation +S +Number of shots +N +Number of inputs +L +Number of qubits +K +≡ 2L, number of measured features +u +Input +θ +Quantum system parameters +ˆρ +Generated quantum state +ˆ +Mk +Measured observable +W +Output weights (can be untrained) +˜w +Optimal learned output weights on S-finite readout data +L +Loss function +bk +Label for eigenstate of ˆ +Mk +b(s) +Measurement outcome for shot s +xk +Expected features Tr{ ˆ +Mk ˆρ} +X(s) +k +Observed bit in shot s +¯ +Xk +Empirical observed feature 1/S � +s δ(b(s), bk) +ζk +Noise part in ¯ +Xk +G +Gram matrix of expected features {xk} +V +Expected covariance matrix of random variable X(s) +k (u) +R +Noise-to-Signal matrix +β2 +k +Eigen-NSR +y(k) +Principal feature +r(k) +Combination coefficients in y(k) = � +k′ r(k) +k′ xk′ +¯y(k) +≡ � +k′ r(k) +k′ ¯ +Xk′, noisy eigentask +ξ(k) +≡ � +k′ r(k) +k′ ζk′, noise part in ¯y(k) +ˆOk +≡ � +k′ r(k) +k′ |bk′⟩⟨bk′|, optimal measurement basis +ˆρM +≡ � +k ˆρkk(u) |bk⟩⟨bk|, post-measurement state +Kc(S) +Cutoff index where β2 +k reaches S +� +( · )N +Quantity obtained from finite N sampling data +� +( · ) +Large N limit, that is limN→∞ � +( · )N +TABLE I. Table of notations. +Appendix B: Feature maps using quantum systems +1. +Details of input encodings into quantum systems +In the main text, we introduce the idea of encoding inputs into the state of a quantum system via a parameterized quantum +channel, reproduced below: +ˆρ(u; θ) = U(u; θ)ˆρ0 +(B1) +Our analysis of EC presented in this work does not depend on the precise details of the quantum channel U. For practical +calculations, however, we have to consider concrete models, about which we provide more details in this section. + +9 +To describe these models, we begin by first limiting to 1-D inputs as analyzed in the main text; generalizations to multi- +dimensional inputs u are straightforward. Then, we write Eq. (B1) in the form +ˆρ(u; θ) = B(u; θ)ˆρ0B†(u; θ) +(B2) +In the main text, we have considered a model for dynamics of an L-qubit quantum system that is natively implementable on +modern quantum computing platforms: namely the ansatz of quantum circuits with single and two-qubit gates. In this case, +which we refer to as the circuit ansatz (or C-ansatz for short), the operator B(u; θ) takes the precise form +B(u; θ) = +� +Rx +�θx +2 +� +W(J)Rz +� +θz + θIu +� +Rx +�θx +2 +��τ +(C-ansatz) +(B3) +For completeness, we recall that Rx/z are Pauli-rotations applied qubit-wise, e.g. Rz = � +l Rz(θz +l + θI +l u), while the entangling +gate acts between physically connected qubits in the device and can be written as W(J) = � +⟨l,l′⟩ exp{−i J +2 ˆσz +l ˆσz +l′}. We empha- +size here again that τ ∈ N+ is an integer, representing the number of repeated blocks in the C-ansatz encoding. We note that +the actual operations implemented on IBMQ processors also include dynamics due to noise, gate, and measurement errors. As +discussed in the main text, the EC of a quantum system can be computed in the presence of these more general dynamics, and is +sensitive to the limitations introduced by them. +An alternative ansatz which we analyze in this SI, is where the operator B(u; θ) describes continuous Hamiltonian dynamics. +This ansatz is relevant to computation with general quantum devices, such as quantum annealers and more generally quantum +simulators. In this case, which we refer to as the Hamiltonian ansatz (or H-ansatz for short), +B(u; θ) = exp{−i ˆH(u)t}, ˆH(u) = ˆH0 + u · ˆH1 +(H-ansatz) +(B4) +Here t is a continuous parameter defining the evolution time; and ˆH0 = �L +l,l′ J⟨l,l′⟩ˆσz +l ˆσz +l′ + �L +l=1 hx +l ˆσx +l + �L +l=1 hz +l ˆσz +l and +ˆH1 = �L +l=1 hI +l ˆσz +l . The transverse x-field strength hx +l = ¯hx + εx +l and longitudinal z-drive strength hz,I +l += ¯hz,I + εz,I +l +are all +randomly chosen and held fixed for a given realization of the quantum system, +εx,z,I +l +∼ hx,z,I +rms N(0, 1), +(B5) +where N(0, 1) defines the standard normal distribution with zero mean and unit variance. We consider nearest-neighbor inter- +actions Jl,l′, which can be constant Jl,l′ ≡ J, or drawn from Jl,l′ ∼ Unif[0, Jmax], where Unif[a, b] is a uniform distribution +with non-zero density within [a, b]. +As an aside, we note that the C-ansatz quantum channel described by Eq. (B3) can be considered a Trotterization-inspired +implementation of the H-ansatz in Eq. (B4). In particular, if we set θx/z/I = hx/z/I∆ · τ, where t = ∆ · τ, and consider the +limit ∆ → 0 while keeping t fixed, Eq. (B3) corresponds to a Trotterized implementation of Eq. (B4). This correspondence is +chosen for practical reasons, but is not necessary in our analysis. +The parameterized quantum channel characterizes how information is injected into the quantum system and processed by it; +however, to probe information from the quantum system, one must apply an appropriate and feasible quantum measurement. +For extract information efficiently, we consider a wide family of observable ˆ +Mk: the only restriction of these observables is +that they must be a product of local observables, ˆ +Mk = ˆo1 ⊗ · · · ⊗ ˆoL, which mutually commute with each other (meaning +they are are simultaneously measurable). We consider two general schemes. The first one is the probability representation +ˆol ∈ {|0⟩⟨0| , |1⟩⟨1|}, while the second is the spin moments representation, ˆol ∈ {ˆI, ˆσz}; the former representation is used +throughout the main text. We will show below that these two readout schemes are equivalent up to a unitary transformation. +2. +Extracting output features under finite sampling: expressions for features and covariances +Following evolution of the quantum system under the input-dependent Hamiltonian given by Eq. (B4), we extract certain +measurable observables that are used as outputs for any learning task. The form of observables is again chosen for compliance +with measurement protocols native to near-term quantum computing implementations: we consider Pauli z basis measurements +only (although this can be generalized easily). This means our algorithm has access only to diagonal terms in ˆρ(u). We abbreviate +vectors ⃗Mk, ⃗ρ(u) ∈ RK such that ( ⃗Mk′)k = ( ˆ +Mk′)kk and (⃗ρ(u))k = ˆρ(u)kk. Then one can check for {+1, −1} readout: +⃗Mk · ⃗Mk′ = Kδjj′, and the readout features can be expressed into dot product form xk(u) = Tr +� +ˆ +Mk ˆρ(u) +� += ⃗Mk · ⃗ρ(u). In + +10 +QRC, we hope to make full use of all functions in family {(⃗ρ(u))k}k∈[K] as readout features. The collection of all readout +features +x(u) = +� +� +� +� +x0(u) +x1(u) +... +xK−1(u) +� +� +� +� = +� +� +� +� +� +⃗M T +0 +⃗M T +1... +⃗M T +K−1 +� +� +� +� +� ⃗ρ(u) =: U⃗ρ(u), +(B6) +The orthonormality of { ⃗Mk}k∈[K] implies that U is unitary up to an overall constant (in fact, U = +� +1 +1 +1 −1 +�⊗L +is the +Hadamard matrix [28]). This unitarity implies that the above transformation is information-preserving. In particularly, this +guarantees the ability to reconstruct the diagonal QRC density matrix elements (via tomography), ⃗ρ(u) = U −1x(u), simply +computing the required inverse via the numerically-robust relationship U −1 = 1 +K U T . +If each qubit has a readout error ϵ, that is, it will flip |0⟩ ↔ |1⟩. Then the transition probability of reading out |bk′⟩ from |bk⟩ +will be ϵd(bk,bk′)(1 − ϵ)L−d(bk,bk′) where d(bk, bk′) is the Hamming distance between bk and bk′. Thus, readout errors can +furthermore be mathematically modeled by one more transition matrix (more precisely, a stochastic matrix): +x(u) = U +� +1 − ϵ +ϵ +ϵ +1 − ϵ +�⊗L +⃗ρ(u). +(B7) +The covariance of the X(u) ∈ {+1, −1}L (the random features for individual shot S = 1) can also be expressed easily: +V[X(u)] = U +� +diag(⃗ρ(u)) − ⃗ρ(u) · ⃗ρ(u)T � +U T +(B8) +where diag(⃗v) is a diagonal matrix that has the elements of ⃗v as entries. To prove this expression, it suffices to verify that the +second order moments are entries +V[X(u)]k1k2 ≡ Tr +� +ˆ +Mk1 ˆ +Mk2 ˆρ(u) +� += +K−1 +� +k=0 +( ˆ +Mk1 ˆ +Mk2)kk ˆρkk(u) = +K−1 +� +k=0 +(U)k1k (U)k2k ˆρkk(u) = +� +Udiag (⃗ρ(u)) U T � +k1k2 . +(B9) +Appendix C: Information capacity with quantum sampling noise +1. +Definition of capacity for quantum systems with sampling noise +The function approximation universality (which will be formally stated in Appendix I), as a basic requirement of most neural +network model can be made concrete by defining a metric to quantify how well a given quantum system (generalizable to any +dynamical system) approximates general functions. Suppose an arbitrary probability distribution p(u) for a random (scalar) +variable u defined in [−1, 1]. This naturally defines a function space L2 +p([−1, 1]) containing all functions f : [−1, 1] → R with +� 1 +−1 f 2(u)p(u)du < ∞. The space is equipped with the inner product structure ⟨f1, f2⟩p = +� 1 +−1 f1(u)f2(u)p(u)du. A standard +way to check the ability of fitting nonlinear functions by a physical system is the information processing capacity [17], +C[fℓ] = 1 − +min +Wℓ∈RK +� 1 +−1 +��K−1 +k=0 Wℓkxk(u) − fℓ(u) +�2 +p(u)du +� 1 +−1 fℓ(u)2p(u)du +, +(C1) +where functions fℓ(u) are orthogonal target functions ⟨fℓ, fℓ′⟩p = +� 1 +−1 fℓ(u)fℓ′(u)p(u)du = 0 for ℓ ̸= ℓ′. The total expressive +capacity is computing the limitation CT ≡ �∞ +ℓ=0 C[fℓ], capturing the ability of what type of function the linear combination of +physical system readout features can produce. Dambre’s argument claims that the total capacity must be upper bounded by the +number of features CT ≤ K. +While Dambre’s result is quite general [17], it neglects the limitations due to noise in readout features, a fact that is unavoidable +when using quantum systems in the presence of finite computational and measurement resources. In this appendix section, we +will focus on the impact of fundamental quantum readout noise on this upper bound under finite sampling S. Given u and S, + +11 +the quantum readout features ¯Xk(u) = 1 +S +�S +s=1 X(s) +k (u) are stochastic variables (where X(s) +k +∈ {−1, +1} are binary random +values). The expectation vector and covariance matrix of ¯ +X(u) can be expressed in terms of ⃗ρ(u), the diagonal entries of the +density matrix (see Eq. (B8)) +E[ ¯ +X(u)] ≡ x(u) = U⃗ρ(u), +(C2) +E[ ¯ +X(u) ¯ +XT (u)] − E[ ¯ +X(u)]E[ ¯ +X(u)]T ≡ 1 +S Σ(u) = 1 +S U +� +diag (⃗ρ(u)) − ⃗ρ(u) · ⃗ρ(u)T � +U T . +(C3) +The dependence of readout features xk(u) on the input u can always be written in the form of a Taylor expansion, +xk(u) = +∞ +� +j=0 +(T)kjuj +(C4) +where we define the transfer matrix T(θ) ≡ T ∈ RK×∞ that depends on the density matrix ˆρ(u), and in particular on +parameters θ characterizing the quantum system. +To determine the optimal capacity to compute an arbitrary normalized function f(u) = �∞ +j=0(Y)juj using the noisy readout +features ¯ +X(u) extracted from the quantum system, we need to find an optimal W such that +C[f] = 1 − +minW +� 1 +−1 +��K−1 +k=0 Wk ¯Xk(u) − f(u) +�2 +p(u)du +� 1 +−1 f(u)2p(u)du +(C5) +By expanding the numerator of the right-hand side for a given, finite number of shots S, we find +� 1 +−1 +f(u)2p(u)du − +� 1 +−1 +�K−1 +� +k=0 +Wk ¯Xk(u) − f(u) +�2 +p(u)du += − +K−1 +� +k1=0 +K−1 +� +k2=0 +Wk1Wk2 +� 1 +−1 +¯Xk(u) ¯Xk2(u)p(u)du + 2 +K−1 +� +k=0 +Wk +� 1 +−1 +¯Xk(u)f(u)p(u)du +≈ − 1 +N +K−1 +� +k1=0 +K−1 +� +k2=0 +Wk1Wk2 +N +� +n=1 +¯Xk1(u(n)) ¯Xk2(u(n)) + 2 +N +K−1 +� +k=0 +Wk +N +� +n=1 +¯Xk(u(n))f(u(n)). +(C6) +where we have approximated the integral over the input domain by a finite sum in the limit of a large number of inputs N. +Next, note that if n ̸= n′, then Xk1(u(n)) and Xk2(u(n′)) are independent random variables (thought not necessarily identically +distributed). The sums over N on the right hand side are therefore sums of bounded independent random variables. In the +limit of large N ≫ 1, the deviation between stochastic realizations of these sums and their expectation values is exponentially +suppressed, as determined by the Hoeffding inequality. Then, with large probability, the sums over N may be replaced by their +expectation values, +� 1 +−1 +f(u)2p(u)du − +� 1 +−1 +�K−1 +� +k=0 +Wk ¯Xk(u) − f(u) +�2 +p(u)du +≈ − 1 +N +K−1 +� +k1=0 +K−1 +� +k2=0 +Wk1Wk2 +N +� +n=1 +E[ ¯Xk1(u(n)) ¯Xk2(u(n))] + 2 +N +K−1 +� +k=0 +Wk +N +� +n=1 +E[ ¯Xk(u(n))f(u(n))] += − 1 +N +K−1 +� +k1=0 +K−1 +� +k2=0 +Wk1Wk2 +N +� +n=1 +� +xk1(u(n))xk2(u(n)) + 1 +S Σ(u(n))k1k2 +� ++ 2 +N +K−1 +� +k=0 +Wk +N +� +n=1 +xk(u(n))f(u(n)) +≈ − +K−1 +� +k1=0 +K−1 +� +k2=0 +Wk1Wk2 +� 1 +−1 +� +xk1(u)xk2(u) + 1 +S Σ(u)k1k2 +� +p(u)du + 2 +K−1 +� +k=0 +Wk +� 1 +−1 +xk(u)f(u)p(u)du. +(C7) +The first approximation above comes from the Hoeffding inequality, where terms that are dropped are proportional to 1/ +√ +N. +In going from the second to the third line, we have used Eq. (C3). The final expression is obtained by rewriting sums over u as +integrals, with an error proportional to 1/ +√ +N once more. Thus we can say the original integral in Eq. (C5) is approximately +equal to Eq. (C7) to O(1/ +√ +N). + +12 +The first term in Eq. (C7) does not depend explicitly on the function f(u) being constructed, and introduces quantities that are +determined entirely by the response of the quantum system of interest to inputs over the entire domain of u. In particular, we +introduce the Gram matrix G ∈ RK×K as +(G)k1k2 = +� 1 +−1 +xk1(u)xk2(u)p(u)du = +∞ +� +j1=0 +∞ +� +j2=0 +(T)k1j1 +�� 1 +−1 +uj1+j2p(u)du +� +(T)k2j2 ≡ (TΛTT )k1k2 +(C8) +where in the second line we have also introduced the generalized Hilbert matrix Λ ∈ R∞×∞ as +(Λ)j1j2 = +� 1 +−1 +uj1+j2p(u)du. +(C9) +Secondly, we introduce the noise matrix V ∈ RK×K, +(V)k1k2 = +� 1 +−1 +Σ(u)k1k2 p(u)du = +� 1 +−1 +(xk(u) − xk1(u)xk2(u))p(u)du ≡ (D)k1k2 − (G)k1k2 +(C10) +for index k satisfying ˆ +Mk = ˆ +Mk1 ˆ +Mk2. Here we have also introduced the second-order-moment matrix D ∈ RK×K such that +(D)k1k2 = +� 1 +−1 xk(u)p(u)du. Then, the noise matrix simply defines the covariance of readout features, and is therefore given +by V = D − G. +The second term in Eq. (C7) depends on f(u) and can be simplified using the Λ matrix as well, +� 1 +−1 +xk(u)f(u)p(u)du = +∞ +� +j1=0 +∞ +� +j2=0 +(T)kj1 +�� 1 +−1 +uj1+j2p(u)du +� +(Y)j2 = (TΛY)k. +(C11) +With these definitions, Eq. (C5) can be compactly written in matrix form as a Tikhonov regularization problem: +C[f] = max +W +� +−W T � +TΛTT + 1 +S V +� +W + 2W T TΛY +YT ΛY +� += 1 − min +W +� +� +� +���Λ +1 +2 TT W − Λ +1 +2 Y +��� +2 ++ 1 +S W T VW +YT ΛY +� +� +� . +(C12) +The least-squares form ensures that the optimal value (argmin) � +w of W has closed form +� +w = +� +TΛTT + 1 +S V +�−1 +TΛY. +(C13) +Substituting w into the expression for C, we obtain the optimal capacity with which a function f can be constructed, which +takes the form of a generalized Rayleigh quotient +C[f] = YT ΛTT � +G + 1 +S V +�−1 TΛY +YT ΛY +. +(C14) +2. +Eigentasks +Eq. (C14) defines the optimal capacity of approximating an arbitrary function f(u) = �∞ +j=0(Y)juj. We can therefore +naturally ask which functions f maximise this optimal capacity. To this end, we first note that the denominator of Eq. (C14) is +simply a normalization factor that can be absorbed into the definition of the function f(u) being approximated, without loss of +generality. More precisely, we consider: +⟨f, f⟩p = 1 = +� +Λ +1 +2 Y +�T � +Λ +1 +2 Y +� += YT ΛY. +(C15) +Then, we can rewrite the optimal capacity from Eq. (C17) as +C[f] = YT Λ +1 +2 +� +QΛ +1 +2 Y +� +(C16) + +13 +Here we have defined the matrix Q ∈ R∞×∞ as +Q = B +� +I + 1 +S R +�−1 +BT , +(C17) +by introducing the matrix square root of G = G +1 +2 G +1 +2 , where G +1 +2 ∈ RK×K. Then, R = G− 1 +2 VG− 1 +2 becomes the noise-to- +signal matrix, while the matrix B is given by +B = Λ +1 +2 TT G− 1 +2 , +(C18) +The decomposition in Eq. (C17) may be verified by direct substitution into Eq. (C16). The ability to calculate matrix powers and +in particular the inverse of G requires constraints on its rank, which we show are satisfied in Appendix C 6. +We now consider the measure-independent part of the eigenvectors of Q, indexed Y(k), satisfying the standard eigenvalue +problem: +Q +� +Λ +1 +2 Y(k)� += CkΛ +1 +2 Y(k). +(C19) +where k = 0, · · · , K − 1. From Eq. (C16), it is clear that these eigenvectors have a particular meaning. Consider the function +y(k)(u) defined by the eigenvector Y(k), namely +y(k)(u) = +∞ +� +j=0 +Y(k) +j +uj, +(C20) +which we will refer to from now on as eigentasks. Suppose we wish to construct the function y(k)(u) using outputs obtained +from the physical system defined by Q in the S → ∞ limit (namely, with deterministic outputs). At a first glance, before +we dive into solving the eigenproblem Eq.(C19), we do not know any relationship between y(k) and x(u).The rest part of this +subsection is aiming to prove that y(k) must be a specific linear combination of features x(u). Then, the physical system’s +capacity for this construction is simply given by the corresponding eigenvalue Ck, as may be seen by substituting Eq. (C19) +into Eq. (C16). Formally, the y(k)(u) serves as the critical point (or stationary point) of the generalized Rayleigh quotient in +Eq. (C14). Consequently, the function that is constructed with largest capacity then corresponds to the nontrivial eigenvector +with largest eigenvalue. +To obtain these eigentasks, we must solve the eigenproblem defined by Eq. (C19). Here, the representation of Q in Eq. (C17) +becomes useful, as we will see that the eigensystem of Q is related closely to that of the noise-to-signal matrix R. In particular, +we first define the eigenproblem of R, +R +� +G +1 +2 r(k)� += β2 +kG +1 +2 r(k) +(C21) +with NSR eigenvalues β2 +k and corresponding eigenvectors r(k), which satisfy the orthogonality relation r(k′)T Gr(k) = δk,k′. +Here the r(k) is equivalent to be defined as the solution to generalized eigen-problem: +Vr(k) = β2 +kGr(k). +(C22) +This is because Vr(k) = G +1 +2 RG +1 +2 r(k) = β2 +kG +1 +2 G +1 +2 r(k) = β2 +kGr(k). The prefactor G +1 +2 is introduced for later convenience. +Eq. (C21) then allows us to define the related eigenproblem +� +I + 1 +S R +�−1 +G +1 +2 r(k) = +� +1 + β2 +k +S +�−1 +G +1 +2 r(k) +(C23) +Next, we note that Q is related to the matrix in brackets above via a generalized similarity transformation defined by B, +Eq. (C17). In particular, BT B = G− 1 +2 GG− 1 +2 = I ∈ RK×K, while we remark that BBT ̸= I since it is in R∞×∞. This +connection allow us to show that +Q +� +BG +1 +2 r(k)� += B +� +I + 1 +S R +�−1 +BT BG +1 +2 r(k) = +1 +1 + β2 +k/S BG +1 +2 r(k). +(C24) +Comparing with Eq. (C19), we can now simply read off both the eigenvalues and eigenvectors of Q, +Ck = +1 +1+β2 +k/S +Λ +1 +2 Y(k) = BG +1 +2 r(k) +� +=⇒ Y(k) = TT r(k) +(C25) + +14 +where we have used the definition of B from Eq. (C18). The functions defined by the eigenvectors Y(k) are automatically +orthonormalized: +� +y(k1), y(k2)� +p = +� +Λ +1 +2 Y(k1)�T� +Λ +1 +2 Y(k2)� += r(k1)T G +1 +2 BT BG +1 +2 r(k2) = r(k1)T Gr(k2) = δk1k2. +(C26) +3. +Noisy eigentasks from readout features +We can now also discuss the interpretation of {β2 +k} for a physical system - in this case a quantum circuit - for which {r(k)} are +known. Consider a single run of the quantum system under finite shots S, which yields a single instance of the readout features +¯ +X(u). We can simply read off that an noisy version of the kth eigentask, ¯y(k)(u) can be constructed as +¯y(k)(u) = +K−1 +� +k′=0 +r(k) +k′ ¯Xk′(u) +(C27) +which is equivalent to requiring the output weights W = r(k).The corresponding set of noisy function is also orthogonal, this +is because Vr(k) = β2 +kGr(k) implies r(k)T Vr(k′) = β2 +kδk,k′ and hence +� +¯y(k1), ¯y(k2)� +p = r(k1)T +� +G + 1 +S V +� +r(k2) = +� +1 + β2 +k +S +� +δk1k2 +(C28) +This equation can be further decomposed into two parts. Let the linear transformation of noise ξ(u) by defining ξ(k)(u) = +�K−1 +k=0 r(k) +k′ ζk′(u) +Eu[y(k1)y(k2)] = +� +y(k1), y(k2)� +p = r(k1)T Gr(k2) = δk1k2, +(C29) +Eu[ξ(k1)ξ(k2)] = +� +ξ(k1), ξ(k2)� +p = 1 +S r(k1)T Vr(k2) = β2 +k1 +S δk1k2. +(C30) +It means that the combination {r(k) ∈ RK}k∈[K] not only produces orthogonal eigentasks {y(k)(u)} for signal, but also induces +a set of orthogonal noise functions {ξ(k)(u)}. +If the quantum circuit can be run multiple times for a given S, multiple instances of ¯ +X(u) can be obtained, from each of +which an estimate of the kth eigentask ¯y(k)(u) can be constructed. The expectation value of these estimates then simply yields +E[¯y(k)(u)] = +K−1 +� +k′=0 +r(k) +k′ E[ ¯Xk′(u)] = +K−1 +� +k′=0 +r(k) +k′ xk′(u) = y(k)(u) +(C31) +If we have access to only a single instance of ¯ +X(u), however, and thus only one estimate ¯y(k)(u) (as y(k)(u) and ¯y(k)(u) +depicted in Fig. 7), it is useful to know the expected error in this estimate. This error can be extracted from Eq. (C12). In +particular, requiring Y(k) = TT r(k), we have +���Λ +1 +2 TT r(k) − Λ +1 +2 Y(k)��� +2 ++ 1 +S r(k)T Vr(k) +Y(k)T ΛY(k) += 1 +S r(k)T Vr(k) = β2 +k +S . +(C32) +This mean squared error in using ¯y(k)(u) to estimate y(k)(u) over the domain of u decreases to zero for S → ∞ as expected, +since the noise in ¯ +X decreases with S. However, β2 +k defines the S-independent contribution to the error. In particular, this +indicates that at a given S, certain functions with lowers NSR eigenvalues β2 +k may be better approximated using this physical +system than others. We present in Fig. 7 the measured features ¯ +X, the eigentasks y and their S-finite version ¯y in a 6-qubit +Hamiltonian based system. The associated eigen-NSR spectrum, expressive capacity, and total correlations are also depicted for +both ES J ̸= 0 and PS J = 0. + +15 +4. +Expressive capacity +Given an arbitrary set of complete orthonormal basis functions fℓ(u) = �∞ +j=0(Yℓ)juj, +⟨fℓ, fℓ′⟩p = +� +Λ +1 +2 Yℓ +�T � +Λ +1 +2 Yℓ′ +� += δℓℓ′. +(C33) +The total capacity is independent of the basis choice +CT (S) = +∞ +� +ℓ=0 +C[fℓ] = +∞ +� +ℓ=0 +YT +ℓ Λ +1 +2 +� +Λ +1 +2 TT +� +TΛTT + 1 +S V +�−1 +TΛ +1 +2 +� +Λ +1 +2 Yℓ += Tr +� +Λ +1 +2 TT +� +TΛTT + 1 +S V +�−1 +TΛ +1 +2 +� += Tr +�� +G + 1 +S V +�−1 +G +� += +K−1 +� +k=0 +1 +1 + β2 +k +S +. +(C34) +5. +Estimation in case of nonlinear functions after linear output layer +Usually, instead of taking the linear transformation W · ¯ +X, the training process can involve some complicated nonlinear +activation functions or classical kernel, which may also be fed into a non-quadratic nonlinear loss function afterwards. These +two processes can be unified to be σNL( ¯ +X(u)) with any smooth function σNL. In this subsection, we show how to translate our +result obtaining from quadratic nonlinear function Eq. (C5) into a more general loss function with form of +L = Eu[σNL( ¯ +X)] +(C35) +Now let us first transform all noisy measured features { ¯Xk} into the naturally orthogonal basis of signal {y(k)} and noise {ξ(k)}. +¯Xk′(u) ≡ +K−1 +� +k=0 +Γk′k(y(k)(u) + ξ(k)(u)), +(C36) +such transformation of Γ ∈ RK×K must uniquely exist, this is because all K of {r(k)} are linearly independent. Recall +Eq. (C30) claims that Eu[ξ(k)] = 0 and Eu[ξ(k)ξ(k′)] = β2 +kδkk′/S, we can deal with the nonlinearity by taking the quadratic +expansion, where , we get +L = Eu[σNL( ¯ +X)] = Eu[σNL(Γ¯y)] = Eu +� +σNL +�� +k +Γ0,k(y(k) + ξ(k)), · · · , +� +k +ΓK−1,k(y(k) + ξ(k)) +�� +≈ Eu[σNL(Γy)] + +K−1 +� +k=0 +Eu +�∂σNL +∂y(k) ξ(k) +� ++ 1 +2 +K−1 +� +k1=0 +K−1 +� +k2=0 +Eu +� +∂2σNL +∂y(k1)∂y(k2) ξ(k1)ξ(k2) +� += Eu[σNL(Γy)] + 1 +2 +K−1 +� +k1=0 +K−1 +� +k2=0 +Eu +� +∂2σNL +∂y(k1)∂y(k2) ξ(k1)ξ(k2) +� +, +(C37) +where the first order terms vanish due to Hoeffding inequality again. We then make a further approximation of Eq. (C37) by +replacing the ξ(k1)ξ(k2) with its u-average Eu[ξ(k1)ξ(k2)] = δk1k2β2 +k1/S: +L ≈ Eu[σNL(Γy)] + +K−1 +� +k=0 +β2 +k +S · Eu +� ∂2σNL +(∂y(k))2 +� +. +(C38) +In fact, any of the second terms can be further simplified by chain rule: L ≈ Eu[σNL(Γy)] + � +k +β2 +k +S · Eu[(ΓT ∇2 +xσNLΓ)kk]. +The approximation in Eq. (C38) is rough, but it still gives us a sufficient reason to do the following manipulation: for optimized +L , the dependence on y(k) with β2 +k/S > 1 will be strongly suppressed in large-N limit, hence we can pre-exclude the eigentasks +whose β2 +k/S > 1. +Let us use one typical example, the widely used logistic regression in classification, to illustrate our argument here. As what +we will introduce in Appendix I, the target function is the conditional probability distribution f(u) := Pr[u ∈ C1|u] in such + +16 +classification model (see Eq. (I4)), and then there is one more layer of softmax and cross-entropy function acting on linear +map L = Eu[H(f(u), σ(W · ¯ +X(u)))] where σ is sigmoid function (e.g. softmax function σ(z) = 1/(1 + exp(−z))), and +H(p, q) = −p ln q − (1 − p) ln(1 − q) is the cross-entropy. Especially, any linear combination of { ¯Xk} can be translated into +linear combination +W · ¯ +X(u) ≡ +K−1 +� +k=0 +Ωk · (y(k)(u) + ξ(k)(u)), +(C39) +Again, such vector Ω = ΓT W must also uniquely exist. +For any σNL = g(W · x), one always have ΓT ∇2 +xσNLΓ = +g′′(Ω · y)ΩT Ω: +L ≈ Eu[H(f, σ(Ω · y))] + +�K−1 +� +k=0 +β2 +k +S Ω2 +k +� +· Eu[σ(Ω · y)(1 − σ(Ω · y))] . +(C40) +It helps us read from the prefactor β2 +k/S induces a natural regularization on Ωk in loss function, in addition to the S-infinity +term limS→∞ L = Eu[H(f, σ(Ω · y))]. We will leave the detailed discussion of this important application in Appendix H and +Appendix I. +6. +Proof that the Gram matrix G is full rank +Recall that before we analytically find the eigenvectors of Q, we first show that the matrix G is invertible. It comes from that +all K readout features {xk(u)}k∈[K] being linear independent is entirely equivalent to the full-rankness of the corresponding +Gram matrix Rank(G) = K. Thanks to the linearity of readout, we can show such linear independence by contradiction. +Suppose on the contrary there exists coefficients {ck}k∈[K] such that +K−1 +� +k=0 +ckxk(u) = Tr +��K−1 +� +k=0 +ck ˆ +Mk +� +U(u)ˆρ0 +� += 0. +(C41) +However, this means that the quantum observable �K−1 +k=0 ck ˆ +Mk is a zero-expectation readout-qubit quantity for any state U(u)ˆρ0 +under arbitrary input u, which is impossible. This shows the linear independence. Furthermore, we then argue that it ensures G +has no non-trivial null space. This is because that any {ck}k∈[K] will satisfy +K +� +k1,k2=1 +ck1ck2(G)k1,k2 = +� 1 +−1 +� K +� +k1=1 +ck1xk1(u) +�� K +� +k2=1 +ck2xk2(u) +� +p(u)du = +�K−1 +� +k=0 +ckxk, +K−1 +� +k=0 +ckxk +� +p +. +(C42) +where the RHS is the norm of function �K−1 +k=0 ckxk(u). The summation �K +k1,k2=1 ck1ck2(G)k1,k2 = 0 vanishes if and only +if function �K−1 +k=0 ckxk(u) is a zero function. That is why the linear independence of features {ck}k∈[K] is equivalent to that +symmetric matrix G has no zero eigenvalues, namely Rank(G) = K. Numerically speaking, this relation always holds in +general as long as assuming this is for the case where N ≫ K. +7. +Simplifying the noise-to-signal matrix and its eigenproblem +We have shown that the problem of obtaining the eigentasks for a generic quantum system, and deducing its expressive +capacity under finite measurement resources, can be reduced simply to solving the eigenproblem of its noise-to-signal matrix +R, Eq. (C21). Note that constructing R = G− 1 +2 VG− 1 +2 requires computing the inverse of G. However, G can have small +(although always nonzero) eigenvalues, especially for larger systems, rendering it ill-conditioned and making the computation +of R numerically unstable. Fortunately, certain simplifications can be made to derive an equivalent eigenproblem that is much +easier to solve. +To begin, we first note that so far, we have placed no requirements on the specific form of measurement operators { ˆ +Mk}, and +thus the readout features xk(u) = Tr{ ˆ +Mk ˆρ(u)} are also unspecified. Our analysis thus far holds for any set of measurement +operators that describe a complete set of commuting observables. However, specific choices of measurement operators can + +17 +simplify the form of the matrices G and V involved. In particular, if one chooses ˆ +Mk to be the projections onto the computational +basis, ˆ +Mk = |bk⟩ ⟨bk|, then according to Eq. (B8), by setting U = I we have x(u) ≡ ⃗ρ(u), which we refer to as the probability +representation of readout features. Practically, the probability representation is native to measurement schemes in contemporary +quantum processors, and therefore minimizes the required post-processing of readout features obtained from a real device. More +importantly, although it is related to any other readout feature representation via a unitary transformation, the strength of the +probability representation lies in the fact that it renders the second-order moment matrix D diagonal. In particular, +(D)k1k2 = +� �K−1 +k=0 (G)kk1, if k1 = k2 +0, +if k1 ̸= k2 +(in probability representation of readout features) +(C43) +Using V = D − G, we can rewrite the eigenproblem for R, +R +� +G +1 +2 r(k)� += β2 +kG +1 +2 r(k) +=⇒ G− 1 +2 (D − G)G− 1 +2 +� +G +1 +2 r(k)� += β2 +kG +1 +2 r(k) +=⇒ G−1Dr(k) = (1 + β2 +k)r(k) +(C44) +Finally, considering the inverse of the matrix on the left hand side, we obtain the simplified eigenproblem for the matrix D−1G, +D−1Gr(k) = (1 + β2 +k)−1r(k) ≡ αkr(k), +(C45) +which shares eigenvectors with R, and whose eigenvalues are a simple transformation of the NSR eigenvalues β2 +k. Impor- +tantly, constructing D−1G no longer requires calculating any powers of G, and when further choosing readout features in the +probability representation, it relies only on the inversion of a simple diagonal matrix D. +The matrix D−1G has significance in spectral graph theory, when interpreting the Gram matrix G as the adjacency matrix of +a weighted graph. This connection is elaborated upon in Appendix C 8. +8. +Connections to spectral graph theory +Let us have a small digression to the graphic theoretic meaning of G and D−1G. Now we consider a weighted graph with +adjacency matrix G. In spectral graph theory, the matrix D−1G is exactly the random walk matrix associated with graph G, and +then the second order matrix D happens to be the degree matrix of this graph since (D)kk = �K−1 +k′=0(G)kk′. Then the eigentask +combination coefficient r(k) is precisely the right eigenvector of random walk matrix. Another concept associated with a graph +is I − D− 1 +2 GD− 1 +2 , the normalized Laplacian matrix of G, while the matrix D− 1 +2 GD− 1 +2 is always referred to be normalized +adjacency matrix in many literatures. The eigenproblem of normalized adjacency matrix can also be solved easily, because +D− 1 +2 GD− 1 +2 +� +D +1 +2 r(k)� += D +1 +2 D−1Gr(k) = αk +� +D +1 +2 r(k)� +. +(C46) +From perspective of spectral graph theory, roughly speaking, a reservoir with stronger ability to resist noise are those who has +more “bottlenecks” in graph G’s connectivity. The extreme case is supposing that αk = 1 (or 1 − αk = 0) for all k. According +the basic conclusion in spectral graph theory, the normalized Laplacian matrix has K zero eigenvalues iff the graph G is fully +disconnected. This gives us the condition when noisy information capacity obtain its upper bound K: there exists a partition +{Domk}k∈[K] of domain Dom = [−1, 1] such that ˆρkk(u) = 1 iff u ∈ Domk. +Appendix D: Spectral analysis based on finite statistics +While Eq. (C45) is a numerically simpler eigenproblem to solve than Eq. (C21), it still requires the approximation of G (recall +that D can be obtained from G) from readout features ¯ +X(u) under finite sampling, due to the finiteness of shots S, the number +of input points N, and also the number of realizations of readout features for a given S. In what follows, we show how an +approximation �GN of G can be constructed from finitely-sampled readout features, as relevant for practical quantum devices. +Secondly, we also describe an approach to obtain the eigentasks y(k)(u) and corresponding NSR eigenvalues β2 +k that avoids +explicit construction of the Gram matrix, and is thus even more numerically robust. + +18 +1. +Approximating eigentasks and NSR eigenvalues under finite S and N +For practical computations, readout features ¯ +X(u) from the quantum system for finite S can be computed for a discrete set +of u(n) ∈ [−1, 1] for n = 1, . . . , N. Labelling the corresponding readout features ¯ +X(u(n)), we can define the regression matrix +constructed from these readout features, +�FN ≡ ( ¯ +X(u(1)), ¯ +X(u(2)), · · · , ¯ +X(u(N)))T = +� +� +� +¯X0(u(1)) · · · +¯XK−1(u(1)) +... +... +¯X0(u(N)) · · · +¯XK−1(u(N)) +� +� +� . +(D1) +Here, �FN ∈ RN×K, with subscript N indicating its construction from a finite set of N inputs, is a random matrix due to the +stochasticity of readout features; in particular it can be written as: +�FN = FN + +1 +√ +S +Z(FN) +(D2) +where (FN)nk = E[ ¯Xk(u(n))] = xk(u(n)), and Z is the centered multinomial stochastic process, so that E[�FN] = FN. +Using this regression matrix �FN, we can obtain an estimation of the Gram matrix and second order moment matrix, which +we denote �GN and �DN, and whose matrix elements are defined via +( �GN)k1k2 ≡ 1 +N +N +� +n=1 +¯Xk1(u(n)) ¯Xk2(u(n)) = 1 +N (�FT +N �FN)k1k2 ≈ +� 1 +−1 +¯Xk1(u) ¯Xk2(u)p(u)du, +(D3) +( �DN)k1k2 ≡ δk1,k2 +1 +N +N +� +n=1 +¯Xk1(u(n)) ≈ δk1,k2 +� 1 +−1 +¯Xk1(u)p(u)du. +(D4) +While the quantities �GN and �DN are computed from stochastic readout features, their stochastic contributions are suppressed +in the large N limit by the Hoeffding inequality for sums of bounded stochastic variables. In particular, we can define their +deterministic limit for N → ∞, according to Eq. (C7), as +�G ≡ lim +N→∞ +1 +N (�FT +N �FN)k1k2 = G + 1 +S V = G + 1 +S (D − G), +(D5) +�D ≡ lim +N→∞ +�DN = D. +(D6) +Inverting the above expressions allow us to express the Gram matrix G and second-order moment matrix D in terms of the +estimates �G and �D computed using a finite number of shots S, +G = +S +S − 1 +�G − +1 +S − 1 +�D, +(D7) +D = �D. +(D8) +We see that to lowest order in 1 +S , G ≈ �G and D ≈ �D, which is what one might expect naively. However, we clearly see that +the estimation of G can be improved by including a higher-order correction in 1 +S . This contribution arises due to the highly- +correlated nature of noise and signal for quantum systems: we are able to estimate the noise matrix �G and �D using knowledge +of the readout features, and correct for the contribution to �G and �D that arises from this noise matrix. We will see that this +contribution will be important in more accurately approximating quantities of interest derived from G, D. +To this end, we recall that our ultimate aim is not just to estimate G and D, but to solve the eigenproblem of Eq. (C45). Using +the above relation, we can then establish �D−1 �G = S−1 +S D−1G + 1 +S I, and write Eq. (C45) in a form entirely in terms of �G and +�D, +D−1Gr(k) = (1 + β2 +k)−1r(k), +=⇒ �D−1 �Gr(k) = +�S − 1 +S +(1 + β2 +k)−1 + 1 +S +� +r(k). +(D9) + +19 +5 +10 +15 +20 +25 +30 +Order k +100 +101 +102 +103 +104 +105 +Eigen-NSRs β2 +k +β2 +k, S → ∞ +˜β2 +N,k, S = 102 +˜β2 +k, S = 102 +S· ˜β2 +N,k +(S−1)− ˜β2 +N,k, S = 102 +S = 102 +FIG. 5. Eigen-analysis in L = 5 H-ansatz system by taking S = 102 shots on each of N = 104 samples, with true eigen-NSRs β2 +k (black), +S-finite sampled ˜β2 +N,k (blue) and corrected (S · ˜β2 +N,k)/((S − 1) − ˜β2 +N,k) (purple). ˜β2 +k, the large N limit of ˜β2 +N,k is also plotted in red for +comparison. The data correction is necessary since all ˜β2 +N,k are below the S = 102, and the corrected data show much better performance +even if β2 +k ≫ S. The estimated line (in purple) are cutoff at k = 25 since all sampled ˜β2 +N,k after that are larger the S − 1 so that they are not +correctable. +Note that the final form is conveniently another eigenproblem, now for the finite-S matrix �D−1 �G: +�D−1 �G˜r(k) = (1 + ˜β2 +k)−1˜r(k) ≡ ˜αk ˜r(k), +(D10) +whose eigenvalues and eigenvectors can be easily related to the desired eigenvalues β2 +k and eigenvectors r(k) of Eq. (C45). +Following some algebra, we find: +β2 +k = +S +(S − 1) − ˜β2 +k +· ˜β2 +k = ˜β2 +k + +∞ +� +j=1 +˜β2 +k +� +1 + ˜β2 +k +�j � 1 +S +�j +, +(D11) +r(k) = ˜r(k). +(D12) +From Eq. (D11), we see that to lowest order in 1 +S , β2 +k ≈ ˜β2 +k. However, this expression also supplies corrections to higher orders +in 1 +S , which are non-negligible even for β2 +k < S, as we see in example of Fig. 5. In contrast, the estimated eigenvectors ˜r(k) to +any order in 1 +S equal the desired eigenvectors r(k) without any corrections. +Of course, in practice we do not have access to the matrices �G and �D, as these are only defined precisely in the limit +where N → ∞. However, for large enough N, we can approximate these matrices to lowest order by their finite N values, +�G = �GN + O +� 1 +N +� +and �D = �DN + O +� 1 +N +� +. Then, the eigenproblem in Eq. (D10) can be expressed in the final form, +�D−1 +N �GN ˜r(k) +N = (1 + ˜β2 +N,k)−1˜r(k) +N ≡ ˜αN,k ˜r(k) +N , +(D13) +where the eigenvalues ˜β2 +N,k, ˜αN,k and eigenvectors ˜r(k) +N in the large N limit must satisfy +lim +N→∞ +˜β2 +N,k = ˜β2 +k, +lim +N→∞ ˜αN,k = ˜αk, +lim +N→∞ ˜r(k) +N = ˜r(k) ≡ r(k). +(D14) +Here the invertibility of the empirically-computed matrix �DN required for Eq. (D13) is numerically checked, based on which +we can establish a better numerical method in Appendix D 2. +Eq. (D13) represents the eigenproblem whose eigenvalues ˜β2 +N,k and eigenvectors ˜r(k) +N we actually calculate. For large enough +N and under finite S, we can use these as valid approximations to the eigenvalues and eigenvectors of Eq. (D10). This finally +enables us to directly estimate the N, S → ∞ quantities β2 +k and r(k) using Eqs. (D11), (D12): +β2 +k ≈ +S · ˜β2 +N,k +(S − 1) − ˜β2 +N,k += 1 − ˜αN,k +˜αN,k − 1 +S +, +(D15) +r(k) ≈ ˜r(k) +N . +(D16) + +20 +0 +5 +10 +15 +−1 +0 +1 +Coefficient r(k) +r(1): β2 +1 = 0.0 v.s. ˜r(1) +N : +1−˜αN,1 +˜αN,1−1/S = 0.0 +Eigenvector of D−1G +Eigenvector of ˜D−1 +N ˜GN +0 +5 +10 +15 +−0.25 +0.00 +0.25 +r(2): β2 +2 = 4.656 v.s. ˜r(2) +N : +1−˜αN,2 +˜αN,2−1/S = 4.663 +0 +5 +10 +15 +−0.5 +0.0 +r(3): β2 +3 = 5.898 v.s. ˜r(3) +N : +1−˜αN,3 +˜αN,3−1/S = 6.03 +0 +5 +10 +15 +0.0 +0.5 +r(4): β2 +4 = 12.661 v.s. ˜r(4) +N : +1−˜αN,4 +˜αN,4−1/S = 12.824 +0 +5 +10 +15 +0.0 +0.5 +Coefficient r(k) +r(5): β2 +5 = 17.548 v.s. ˜r(5) +N : +1−˜αN,5 +˜αN,5−1/S = 17.571 +0 +5 +10 +15 +−0.5 +0.0 +0.5 +r(6): β2 +6 = 21.166 v.s. ˜r(6) +N : +1−˜αN,6 +˜αN,6−1/S = 22.382 +0 +5 +10 +15 +−0.5 +0.0 +r(7): β2 +7 = 29.809 v.s. ˜r(7) +N : +1−˜αN,7 +˜αN,7−1/S = 30.513 +0 +5 +10 +15 +−0.5 +0.0 +r(8): β2 +8 = 51.107 v.s. ˜r(8) +N : +1−˜αN,8 +˜αN,8−1/S = 51.635 +0 +5 +10 +15 +−0.5 +0.0 +0.5 +Coefficient r(k) +r(9): β2 +9 = 69.874 v.s. ˜r(9) +N : +1−˜αN,9 +˜αN,9−1/S = 71.21 +0 +5 +10 +15 +−0.5 +0.0 +0.5 +r(10): β2 +10 = 111.001 v.s. ˜r(10) +N : +1−˜αN,10 +˜αN,10−1/S = 109.021 +0 +5 +10 +15 +0.0 +0.5 +r(11): β2 +11 = 151.254 v.s. ˜r(11) +N : +1−˜αN,11 +˜αN,11−1/S = 144.208 +0 +5 +10 +15 +−0.5 +0.0 +0.5 +r(12): β2 +12 = 248.423 v.s. ˜r(12) +N : +1−˜αN,12 +˜αN,12−1/S = 233.445 +0 +5 +10 +15 +Index k′ of r(k) +k′ +0.0 +0.5 +Coefficient r(k) +r(13): β2 +13 = 333.471 v.s. ˜r(13) +N : +1−˜αN,13 +˜αN,13−1/S = 348.828 +0 +5 +10 +15 +Index k′ of r(k) +k′ +−0.5 +0.0 +r(14): β2 +14 = 416.321 v.s. ˜r(14) +N : +1−˜αN,14 +˜αN,14−1/S = 409.548 +0 +5 +10 +15 +Index k′ of r(k) +k′ +−0.5 +0.0 +0.5 +r(15): β2 +15 = 655.346 v.s. ˜r(15) +N : +1−˜αN,15 +˜αN,15−1/S = 743.085 +0 +5 +10 +15 +Index k′ of r(k) +k′ +−0.5 +0.0 +0.5 +r(16): β2 +16 = 2191.863 v.s. ˜r(16) +N : +1−˜αN,16 +˜αN,16−1/S = 1945.381 +FIG. 6. Estimating NSR eigenvalues and corresponding eigentask coefficients under finite statistics (N = 300, S = 1000) in a 4-qubit +H-encoding system, and comparison with theoretical value for N → ∞, S → ∞. +It is clear that the approximation of β2 +k to lowest order will be an underestimate, as the contribution of order 1 +S is positive. In +Fig. 6, we plot the estimated eigenvectors ˜r(k) +N computed under finite statistics (N = 300, S = 1000, where these two numbers +are relevant for IBM quantum processors) in H-encoding, together with the N, S → ∞ eigenvectors r(k), and the estimated +eigenvalues. +2. +Gram matrix-free construction to approximate eigentasks and NSR eigenvalues +If we consider Eq. (D13) and multiply through by D +− 1 +2 +N , the resulting equation can be written as an equivalent eigenproblem, +1 +N +�D +− 1 +2 +N �FT +N �FN �D +− 1 +2 +N +� +�D +1 +2 +N ˜r(k) +N +� += ˜αN,k +� +�D +− 1 +2 +N ˜r(k) +N +� +(D17) +where we have also written �GN = +1 +N �FT +N �FN as in the previous section. Note that as written above, the eigenproblem is +entirely equivalent to obtaining the singular value decomposition of the matrix +1 +√ +N �D +− 1 +2 +N �FT +N. This particular normalization factor +1 +√ +N �D +− 1 +2 +N +is different from the standard z-score of principal components analysis. To obtain the combination coefficients r(k), +let t(k) ∈ RK be the left singular vector of +1 +√ +N �D +− 1 +2 +N �FT +N (which is also the eigenvector of 1 +N �D +− 1 +2 +N �FT +N �FN �D +− 1 +2 +N +≈ D− 1 +2 �GD− 1 +2 +in the large N limit). Then r(k) = �D +− 1 +2 +N t(k) ∈ RK can be treated as the combination prefactor of ˆ +Mk, to obtain the observables +which correspond to the eigentasks. The merit of SVD analysis of +1 +√ +N �D +− 1 +2 +N �FT +N is that we only need to work with a K-by-N +matrix of features �FN, which is numerically cheaper than further constructing a Gram matrix 1 +N �FT +N �FN. We will explore more +about the usage of our technique in sense of PCA in Appendix H. + +21 +FIG. 7. Eigen analysis in a 6-qubit H-ansatz system (with N = 5000 and S = 1000) forming a 1D ring. The Hamiltonian parameters are +chosen randomly with zero-mean and variance (hx +rms, hz +rms, hI +rms) = (20, 5, 5), and t = 5 (See Appendix B 1 for details). Coupling strength +is uniformly J ̸= 0 (ES) or J = 0 (PS). (a) All 2L = 64 noisy features ¯ +Xk(u) and (b) noisy eigentasks ¯y(k)(u) = r(k) · ¯ +X(u) for selected k +from the features in (a), as well as their expected values y(k)(u) = limS→∞ ¯y(k)(u) = r(k) · x(u) (black). (c) NSR spectrum β2 +k and (d) CT +vs shots S for both ES and PS encodings. (e) CT at S = 105 and (f) ETC, ¯T (ˆρM) in representative random 6-qubit H-ansatz, as a function of +coupling strength J. The peaks of capacity and correlation coincide, around J ∼ hx +rms. +Appendix E: H-ansatz quantum systems: NSR spectra, expressive capacity, and eigentasks +In this section, we evaluate the EC for quantum systems described by the H-ansatz introduced in Appendix B 1, as an example +of how EC can be efficiently computed for a variety of general quantum systems, and is not just restricted to parameterized +quantum circuits. The results of the analysis are compiled in Fig. 7, and discussed below. +Fig. 7(a) presents the set of features { ¯Xk(u)} for typical L = 6 qubit ES and PS at S = 1000 with randomly chosen +parameters (referred to as encodings, see caption). The resultant noisy eigentasks {¯y(k)(u)} and NSR spectra {β2 +k} extracted +via the eigenvalue analysis are shown in Figs. 7(b) and 7(c) respectively. In the side-by-side comparison in Fig. 7(b), we clearly +see the J = 0 ansatz transitioning to a regime with more noise at much lower k than the J ̸= 0 ansatz. This is reflected in +Fig. 7(c), the β2 +k spectrum, having a much flatter slope for larger k (note the plot is semilog). Finally, Fig. 7(d) shows the EC of +both systems as a function of S. EC rapidly rises for small S for both systems, but the rise of the J = 0 system is steeper. After +a certain threshold in S, however, the ES grows more rapidly, approaching the upper bound 26 = 64 with S ∼ 108; in contrast, +the PS has a significantly lower CT . +For J → ∞ we also have ¯T = 0 because ˆρ0 = |0⟩⟨0|⊗L is an eigenstate of the encoding (ˆρ(u) = ˆρ0). This implies there +must be a peak at some intermediate J, which for both EC and ETC occurs when the coupling is proportional to the transverse +field J ∼ hx. +Our results elucidate the same kind of improvement, as can be observed when we consider how the EC C changes with J, and +compare it to the total correlation ETC ¯T , as shown in Fig. 7(f). For J → 0 we have a PS with ¯T = 0, whereas in the J → ∞ +we also have ¯T = 0 because ˆρ0 = |0⟩⟨0|⊗L is an eigenstate of the encoding (ˆρ(u) = ˆρ0). This implies there must be a peak at +some intermediate J, which for both EC and ETC occurs when the coupling is proportional to the transverse field J ∼ hx. At +finite S, increased ETC is directly related to a higher EC. +Another interesting aspect is the clear trend seen in the maximization of EC around J ∼ hx +rms for various hx +rms, possibly +hinting at the role of increased entanglement around the MBL phase transition in random spin systems [30]. This trend is +consistent with results in quantum metrology – in general, the SNR obtained from averaging L uncorrelated probes scales as +1/ +√ +L. This scaling can become favorable in the presence of entanglement and other non-classical correlations, in which case the +scaling of the SNR can show up to a quadratic improvement 1/L [29]. For even larger J, we find that ˆρ(u) → ˆρ0 = |0⟩⟨0|⊗L, +which clearly reduces ¯T , but also CT as the quantum system state becomes u-independent. + +ES +PSES +PS10 +20 +30 +50 +4010 +20 +30 +40 +50W +>>>>>>>>>>>>>>> +>>>>>>>>>22 +Appendix F: Scaling with quantum system size +An important question in quantum machine learning applications is the possible advantage of using larger quantum systems +for information processing. In this section, we present preliminary results of scaling with quantum system size. The left panel of +Fig. 8 shows EC vs L at select S values for H-ansatz, while the right panel shows two encodings in the C-ansatz device, as well +as their noisy simulations. In both plots, the dashed line indicates the S → ∞ result CT = 2L. We see that the EC increases +when adding more qubits into the Ising chain for the H-ansatz, or when increasing the number of circuit qubits L for the C- +ansatz. Note, however, that at any finite S the noise-constrained EC falls off the exponential bound for S → ∞. The dropoff +is particularly severe for the IBMQ device, where we are limited to just S ∼ 104, which significantly suppresses the EC even +for L = 7 qubits. Note, however, that even if one is well below CT = 2L due to this finite sampling constraint, increasing the +dimension of the quantum system is always an effective way to increase the EC, particularly when compared to the logarithmic +growth with S of Fig. 2 of Main Text. +3 +4 +5 +6 +7 +Qubit numbers L +0 +32 +64 +96 +128 +EC CT +S = 101 +S = 102 +S = 103 +S = 104 +S = 105 +S = 106 +S = 107 +S → ∞ +3 +4 +5 +6 +7 +Qubit numbers L +0 +20 +40 +EC CT +S =10 +S =27 +S =210 +S =214 +S → ∞ +FIG. 8. (a) H-ansatz and (b) C-ansatz at finite S as a function of qubit number L. Various colours indicate different S values, with the S → ∞ +bound in dashed black. Individual noisy simulations are indicated in small and transparent dots, with their average as a thick line, and the EC +of the C-ansatz device for encoding 1 and 2 are indicated with ‘×’ and ‘+’ respectively. +Appendix G: Quantum correlation metrics +There is no one standard metric to quantify entanglement or correlation in a many-body state. The metric we introduce +here, the quantum total correlation, is a quantity inspired by the classical total correlation of L random variables (b1, · · · , bL), +that is �L +l=1 H(bl) − H(b1, · · · , bL). Using chain rule of Shannon entropy H(b1, b2, · · · , bL) = H(b1) + H(b2|b1) + · · · + +H(bL|b1, b2, · · · , bL−1) +L +� +l=2 +H(bl) − H(b1, b2, · · · , bL) = +L +� +l=1 +H(bl) − +L +� +l=1 +H(bl|b1, b2, · · · , bl−1) = +L +� +l=2 +I(b1, · · · , bl−1; bl) ∈ [0, L − 1], +(G1) +we can see that the classical total correlation tells us how a set of random variables reveals information of each other. Similarly, +quantum total correlation can be defined as [26, 27] +T (ˆρ) = +L +� +l=1 +S(ˆρl) − S(ˆρ) +(G2) +where S is von Neumann entropy and ˆρl := Tr[L]\{l} {ˆρ} is the subsystem state at qubit l. Due to the subadditivity of von- +Neumann entropy �L +l=1 S(ˆρl) ≥ S(ˆρ), we conclude that the quantum total correlation is non-negative, and is zero iff the state +ˆρ = �L +l=1 ˆρl is a product state. +In this paper’s measurement scheme, the specific readout POVMs are the projectors onto the computational states +{|bk⟩ ⟨bk|}k∈[K]. Thus, we are in particular interested in analyzing the post-measurement state ˆρM(u) = � +k ρkk(u) |bk⟩ ⟨bk| + +23 +whose subsystems are correspondingly in states ˆρM +l (u) = Tr[L]\{l} +� +ˆρM(u) +� +. We compute the average quantum total correla- +tion over the input domain u with respect to the input probability distribution p(u): +¯T +� +ˆρM� += Eu +� L +� +l=1 +S(ˆρM +l (u)) − S(ˆρM(u)) +� += Eu +� L +� +l=1 +H(bl(u)) − H(b1(u), · · · , bL(u)) +� +(G3) +where the second equality comes from the diagonal nature of post-measurement state which reduces the quantum total correlation +to a normal classical total correlation. +The post-measurement quantum total correlation always reaches its maximum L − 1 when the diagonal terms of the state +is a GHZ-type state. Also as a comparison, for a W-state |W⟩ = +1 +√ +L (|10 · · · 0⟩ + |01 · · · 0⟩ + · · · + |00 · · · 1⟩), then post- +measurement quantum total correlation T(|W⟩) is +L +� +− +� 1 +L +� +log2 +� 1 +L +� +− +�L − 1 +L +� +log2 +�L − 1 +L +�� +− L +� +− +� 1 +L +� +log2 +� 1 +L +�� += (L − 1) log2 +� +L +L − 1 +� +. +(G4) +which is upper bounded by limL→∞ T (|W⟩) = +1 +ln(2) ≈ 1.443. +Appendix H: Guidance from EC theory: principal component analysis with respect to quantum noise +Another fundamental use of the capacity spectrum analysis we propose is giving a natural truncation of eigentask. In machine +learning theory, the technique of projection of a high-dimensional data to a far lower subspace is called principal component +analysis. Within the computing architecture we are discussing, we are trying to use some K′-dimensional data where K′ ≪ K +to approximate the original data as much as possible. More specifically, consider a given function f(u), we hope to find K′ +functions {G(k)(u)}k∈[K′] where G(k)(u) = �K−1 +k′=0 g(k) +k′ xk′(u) lies in the space spanned by measured features G(k)(u) ∈ +Span{x}, such that the relative mean square error +min +W +Eu +����f − �K′ +k=1 Wk +��K−1 +k′=0 g(k) +k′ ¯Xk′ +���� +2� +Eu[|f|2] +(H1) +is much smaller as possible. According to Appendix C, the solution to {g(k)}k∈[K′] is exactly g(k) = r(k). Fig. 9 supplies a +concrete example of fitting linear function f(u) = u, by setting K′ = 40 in a 6-qubit system (and thus K = 64). +−1.0 +−0.5 +0.0 +0.5 +1.0 +Input u +−1.5 +−1.0 +−0.5 +0.0 +0.5 +1.0 +1.5 6-qubit, 40 principal xk(u), with retrain +Combination of ¯Xk(u) +Combination of xk(u) +Target function f(u) = u +−1.0 +−0.5 +0.0 +0.5 +1.0 +Input u +−1.5 +−1.0 +−0.5 +0.0 +0.5 +1.0 +1.5 6-qubit, 40 principal y(k)(u), no retrain +Combination of ¯Xk(u) +Combination of xk(u) +Target function f(u) = u +FIG. 9. Projection onto 40-dimensional space spanned by 40 principal xk(u) vs. spanned by 40 principal y(k), in a 6-qubit H-encoding +system. The number of shots is fixed as S = 5000. +Fig. 9(a) shows the projection onto the space spanned by the dominant 40 readout features. Here, by “dominant” we mean +one can first train by least square regression to get an output weight w ∈ RK, and then select corresponding wk with the leading +K′ largest w2 +k · Eu[|xk|2]. Then we need to use these K′ features to retrain and obtain a new output weight w′ ∈ RK′. In such +particular example, g(k) are some one-hot vectors where the index of 1 are chosen by the sorting K′ largest w2 +k · Eu[|xk|2] as we + +24 +described before. We can compare the the relative mean square error with the case of g(k) = r(k), the eigentasks. The latter one +shows an approximation function with conspicuously much smaller relative mean square error. +One fundamental question is: what will be an appropriate selection of K′ in practice. In Appendix D we claim that those +β2 +k has stronger noise than signal itself, which should be excluded when taking the linear combination of measured features (or +equivalently taking the linear combination of eigentasks). Namely we should defined the cut-off Kc(S) such that +Kc(S) = max +β2 +k 0, there always exists a function ϕ(u) = w · x(u) such that +|ϕ(u) − φ(u)| ≤ ε +(I1) +for any input u ∈ [−1, 1]. The proof is also employing the well-known Stone-Weierstrass theorem. For our particular ar- +chitecture, D = [−1, 1] is obviously a compact space, while point-separation can also be trivially fulfilled by a single qubit +system (L = 1). The subalgebra structure of the function family generated by quantum systems is automatically satisfied in +representation of moment in family of all product systems. +2. +1D classification as function approximation for noiseless measured features +In this section, we will show how the function approximation universality of architecture described in Appendix I 1 enables it +to perform – among others – paradigmatic machine learning tasks such as classification. + +26 +1 +2 +3 +4 +5 +Output feature threshold order mmax +82 +84 +86 +88 +Testing Accuracy (%) +Theoretical maximal accuracy +−1.0 +−0.5 +0.0 +0.5 +1.0 +Input u +0.00 +0.25 +0.50 +0.75 +1.00 +Probability +mmax = 1 +mmax = 2 +mmax = 3 +mmax = 4 +Pr[u ∈ C1|u] +FIG. 13. +1D classification as function approximation in a 5-qubit quantum system with full connectivity. +The hyperparameters are +(Jmax; ¯hx, hx +rms; ¯hI, hI +rms) = (1; 3, 1; 8, 5) in unit 1/t and no hz field. (Left) Testing accuracy as a function highest order mmax of mo- +ment feature. (Right) Conditional distribution Pr[u ∈ C1|u] (purple dashed line) vs. readout features σ(w · x(u)) with mmax = 1, 2, 3, 4 +(red solid line). mmax = 4 saturates the approximation accuracy. +Suppose two classes C0 and C1 of samples, each of which is generated from distributions p0(u) and p1(u) respectively. The +probability of occurrence of C0 and C1 are both 50%, and we simply let each class equally contain 5000 samples and thus +N = 10000 samples in total. Both distribution are artificially defined by summing several Gaussian distributions with different +amplitudes and widths together. Domain of both distributions are restricted in [−1, 1] and both distributions are also normalized. +Due to the overlap of two distributions, there is some theoretical maximal classical accuracy to distribution whether a given u +belongs to either C0 or C1. +During the training, we feed each sample u(n) (belonging to class Cc(n)) into a 5-qubit quantum system. The quantum system +will be read out with Keff = �mmax +m=0 +�L +m +� +different features {xk(u(n))}k∈[Keff]. Then features of N sample forms the regressor +matrix. According to the standard supervised learning procedure, we simply train based on (x(u(n)), c(n)) by logistics regression +where one should minimize the cross-entropy loss +L (W ) = +1 +N +N +� +n=1 +� +− c(n)log +� +σ(W · x(u(n))) +� +− +� +1 − c(n)� +log +� +1 − σ(W · x(u(n))) +� � +(I2) +where σ is the sigmoid function σ(y) = +1 +1+e−y . A small L2 penalty λ∥W ∥2 (where λ = 10−6) is added to Eq. (I2) for +preventing overfitting. The optimal W is then simply the set of weights that minimizes this cost function, +w = argminW {L (W )} +(I3) +We test the fidelity of learning the classification task by determining the accuracy of classification on a testing set formed +by drawing N = 10000 new samples (independent of the training set) as a function of the order of output moments extracted, +mmax = 1, 2, 3, 4, 5, corresponding to reading out Keff = 6, 16, 26, 31, 32 features respectively. The resulting testing accuracy +is plotted in the left panel of Fig. 13). We see that the testing accuracy converges to the theoretical maximal accuracy (dashed +green) with increase in readout features. +Importantly, one can show that this improvement in learning performance coincides with training of optimal weights w such +that the QRC is able to approximate the conditional distribution Pr[u ∈ C1|u] of the two classes with increasing accuracy (lower +error). To verify this, we first numerically compute all K = 32 readout feature functions x(u) of the system, by sweeping 500 +equidistant values of u ∈ [−1, 1]. Effectively learning the conditional distribution means that σ(w · x(u)) ≈ Pr[u ∈ C1|u]. It is +equivalent to use w · x(u) to approximate the following function: +w · x(u) ≈ σ−1(Pr[u ∈ C1|u]). +(I4) +We therefore see that the function approximation universality property of the architecture discussed in Appendix I 1 enables its +use as a generic classifier. + +27 +−1.0 +−0.5 +0.0 +0.5 +1.0 +Input u +0.00 +0.25 +0.50 +0.75 +1.00 +Probability +Training +Testing +Pr[u ∈ C1|u] +101 +102 +103 +104 +105 +Shots S +60 +70 +80 +90 +Accuracy (%) +Training +Testing +Theoretical maximal accuracy +FIG. 14. (Left) The linear combination with sigmoid activation, that is the stochastic function σ +��Kc(S) +k′=1 wk′,Train(˜r(k) +N · ¯ +XTrain)k′ +� +(blue +line) and σ +��Kc(S) +k′=1 wk′,Train(˜r(k) +N · ¯ +XTest)k′ +� +(red line), compared with the true conditional probability Pr[u ∈ C1|u] (black line). (Right) +Training accuracy and testing accuracy. They saturate the theoretical maximal accuracy as S reaches 104 ∼ 105. Their agreement shows the +quantum measurement noise serves well as a regularizer. +3. +Solving classification problem by quantum-noise-PCA +Now we can solve the classification task above by using the quantum-noise princilpal component analysis we learn from +capacity analysis. Suppose a physical system with L = 5 qubits and ring connectivity, we choose the hyperparameter to be +J = 2, hx +rms = hz +rms = hI +rms = 5 and t = 3. In this H-encoding scheme, we can obtain K = 32 measured features on each of +N = 105 samples {u(n)} (5000 in class C0 and 5000 in class C1). We emphasize here that the underlying marginal distribution +p(u) is no longer uniform here, and it will make both {β2 +k} and {r(k)} very different. +Given the number of shots S ∈ [101, 105], we can still compute the empirical ˜r(k) +N and estimating β2 +k by using the correction +techniques we used in Appendix D. By comparing the estimated (1 − ˜αN,k)/(˜αN,k − 1 +S ) and S, we can figure out the cutoff +order Kc(S) and combination coefficients ˜r(k) +N , based on which we can define a set of observables +ˆOk = +K−1 +� +k′=0 +˜r(k) +N,k′ ˆ +Mk′ +k = 0, 1, · · · , Kc(S). +(I5) +It is equivalent to say, by measuring ˆOk, we can effectively obtain eigentasks ˜r(k) +N · ¯ +XTrain. Then we can apply standard logistics +regression on those eigentasks as we did in Eq. I2. The only difference is we no longer need any regularization term as penalty +like λ∥W ∥2. The training procedure eventual yield wTrain ∈ RKc(S), together with ˜r(k) +N and Kc(S). +Now we generate a totally new and independent set of u’s for testing purpose. +By measuring ˆOk, one get eigentasks +˜r(k) +N · ¯ +XTest. By plugging wTrain ∈ RKc(S)+1, together with ˜r(k) +N +and Kc(S) in training, we can achieve the testing accu- +racy. The agreement between training and testing accuracy show that the quantum measurement noise effectively works as a +regularizer, and do a pretty good job (see Fig. 14). +Appendix J: Finite sampling bound and uncertainty propagation +We conclude that the principle advantage brought about by entanglement in this sections. There we observe that for certain +inputs u (that depend on the input encoding) the measurement of an ES when mapped into the moment space can generate +distributions that can be highly anisotropic at finite S. While for PS these distributions are generally isotropic unless they are +close to the boundaries of the output domain (when the encoding produces outputs that are eigenstates of the measurement basis). +We observe that this trend is also present in the experimental system despite non-idealities. The origin of higher expressive +capacity at large S provided by ESs can be traced back to this basic feature. To be more specific, let ˆ +Mk = ˆσz +l1 ˆσz +l2 · · · ˆσz +lm, and +¯Xk(u) be empirical mean based on S sampling. Notice that the variance of ¯Xk is +Var[ ¯Xk] = 1 +S +� +⟨(ˆσz +l1 ˆσz +l2 · · · ˆσz +lm)2⟩ − ⟨ˆσz +l1 ˆσz +l2 · · · ˆσz +lm⟩2� += 1 +S (1 − x2 +k(u)). +(J1) + +28 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +Highest order m +10−1 +100 +101 +1/SNR (Log) +EC, fit +PC, fit +FIG. 15. NSR of ES vs PS in a 10-qubit quantum annealing system with shot number S = 1000 by feeding u = 1/2. The hyperparameters +are chosen to be (¯hx, hx +rms; ¯hz, hz +1,rms) = (8, 2; 3, 2) in unit 1/t. The purple and red colors correspond to coupling being switched on and off, +respectively; and the coupling hyperparameter in ES is Jmax = 2/t. For each m, the N = 30 dots are relative error x(r) +k (u)/xk(u) − 1 of +30 repetitions r = 1, 2, · · · , 30. The standard deviation of those relative errors (namely NSR) are also plotted. The ES NSR (purple stars) is +well fitted by O(1/ +√ +S) (purple dashed line) while the PS NSR (red stars) scales exponentially as O(2m/ +√ +S) (purple dashed line). We take +y-axis being log-scale, and one may find in these regime ES 1/SNR grows exponentially faster than PS NSR (red stars) and hence PS readout +scheme will be less powerful in sense of quantum sampling noise resistant. +By central limit theorem, +¯Xk(u) = xk(u) + δk(u) = xk(u) + +1 +√ +S +ζk(u), +(J2) +where random sampling noise ζk(u) ≈ +� +1 − x2 +k(u)ϵ and ϵ ∼ N(0, 1) is standard Gaussian. For quantum moment readout, the +amplitude of relative error is +���� +δk(u) +xk(u) +���� ≈ +� +1 − x2 +k(u) +x2 +k(u) +1 +√ +S +∝ +1 +√ +S +. +(J3) +For classical polynomial readout the amplitude of relative error is obtained by rule of uncertainty propagation +���� +(xl1(u) + δl1) · · · (xlm(u) + δlm) − xl1(u) · · · xlm(u) +xl1(u) · · · xlm(u) +���� ≈ +���� +δl1 +xl1(u) + · · · + +δlm +xlm(u) +���� +≈ +�� +1 − x2 +l1(u) +x2 +l1(u) ++ · · · + +� +1 − x2 +lm(u) +x2 +lm(u) +� +× +1 +√ +S +∝ m × +1 +√ +S +. +(J4) +If there is no entanglement in quantum system, then the readout features for both quantum moment readout and classical poly- +nomial readout are the same ⟨ˆσz +l1 ˆσz +l2 · · · ˆσz +lm⟩ = ⟨ˆσz +l1⟩⟨ˆσz +l2⟩ · · · ⟨ˆσz +lm⟩. However, even if the expectations under infinite sampling +limit S → ∞ are the same, the measurement noise under finite sampling are still different. For classical polynomial read- +out, the scaling of still follows the simple additivity relation of uncertainty propagation in Eq. (??). But now the noise of +xl1(u) · · · xlm(u) in quantum moment readout will be very strong, this is because xl1(u) · · · xlm(u) is now close to zero, thus +���� +δk +xk(u) +���� ≈ +1 +xk(u) +1 +√ +S += +1 +xl1(u) · · · xlm(u) +1 +√ +S +∝ 2m × +1 +√ +S +. +(J5) + diff --git a/5dAyT4oBgHgl3EQfQPaq/content/tmp_files/load_file.txt b/5dAyT4oBgHgl3EQfQPaq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b700a15c15377858a2273d0e73837b6bf80f6444 --- /dev/null +++ b/5dAyT4oBgHgl3EQfQPaq/content/tmp_files/load_file.txt @@ -0,0 +1,1273 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf,len=1272 +page_content='Fundamental Limits to Expressive Capacity of Finitely Sampled Qubit-Based Systems Fangjun Hu,1, ∗ Gerasimos Angelatos,1, ∗ Saeed A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Khan,1 Marti Vives,1, 2 Esin T¨ureci,3 Leon Bello,1 Graham E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rowlands,4 Guilhem J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Ribeill,4 and Hakan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' T¨ureci1 1Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA 2Q-CTRL, Santa Monica, CA 90401, USA 3Department of Computer Science, Princeton University, Princeton, NJ 08544, USA 4Raytheon BBN, Cambridge, MA 02138, USA (Dated: January 3, 2023) The expressive capacity for learning with quantum systems is fundamentally limited by the quantum sampling noise incurred during measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' While studies suggest that noise limits the resolvable capacity of quantum systems, its precise impact on learning remains an open question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We develop a framework for quantifying the expressive capacity of qubit-based systems from finite numbers of projective measurements, and calculate a tight bound on the expressive capacity and the corresponding accuracy limit that we compare to experiments on superconducting quantum processors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We uncover the native function set a finitely-sampled quantum system can approximate, called eigentasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We then demonstrate how low-noise eigentasks improve performance for tasks such as classification in a way that is robust to noise and overfitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We also present experimental and numerical analyses suggesting that entanglement enhances learning capacity by reducing noise in eigentasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our results are broadly relevant to quantum machine learning and sensing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' INTRODUCTION Learning with quantum systems is a promising application of near-term quantum processors, with several recent demon- strations in both quantum machine learning (QML) [1–5] and quantum sensing [6–8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A broad class of such data-driven ap- plications proceed by embedding data into the evolution of a quantum system, where the embedding, dynamics, and ex- tracted outputs via measurement are all governed by a set of general parameters θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Depending on the learning scheme, dif- ferent components of this general framework may be trained for optimal performance of a given task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Irrespective of the scheme, however, the fundamental role of the quantum sys- tem is that of a high-dimensional feature generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Given inputs u, a set of frequencies for the occurrence of different measurement outcomes act as a feature vector to learn a func- tion f(u) that minimizes the chosen loss function (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The relationship between the physical structure of the model and the function classes that can be expressed with high accu- racy, referred to as expressivity, is a fundamental question of basic importance to the success of quantum models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Recent results have begun to shed light on this important question and provide guidance on the choice of parameterized quantum models [9–16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Yet when it comes to experimental implemen- tations, the presence of noise is found to substantially curtail theoretical expectations for performance [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Given an input u to a general dynamical system, we de- fine its Expressive Capacity (EC) as a measure of the accu- racy with which K linearly independent functions {f(u)} of the input can be constructed from K readout features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This is a suitable generalization to noisy systems of the Information ∗ These two authors contributed equally Processing Capacity introduced in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A central chal- lenge in determining the EC for quantum systems is the fun- damentally stochastic nature of measurement outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Even when technical noise due to system parameter fluctuations is minimized as in an error-corrected quantum computer, there is a fundamental level of noise, the quantum sampling noise (QSN), which cannot be eliminated in learning with quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' QSN therefore sets a fundamental limit to the EC of any physical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Although QSN is well-understood theoretically, a formulation of its impact on learning is a chal- lenging task as it is strongly determined by the quantum state of the system relative to the measurement basis, and is highly correlated when entanglement is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Consequently, the impact of QSN is often ignored [18–21] (with a few excep- tions [14, 22]), even though it can place strong constraints on practical optimization [23] and performance [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this ar- ticle, we develop a mathematical framework to quantify the EC that exactly accounts for the structure of QSN, providing a tight bound for an L-qubit system under S measurements, and illustrate how a mathematical framework for its quantifi- cation can guide experimental design for QML applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our work goes beyond simply defining the EC as a figure of merit, however.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, we offer a methodology to iden- tify the native function set that is most accurately realizable by a given encoding under finite sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Equivalently, we show that this defines a construction of measured features that is optimally robust to noise in readout, thereby revealing how such a quantum system can be optimally employed for learn- ing tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Finally, while the strength of the EC lies in its gener- ality, we provide numerical examples that suggest that higher EC is typically indicative of improved performance on spe- cific QML tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As such, the EC provides a metric whose op- timization can be targeted for improved learning performance in a task-agnostic and parameter-independent manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This strategy for defining the noise-constrained EC natu- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='00042v1 [quant-ph] 30 Dec 2022 2 Entangled system Increased sampling Product system Input dimensional input domain Output under finite sampling Feature generator (a) (b) Individual function capacity: Function approximation features (Probabilities) Quantum system Quantum annealers Quantum Neural Networks/ Variatonal Quantum Algorithms Quantum Kernel Methods Target: Learned Estimate: Learned linear weights e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' -Qubit system Computational basis measurement FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (a) Representation of the learning framework considered in this work – inputs u are transformed to a set of outputs via a feature generator, here implemented using a finitely-sampled quantum sys- tem as shown in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Inputs are encoded in the state of a quantum system via a general quantum channel U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Information is extracted from the quantum system via projective measurements in the com- putational basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The geometric structure of the quantum sampling noise in the high-dimensional measured feature space can strongly depend on the encoding, and the degree of entanglement generated upon parametric evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The learning scheme discussed in the present work optimally leverages the geometric structure of corre- lated noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This framework describes a wide range of practical quantum systems, from quantum circuits used in QML, to quantum annealers exhibiting continuous evolution, and beyond, all defined by general parameters θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As shown in (a), learned estimates for desired functions are constructed via a trained linear estimator ˜w applied to K measured observables ¯ X of the quantum system, with a resolu- tion limited by quantum sampling noise with finite shots S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Capacity then quantifies the error in the approximation of a target function via this scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' rally focuses on accessible noisy output features under a spec- ified measurement scheme, as opposed to unmeasured degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This makes the EC an efficiently-computable quantity in practice, as we demonstrate using both numerical simulations and experiments on IBM Quantum’s supercon- ducting multi-qubit processors [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our work also identifies enhancement in measurable quantum correlations as a general principle to increase the EC of quantum systems under finite sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' LEARNING WITH QUANTUM SYSTEMS The most general approach to learning from data using a generic quantum system is depicted schematically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A table with symbols and abbreviations used in the text can be found in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For concreteness, we detail a specific realization for L-qubit systems that are measured projectively, which will be analyzed in the remainder of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Any learning scheme begins with embedding the data u through a quantum channel parameterized by θ acting on a known initial state, ˆρ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) = U(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ)ˆρ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For an L-qubit quantum system, for example, we consider ˆρ0 = |0⟩⟨0|⊗L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Any computation must be performed using outputs ex- tracted from the quantum system via measurements in a specified basis parameterized by K operators { ˆ Mk}, k = 0, · · · , K − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For a projectively measured L-qubit system, the measurement basis is defined by the K = 2L projectors ˆ Mk = |bk⟩⟨bk| corresponding to measurement of bitstrings bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A single measurement or “shot” yields a discrete out- come b(s)(u) for each observable: if the outcome of shot s is state k, then b(s)(u) ← bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Measured features are then constructed by ensemble-averaging over S repeated shots: ¯Xk(u) = 1/S � s δ(b(s)(u), bk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Hence ¯Xk(u) in this case is the measured frequency of occurrence of the bitstring bk in S repetitions of the experiment with the same input u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' These measured features are formally random variables that are un- biased estimators of the expected value of the corresponding observable as computed from ˆρ(u): explicitly, limS→∞ ¯Xk(u) ≡ xk(u) = Tr{ ˆ Mk ˆρ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ)}, (1) so that xk is the quantum mechanical probability of occur- rence of the kth bitstring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In QML theory, it is standard to consider the limit S → ∞, and to thus use expected features {xk(u)} for learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' How- ever, for any practical implementation, measured features { ¯Xk(u)} must be constructed under finite S, in which case their fundamentally quantum-stochastic nature can no longer be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This quantum sampling noise, like any other source of noise, can unsurprisingly limit the EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Completely unlike classical noise sources however, the statistics of quan- tum sampling noise are strongly determined by the state of the quantum system itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This leads to a rich noise structure that changes dramatically based on, for example, the entan- glement of the generated quantum state, as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this work, we exactly account for this structure of quantum sampling noise to quantify its fundamental impact on EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' By further leveraging the complexity and quantum state depen- dence of sampling noise, we provide a practical, experimen- tally applicable methodology that maximizes the capacity for learning functions using finitely-sampled quantum systems, and also avoids overfitting in ML tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We begin by observing that ¯ X are samples from a multino- mial distribution with S trials and K = 2L categories, which can be decomposed into their expected value and an input- dependent sampling noise: ¯ X(u) = x(u) + 1 √ S ζ(u), (2) where ζ(u) is a zero-mean random vector obeying multino- mial statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As discussed in Appendix B and C, what makes quantum systems special is the fundamental relation- ship between the noise ζ(u) and the ‘signal’ x(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Pre- cisely, the covariance Σ(u) of ζ(u) depends on the gen- erated quantum state: Σkk′(u) = Tr{ ˆ Mk ˆ Mk′ ˆρ(u)} − Tr{ ˆ Mk ˆρ(u)}Tr{ ˆ Mk′ ˆρ(u)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This quantum covariance of the measured observables therefore comprises non-linear func- tions of the signal x(u) itself;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' at a given S, we will show that this allows for more information to be extracted from sys- tems with more quantum correlations between observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note that ζ can be straightforwardly modified to include other 3 noise sources, such as gate or measurement errors (see Ap- pendix B 2), with 1/ √ S then interpreted as a general noise strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However our focus here remains on quantum sam- pling noise and its fundamental role in learning with quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The use of such a quantum system for the learning of func- tions under finite sampling is then depicted schematically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For a target function f(u), an approximation fW (u) is obtained via a linear (for reasons clarified shortly) esti- mator applied to readout features under finite S, fW (u) = W · ¯ X(u), where ¯ X = ( ¯X0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' , ¯XK−1)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To quantify the fidelity of this approximation, we introduce the capac- ity [14, 17, 20] to construct the target function as the minimum achievable (normalized) mean squared error between the tar- get and its estimate: C[f] = 1 − min W ∈RK Eu[|f(u) − fW (u)|2] Eu[|f(u)|2] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (3) In the above, Eu refers to the expected value with respect to an input distribution p(u) over a compact input domain, which can be continuous or discrete: Eu[f] ≡ � du p(u)f(u) ≃ 1 N � n f(u(n)) for i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' sampling obeying u(n) ∼ p(u) for all n ∈ [N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Minimizing error in the approximation of f(u) by fW (u) over the input domain to determine capac- ity thus requires finding ˜w = argminW Eu[|f − fW (u)|2] (via a resource-efficient pseudoinverse).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This capacity is con- structed such that 0 ≤ C[f] ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The choice of a linear estimator and a mean squared er- ror loss function may appear restrictive at first glance, but the generality of our formalism averts such limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For ex- ample, the use of a linear estimator applied directly to readout features precludes classical nonlinear post-processing of mea- surements;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' however, this is simply to ensure the calculated capacity is a measure of the quantum system itself, and not of a classical nonlinear layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Importantly, our formalism is gen- eral enough to incorporate such processing in a calculation of capacity, via a simple redefinition of readout features ¯ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Hence the use of a linear estimator does not necessarily lose generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Secondly, while higher-order loss functions may be used, the mean squared loss effectively describes the Tay- lor expansion of a wide range of loss functions (see Appendix C 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To extend the notion of capacity to a task-independent mea- sure of the expressivity of a physical system, we can eval- uate the function capacity over a complete orthonormal set of basis functions {fℓ}ℓ∈N, equipped with the inner product ⟨fℓ, fℓ′⟩p = � 1 −1 fℓ(u)fℓ′(u)p(u)du = δℓℓ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The total Ex- pressive Capacity (EC) is then CT ≡ �∞ ℓ=0 C[fℓ], which ef- fectively quantifies how many linearly-independent functions can be expressed from a linear combination of { ¯Xk(u)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our main result, which is proven in Appendix C 4, is that the EC for an L-qubit system whose readout features are stochastic variables of the form of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (2) is given by CT (θ) = Tr �� G + 1 S V �−1 G � = K � k=1 1 1 + β2 k(θ)/S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (4) The first equality is written in terms of the expected feature Gram and covariance matrices G ≡ Eu[xxT ] and V ≡ Eu[Σ] respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we later demonstrate that these expected quantities can be accurately estimated under finite S sam- pling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The second equality expresses the total capacity in a finite-dimensional linear space, in terms of the eigenval- ues {β2 k}k∈[K] satisfying the generalized eigenvalue prob- lem Vr(k) = β2 kGr(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Inspecting this expression, we first note that it is independent of the particular set {fℓ}ℓ∈N cho- sen, which would have required an evaluation over an infi- nite set of functions and its numerical evaluation therefore would be subject to inaccuracies due to truncation [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In- stead, CT can be interpreted as the sum of capacities to con- struct K individual functions living in an otherwise infinite- dimensional function space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' the identity of these special func- tions is closely connected with the generalized eigenvectors {r(k)}, and will be clarified shortly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Secondly, in the absence of noise, limS→∞ CT = Rank{G} = K = 2L, provided no special symmetries exist (see Appendix C 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Such theoreti- cal exponential growth in expressive capacity with L is often- cited as a motivator for ML on quantum systems [14, 20, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' From the perspective of infinite-shot capacity, this also im- plies that all L-qubit systems with K measured features are equivalent, regardless of encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Such universality has also been pointed out for classical dynamical systems subject to zero input and output noise [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, our expression for CT is also valid for any noisy physical system, corresponding to finite S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (4) shows that the EC of a qubit-based physical system satisfies CT ≤ K at finite S, and can be fully characterized in terms of the spectrum {β2 k}, which is ultimately determined by parameters θ governing the physical system and embed- ding via the Gram (G) and covariance (V) matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Related characterizations of noise-constrained capacity have been at- tempted for Gaussian quantum systems [22], but to our knowl- edge no precise formulation exists that also encompasses non- Gaussian systems such as qubit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Furthermore, from the perspective of capacity, what makes one embedding or physical system different from another is simply its ability to accurately express functions in the presence of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our expression for CT thus provides a general, comprehensive, and straightforward metric to assess and compare this capac- ity across physical systems and their associated embedding under finite S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Furthermore, via the associated eigenvectors {r(k)}, our analysis uncovers a finite set of orthogonal functions native to a particular encoding that is maximally resolvable through S measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This set of K orthonormal functions, the eigentasks y(k)(u) = � j r(k) j xj(u), can be estimated from measured readout features as described in Appendix D 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The eigentasks characterize an ordered set of functions that can be constructed with mean squared error β2 k/S, leading to a natu- ral interpretation of β2 k as noise-to-signal (NSR) eigenvalues, determined by fundamental sampling noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As we will show, this experimentally extractable information can be utilized for optimal learning (with minimal degrees of freedom) with a noisy quantum system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 4 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' EXPERIMENTAL RESULTS To demonstrate the above results in practice, we now show how the spectrum {β2 k}, the EC, and eigentasks can all be computed for real quantum devices in the presence of param- eter fluctuations and device noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We emphasize at the outset that our approach for quantify- ing the EC of a quantum system is very general, and can be applied to a variety of quantum system models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For practical reasons, we perform experiments on IBM Quantum (IBMQ) processors, whose dynamics is described by a parameterized quantum circuit containing single and two-qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' How- ever, as an example of the general validity of our approach, in Appendix E we compute the EC for L-qubit quantum an- nealers via numerical simulations, governed by the markedly different model of continuous-time Hamiltonian dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' On IBMQ devices, resource limitations restrict our compu- tation of EC to 1D inputs u that are uniformly distributed, p(u) = Unif[−1, 1], see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We emphasize that this analysis can be straightforwardly extended to multi- dimensional and arbitrarily-distributed inputs given suitable hardware resources, without modifying the form of the Gram and covariance matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We are only now required to specify the model of the L- qubit system in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (1), which has been left completely gen- eral thus far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The specific ansatz we consider is tailored to be natively implementable on IBMQ processors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' more gen- eral ansatz can also be considered (see Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' It con- sists of τ ∈ N repetitions of the same input-dependent circuit block depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The block itself is of the form Rx(θx/2)W(J)Rz(θz + θIu)Rx(θx/2), where Rx/z are Pauli-rotations applied qubit-wise, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rz = � l Rz(θz l + θI l u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The entangling gate acts between physically con- nected qubits in the device and can be written as W(J) = � ⟨l,l′⟩ exp{−i J 2 ˆσz l ˆσz l′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note that for this ansatz, the choice J = 0 (mod π) yields either W = ˆI or ˆσz ⊗ ˆσz, both of which ensure ˆρ(u) is a prod- uct state and measured features are simply products of uncor- related individual qubit observables – equivalent to a noisy classical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Starting from this product system (PS), tun- ing the coupling J ̸= 0 (mod π) provides a controllable pa- rameter to realize an entangled system (ES).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This control en- ables us to address a natural question regarding EC of quan- tum systems under finite S: what is the dependence of EC and realizable eigentasks on J, and hence on quantum corre- lations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This calculation of EC requires extracting measured fea- tures from the quantum circuit under input u, one example of which is shown for the IBMQ ibmq perth device in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(a), for S = 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For comparison, we also show ideal-device simulations (no device noise), where slight deviations are ob- served.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The agreement with the experimental feature is im- proved when the effects of gate and readout errors,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' and qubit relaxation are included,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' hereafter referred to as “device noise” simulations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' highlighting the non-negligible role of device er- + + + C-NOT + + + + + + + + Input ES PS Order (a) (b) (c) Shots Coupling IBM Perth Output Experiment Experiment Simulations Simulations Estimate Calculate Device encoding Device encoding Device noise Device noise Ideal Ideal Mean over 8 random encodings: device noise Mean over 8 random encodings: ideal Ideal sim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Device noise sim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Experiment FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (a) IBMQ Perth device and quantum circuit schematic for EC calculation, and classification task in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Here τ = 3 lay- ers, and random qubit rotation parameters are θx/z l ∼ Unif[0, 2π] and θI l ∼ Unif[0, 10π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' On the right, the specific feature plotted is ¯ X1(u) = P000001(u) for S = 214 shots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (b) Left panel: Device NSR spectrum β2 k for ES, J = π/2 (blue crosses) and PS, J = 0 (brown diamonds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Ideal (solid) and device noise (dashed) simula- tions are also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note the agreement between device and simu- lation, along with distortion from more direct exponential growth in β2 k with k in the ideal case, due to device errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Right panel: CT vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' S calculated from the left panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' At a given S, the CT can be approximated by performing the indicated sum over all β2 k < S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (c) EC (top panel) and ETC (lower panel) under S = 214 from the IBM device, and device noise simulations (dashed peach).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Average met- rics over 8 random encodings for device noise (solid peach) and ideal (solid gray) simulations are also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The S → ∞ EC of these encodings always attains the max{CT } = 64, indicated in dashed red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' rors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The measured features under finite S are used to estimate the Gram and covariance matrices (see Appendix D), and to thus solve the eigenproblem for NSR eigenvalues {β2 k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Typ- ical NSR spectra computed for two random encodings on the device are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(b), for J = 0 (PS) and J = π/2 (ES), together with spectra from device noise simulations, with which they agree well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We note that at lower k, the device NSR eigenvalues are larger than those from ideal simulations, due to device noise contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For larger k, device results deviate from the pure exponential increase (with order) seen in ideal simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The deviation is captured by device noise simulations and can therefore be attributed to device errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The NSR spectra therefore can serve as effective diagnostic tools for quantum processors and encoding schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' More examples will be provided later in the discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The NSR spectra can be used to directly compute the EC of the corresponding quantum device for finite S, via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As a rule of thumb, at a given S only NSR eigenvalues β2 k ≲ S contribute substantially to the EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' An NSR spectrum with a flatter slope therefore has more NSR eigenvalues below S, 0 1 2 3 4 5 65 which gives rise to a higher capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(b) shows that the ES generally exhibits an NSR spectrum with a flatter slope than the PS, yielding a larger capacity for function approxi- mation across all sampled S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To more precisely quantify the role of entanglement and quantum correlations in EC, we introduce the expected total correlation (ETC) of the measured state over the input domain of u [26, 27], ¯T = Eu � L � l=1 S(ˆρM l (u)) − S(ˆρM(u)) � , (5) where ˆρM is the measured state: ˆρM(u) ≡ � k ˆρkk(u) |bk⟩⟨bk| and S is the von Neumann entropy (see Appendix G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We now compute EC and ETC using S = 214 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(c) as a function of J, together with both ideal and device noise simulations of the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We note that product states by definition have ¯T = 0 [28];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' this is seen in ideal simulations for J = 0 (mod π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, the actual device retains a small amount of correlation at this operating point, which is reproduced by device noise simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This can be attributed to gate or measurement errors as well as cross-talk, especially relevant for the transmon-based IBMQ platform with a parasitic always-on ZZ coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' With increasing J, ¯T increases and peaks around J ∼ π/2 (mod π);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' interestingly, CT also peaks for the same cou- pling range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' From the analogous plot of EC, we clearly see that at finite S, increased ETC appears directly correlated with higher EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We have observed very similar behaviour us- ing completely different models of quantum systems (see Ap- pendix Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 5 [29, 30]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This indicates the utility of enhancing quantum correlations as a means of improving the general ex- pressivity of quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, we see that at finite S, even with increased quan- tum correlations, the maximum EC is still substantially lower than the upper bound of K = 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note that this remains true even for ideal simulations, and over several random encod- ings, so the underperformance cannot be attributed to device noise or poor ansatz choice respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' These results clearly indicate that the resulting sampling noise at finite S is the fun- damental limitation for QML applications on this particular IBM device, rather than other types of noise sources and er- rors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A ROBUST APPROACH TO LEARNING While we have demonstrated the EC as an efficiently- computable metric of general expressivity of a noisy quantum system, some important practical questions arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' First, does the general EC metric have implications for practical perfor- mance on specific QML tasks?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Secondly, given the limiting – and unavoidable – nature of correlated sampling noise, does the EC provide any insights on optimal learning using a par- ticular noisy quantum system and the associated embedding?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Input Target Distinguish inputs from Class 1 vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Class 2 ES ES PS PS Input Eigentasks , (a) (b) (c) Increasing noise Learning with eigentasks Class 1 Training Testing Class 2 Equiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' to learning likelihood function , FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (a) Device eigentasks for ES (left) and PS (right), con- structed from noisy features at S = 210 and S = 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (b) Clas- sification demonstration on IBMQ Perth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Binary distributions to be classified over the input domain are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (c) The classification task can be cast as learning the likelihood function separating the two distributions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' this target function is shown in the upper panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Lower panels show the trained estimate of this target using outputs from the ES and PS respectively, using KL = 36 eigentasks with S = 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our formulation addresses both these important questions naturally, as we now discuss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Beyond being a simple figure of merit, we show in the Appendix C that the EC is precisely the sum of capacities to approximate a particular set of orthogonal functions native to the given noisy quantum system: the eigen- tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Crucially, these eigentasks ¯y(k)(u) = � r(k) j ¯Xj(u) can be directly estimated from a noisy quantum system via the generalized eigenvectors {r(k)}, and are ordered by their as- sociated NSR {β2 k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We show a selection of estimated eigen- tasks from IBMQ, for an ES (J = 5π/3) and PS (J = 0) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For both systems, the increase in noise with eigen- task order is apparent when comparing two sampling values, S = 210 and S = 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Furthermore, for any order k, eigen- tasks for the PS are visibly noisier than the ES;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' this is con- sistent with NSR eigenvalues for PS being larger than those for ES, as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This ability to more accurately resolve eigentasks provides a complementary perspective on the higher expressive capacity of ES in comparison to PS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The resolvable eigentasks of a finitely-sampled quantum system are intimately related to its performance at specific QML applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To demonstrate this result, we consider a concrete application: a binary classification task that is not linearly-separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Samples u(n), n ∈ [N], obeying the same distribution p(u) for u ∈ [−1, 1] as considered for the EC evaluation, are separated into two classes, as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A selection of Ntrain = 150 total samples - with equal numbers from each class - are input to the IBMQ device, and readout features ¯ X(u(n)) are extracted using S = 214 shots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A linear estimator applied to these features is then trained using logistic regression to learn the class label associ- ated with each input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Finally, the trained IBMQ device is used to predict class labels of Ntest = 150 distinct input samples for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This task can equivalently be cast as one of learning the likelihood function that discriminates the two input distribu- 6 Classification accuracy Testing Classification accuracy No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' of eigentasks used for learning, (a) (b) ES PS Coupling Experiment Simulations Device encoding Device encoding Testing NSR Cutoff Mean over 8 random encodings Overfitting Overfitting Training FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (a) Training (light) and testing (dark) accuracy for an ES and PS in blue and brown respectively, as a function of number of eigen- tasks used in learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The optimal test set performance is found near the NSR cutoff Kc(S) (dash-dotted lines) informed by the quantum system’s NSR spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In all figures, the IBMQ Perth device is sam- pled with S = 214, and the training and test sets consist of 150 ran- dom points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (b) Testing set classification accuracy as a function of J for our optimal learning method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The average of simulated encod- ings is shown in solid peach, and the horizontal line shows the best performance of a software neural network with KL = 36 parameters for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' tions, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3(c), with minimum error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The set of up to KL eigentasks ¯y(k)(u), where KL ≤ K, serves as the na- tive basis of readout features used to approximate any target function using the quantum system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The noisier eigentasks of the PS therefore limit the accuracy with which it can be used to learn the target, in comparison to the ES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This is clear from the learned estimates shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3(c), using an equal num- ber of KL = 36 eigentasks to ensure a fair comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The higher approximation capacity translates to improved classi- fication performance, as we show via the training and testing classification accuracy in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 4(a) for both ES and PS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We plot both as a function of the number of eigentasks KL used for learning, from which it is clear that the maximum testing accuracy using the ES exceeds that of the PS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, using eigentasks ordered by NSR reveals even more about learning using noisy quantum systems, and pro- vides a path towards optimal learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' While intuition sug- gests that using more eigentasks can only be beneficial, weights learned when training with noisier eigentasks may not generalize well to unseen samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For example, using all eigentasks (KL = K) yields a test accuracy far lower than that found in training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The observed deviation is a distinct signature of overfitting: the optimized estimator learns noise in the training set, and thus loses generalizability in testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Crucially, an optimal number of eigentasks clearly emerges, around KL ≃ Kc(S) = maxk{β2 k < S}, for which the NSR eigenvalue is closest to S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Eigentasks k > Kc typically con- tribute more ‘noise’ to the function approximation task than ‘signal’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Excluding these eigentasks therefore limits overfit- ting without adversely impacting performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 4(b) also shows the classification accuracy as J is var- ied, where we highlight the striking similarity with Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2(c): encodings with larger quantum correlations and thus higher expressive capacity will perform generically better on learn- ing tasks in the presence of noise, because they generate a larger set of eigentasks that can be resolved at a given sam- pling S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The NSR spectra and eigentasks therefore provide a natural truncation scheme to maximise testing accuracy, avoiding overfitting without any additional regularization (see also Appendix H and I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' DISCUSSION We have developed a straightforward approach to quan- tify the expressive capacity of any qubit-based system in the presence of fundamental sampling noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our analysis is built upon an underlying framework that determines the native function set that can be most robustly realized by a finitely- sampled quantum system: its eigentasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We use this frame- work to introduce a methodology for optimal learning using noisy quantum systems, which centers around identifying the minimal number of eigentasks required for a given learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The resulting learning methodology is resource-efficient and robust to overfitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We demonstrate that eigentasks can be efficiently estimated from experiments on real devices us- ing a limited number of training points and finite shots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We also demonstrate across two distinct qubit evolution ans¨atze that the presence of measured quantum correlations enhances expressive capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our work has direct application to the design of circuits for learning with qubit-based systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, we propose the optimization of expressive capacity as a meaningful goal for the design of quantum circuits with finite measurement resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ACKNOWLEDGEMENT This research was developed with funding from the DARPA contract HR00112190072, AFOSR award FA9550- 20-1-0177, and AFOSR MURI award FA9550-22-1-0203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The views, opinions, and findings expressed are solely the au- thors and not the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Grant, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Benedetti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Cao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Hallam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Lockhart, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Sto- jevic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Green, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Severini, Hierarchical quantum clas- sifiers, npj Quantum Information 4, 1 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [2] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Havl´ıˇcek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' C´orcoles, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Temme, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Harrow, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Kan- dala, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Chow, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Gambetta, Supervised learning with quantum-enhanced feature spaces, Nature 567, 209 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [3] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Tacchino, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Barkoutsos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Macchiavello, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Tavernelli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Gerace, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Bajoni, Quantum implementation of an arti- ficial feed-forward neural network, Quantum Science and Tech- nology 5, 044010 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Nurdin, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Yamamoto, Temporal Informa- tion Processing on Noisy Quantum Computers, Physical Re- view Applied 14, 024065 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7 [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Suzuki, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Gao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Pradel, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Yasuoka, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Yamamoto, Natural quantum reservoir computing for temporal information processing, Scientific Reports 12, 1353 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Meyer, Fisher Information in Noisy Intermediate-Scale Quantum Applications, Quantum 5, 539 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [7] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Ma, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Gokhale, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Yu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Jiang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Maurer, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Chong, Adaptive Circuit Learning for Quantum Metrology, arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='08702 [quant-ph] (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Marciniak, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Feldker, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Pogorelov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Kaubruegger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Vasilyev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' van Bijnen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Schindler, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zoller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Blatt, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Monz, Optimal metrology with programmable quantum sensors, Nature 603, 604–609 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Sim, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Johnson, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Aspuru-Guzik, Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms, Advanced Quantum Technologies 2, 1900070 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' LaRose and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Coyle, Robust data encodings for quantum classifiers, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A 102, 032420 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Schuld, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Sweke, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Meyer, Effect of data encod- ing on the expressive power of variational quantum-machine- learning models, Physical Review A 103, 032430 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Abbas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Sutter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zoufal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Lucchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Figalli, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Woerner, The power of quantum neural networks, Nature Computational Science 1, 403–409 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Yao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zhang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zhai, Expressivity of quantum neural networks, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Research 3, L032049 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Wright and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' McMahon, The Capacity of Quantum Neural Networks, arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='01364 [quant-ph] (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [15] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Hsieh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Liu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Tao, Expressive power of parametrized quantum circuits, Physical Review Research 2, 033125 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [16] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Holmes, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Sharma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Cerezo, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Coles, Connect- ing ansatz expressibility to gradient magnitudes and barren plateaus, PRX Quantum 3, 010313 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Dambre, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Verstraeten, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Schrauwen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Massar, Infor- mation Processing Capacity of Dynamical Systems, Scientific Reports 2, 514 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fujii and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Nakajima, Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning, Physical Review Applied 8, 024030 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Benedetti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Lloyd, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Sack, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fiorentini, Parame- terized quantum circuits as machine learning models, Quantum Science and Technology 4, 043001 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Mart´ınez-Pe˜na, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Nokkala, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Giorgi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zambrini, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Soriano, Information processing capacity of spin-based quantum reservoir computing systems, Cognitive Computation (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Schuld and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Petruccione, Machine Learning with Quan- tum Computers, Quantum Science and Technology (Springer International Publishing, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Garc´ıa-Beni, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Giorgi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Soriano, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zam- brini, Scalable photonic platform for real-time quantum reser- voir computing, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='14031 [quant-ph] (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Arrasmith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Cerezo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Czarnik, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Cincio, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Coles, Effect of barren plateaus on gradient-free optimization, Quan- tum 5, 558 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [24] IBM Quantum, https://quantum-computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='ibm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='com (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [25] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Kalfus, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Ribeill, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rowlands, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Krovi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Ohki, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Govia, Hilbert space as a computational resource in reservoir computing, Physical Review Research 4, 033007 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [26] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Vedral, The role of relative entropy in quantum information theory, Reviews of Modern Physics 74, 197 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [27] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Modi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Paterek, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Son, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Vedral, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Williamson, Unified view of quantum and classical correlations, Physical Review Letters 104, 080501 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Nielsen and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Chuang, Quantum computation and quan- tum information (Cambridge University Press, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [29] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Giovannetti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Lloyd, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Maccone, Quantum metrology, Physical Review Letters 96, 010401 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Mart´ınez-Pe˜na, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Giorgi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Nokkala, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Soriano, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Zambrini, Dynamical phase transitions in quantum reservoir computing, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 127, 100502 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 8 Appendix A: Table of Symbols and Abbreviations Abbreviations NISQ Noisy Intermediate Scale Quantum (Q)ML (Quantum) Machine Learning QSN Quantum Sampling Noise VQC Variational Quantum Circuits PS Product System ES Entangled System EC Total Expressive Capacity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' CT ETC Expected Total Correlation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ¯T Symbols and notation S Number of shots N Number of inputs L Number of qubits K ≡ 2L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' number of measured features u Input θ Quantum system parameters ˆρ Generated quantum state ˆ Mk Measured observable W Output weights (can be untrained) ˜w Optimal learned output weights on S-finite readout data L Loss function bk Label for eigenstate of ˆ Mk b(s) Measurement outcome for shot s xk Expected features Tr{ ˆ Mk ˆρ} X(s) k Observed bit in shot s ¯ Xk Empirical observed feature 1/S � s δ(b(s),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' bk) ζk Noise part in ¯ Xk G Gram matrix of expected features {xk} V Expected covariance matrix of random variable X(s) k (u) R Noise-to-Signal matrix β2 k Eigen-NSR y(k) Principal feature r(k) Combination coefficients in y(k) = � k′ r(k) k′ xk′ ¯y(k) ≡ � k′ r(k) k′ ¯ Xk′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' noisy eigentask ξ(k) ≡ � k′ r(k) k′ ζk′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' noise part in ¯y(k) ˆOk ≡ � k′ r(k) k′ |bk′⟩⟨bk′|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' optimal measurement basis ˆρM ≡ � k ˆρkk(u) |bk⟩⟨bk|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' post-measurement state Kc(S) Cutoff index where β2 k reaches S � ( · )N Quantity obtained from finite N sampling data � ( · ) Large N limit,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' that is limN→∞ � ( · )N TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Table of notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Appendix B: Feature maps using quantum systems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Details of input encodings into quantum systems In the main text, we introduce the idea of encoding inputs into the state of a quantum system via a parameterized quantum channel, reproduced below: ˆρ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) = U(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ)ˆρ0 (B1) Our analysis of EC presented in this work does not depend on the precise details of the quantum channel U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For practical calculations, however, we have to consider concrete models, about which we provide more details in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 9 To describe these models, we begin by first limiting to 1-D inputs as analyzed in the main text;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' generalizations to multi- dimensional inputs u are straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then, we write Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B1) in the form ˆρ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) = B(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ)ˆρ0B†(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) (B2) In the main text, we have considered a model for dynamics of an L-qubit quantum system that is natively implementable on modern quantum computing platforms: namely the ansatz of quantum circuits with single and two-qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this case, which we refer to as the circuit ansatz (or C-ansatz for short), the operator B(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) takes the precise form B(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) = � Rx �θx 2 � W(J)Rz � θz + θIu � Rx �θx 2 ��τ (C-ansatz) (B3) For completeness, we recall that Rx/z are Pauli-rotations applied qubit-wise, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Rz = � l Rz(θz l + θI l u), while the entangling gate acts between physically connected qubits in the device and can be written as W(J) = � ⟨l,l′⟩ exp{−i J 2 ˆσz l ˆσz l′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We empha- size here again that τ ∈ N+ is an integer, representing the number of repeated blocks in the C-ansatz encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We note that the actual operations implemented on IBMQ processors also include dynamics due to noise, gate, and measurement errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As discussed in the main text, the EC of a quantum system can be computed in the presence of these more general dynamics, and is sensitive to the limitations introduced by them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' An alternative ansatz which we analyze in this SI, is where the operator B(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) describes continuous Hamiltonian dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This ansatz is relevant to computation with general quantum devices, such as quantum annealers and more generally quantum simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this case, which we refer to as the Hamiltonian ansatz (or H-ansatz for short), B(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' θ) = exp{−i ˆH(u)t}, ˆH(u) = ˆH0 + u · ˆH1 (H-ansatz) (B4) Here t is a continuous parameter defining the evolution time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' and ˆH0 = �L l,l′ J⟨l,l′⟩ˆσz l ˆσz l′ + �L l=1 hx l ˆσx l + �L l=1 hz l ˆσz l and ˆH1 = �L l=1 hI l ˆσz l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The transverse x-field strength hx l = ¯hx + εx l and longitudinal z-drive strength hz,I l = ¯hz,I + εz,I l are all randomly chosen and held fixed for a given realization of the quantum system, εx,z,I l ∼ hx,z,I rms N(0, 1), (B5) where N(0, 1) defines the standard normal distribution with zero mean and unit variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We consider nearest-neighbor inter- actions Jl,l′, which can be constant Jl,l′ ≡ J, or drawn from Jl,l′ ∼ Unif[0, Jmax], where Unif[a, b] is a uniform distribution with non-zero density within [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As an aside, we note that the C-ansatz quantum channel described by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B3) can be considered a Trotterization-inspired implementation of the H-ansatz in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, if we set θx/z/I = hx/z/I∆ · τ, where t = ∆ · τ, and consider the limit ∆ → 0 while keeping t fixed, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B3) corresponds to a Trotterized implementation of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This correspondence is chosen for practical reasons, but is not necessary in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The parameterized quantum channel characterizes how information is injected into the quantum system and processed by it;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' however, to probe information from the quantum system, one must apply an appropriate and feasible quantum measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For extract information efficiently, we consider a wide family of observable ˆ Mk: the only restriction of these observables is that they must be a product of local observables, ˆ Mk = ˆo1 ⊗ · · · ⊗ ˆoL, which mutually commute with each other (meaning they are are simultaneously measurable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We consider two general schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The first one is the probability representation ˆol ∈ {|0⟩⟨0| , |1⟩⟨1|}, while the second is the spin moments representation, ˆol ∈ {ˆI, ˆσz};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' the former representation is used throughout the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We will show below that these two readout schemes are equivalent up to a unitary transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Extracting output features under finite sampling: expressions for features and covariances Following evolution of the quantum system under the input-dependent Hamiltonian given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B4), we extract certain measurable observables that are used as outputs for any learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The form of observables is again chosen for compliance with measurement protocols native to near-term quantum computing implementations: we consider Pauli z basis measurements only (although this can be generalized easily).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This means our algorithm has access only to diagonal terms in ˆρ(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We abbreviate vectors ⃗Mk, ⃗ρ(u) ∈ RK such that ( ⃗Mk′)k = ( ˆ Mk′)kk and (⃗ρ(u))k = ˆρ(u)kk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then one can check for {+1, −1} readout: ⃗Mk · ⃗Mk′ = Kδjj′, and the readout features can be expressed into dot product form xk(u) = Tr � ˆ Mk ˆρ(u) � = ⃗Mk · ⃗ρ(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In 10 QRC, we hope to make full use of all functions in family {(⃗ρ(u))k}k∈[K] as readout features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The collection of all readout features x(u) = � � � � x0(u) x1(u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' xK−1(u) � � � � = � � � � � ⃗M T 0 ⃗M T 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ⃗M T K−1 � � � � � ⃗ρ(u) =: U⃗ρ(u), (B6) The orthonormality of { ⃗Mk}k∈[K] implies that U is unitary up to an overall constant (in fact, U = � 1 1 1 −1 �⊗L is the Hadamard matrix [28]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This unitarity implies that the above transformation is information-preserving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particularly, this guarantees the ability to reconstruct the diagonal QRC density matrix elements (via tomography), ⃗ρ(u) = U −1x(u), simply computing the required inverse via the numerically-robust relationship U −1 = 1 K U T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' If each qubit has a readout error ϵ, that is, it will flip |0⟩ ↔ |1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then the transition probability of reading out |bk′⟩ from |bk⟩ will be ϵd(bk,bk′)(1 − ϵ)L−d(bk,bk′) where d(bk, bk′) is the Hamming distance between bk and bk′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Thus, readout errors can furthermore be mathematically modeled by one more transition matrix (more precisely, a stochastic matrix): x(u) = U � 1 − ϵ ϵ ϵ 1 − ϵ �⊗L ⃗ρ(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B7) The covariance of the X(u) ∈ {+1, −1}L (the random features for individual shot S = 1) can also be expressed easily: V[X(u)] = U � diag(⃗ρ(u)) − ⃗ρ(u) · ⃗ρ(u)T � U T (B8) where diag(⃗v) is a diagonal matrix that has the elements of ⃗v as entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To prove this expression, it suffices to verify that the second order moments are entries V[X(u)]k1k2 ≡ Tr � ˆ Mk1 ˆ Mk2 ˆρ(u) � = K−1 � k=0 ( ˆ Mk1 ˆ Mk2)kk ˆρkk(u) = K−1 � k=0 (U)k1k (U)k2k ˆρkk(u) = � Udiag (⃗ρ(u)) U T � k1k2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B9) Appendix C: Information capacity with quantum sampling noise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Definition of capacity for quantum systems with sampling noise The function approximation universality (which will be formally stated in Appendix I), as a basic requirement of most neural network model can be made concrete by defining a metric to quantify how well a given quantum system (generalizable to any dynamical system) approximates general functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Suppose an arbitrary probability distribution p(u) for a random (scalar) variable u defined in [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This naturally defines a function space L2 p([−1, 1]) containing all functions f : [−1, 1] → R with � 1 −1 f 2(u)p(u)du < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The space is equipped with the inner product structure ⟨f1, f2⟩p = � 1 −1 f1(u)f2(u)p(u)du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' A standard way to check the ability of fitting nonlinear functions by a physical system is the information processing capacity [17], C[fℓ] = 1 − min Wℓ∈RK � 1 −1 ��K−1 k=0 Wℓkxk(u) − fℓ(u) �2 p(u)du � 1 −1 fℓ(u)2p(u)du , (C1) where functions fℓ(u) are orthogonal target functions ⟨fℓ, fℓ′⟩p = � 1 −1 fℓ(u)fℓ′(u)p(u)du = 0 for ℓ ̸= ℓ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The total expressive capacity is computing the limitation CT ≡ �∞ ℓ=0 C[fℓ], capturing the ability of what type of function the linear combination of physical system readout features can produce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Dambre’s argument claims that the total capacity must be upper bounded by the number of features CT ≤ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' While Dambre’s result is quite general [17], it neglects the limitations due to noise in readout features, a fact that is unavoidable when using quantum systems in the presence of finite computational and measurement resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this appendix section, we will focus on the impact of fundamental quantum readout noise on this upper bound under finite sampling S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Given u and S, 11 the quantum readout features ¯Xk(u) = 1 S �S s=1 X(s) k (u) are stochastic variables (where X(s) k ∈ {−1, +1} are binary random values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The expectation vector and covariance matrix of ¯ X(u) can be expressed in terms of ⃗ρ(u), the diagonal entries of the density matrix (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B8)) E[ ¯ X(u)] ≡ x(u) = U⃗ρ(u), (C2) E[ ¯ X(u) ¯ XT (u)] − E[ ¯ X(u)]E[ ¯ X(u)]T ≡ 1 S Σ(u) = 1 S U � diag (⃗ρ(u)) − ⃗ρ(u) · ⃗ρ(u)T � U T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C3) The dependence of readout features xk(u) on the input u can always be written in the form of a Taylor expansion, xk(u) = ∞ � j=0 (T)kjuj (C4) where we define the transfer matrix T(θ) ≡ T ∈ RK×∞ that depends on the density matrix ˆρ(u), and in particular on parameters θ characterizing the quantum system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To determine the optimal capacity to compute an arbitrary normalized function f(u) = �∞ j=0(Y)juj using the noisy readout features ¯ X(u) extracted from the quantum system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we need to find an optimal W such that C[f] = 1 − minW � 1 −1 ��K−1 k=0 Wk ¯Xk(u) − f(u) �2 p(u)du � 1 −1 f(u)2p(u)du (C5) By expanding the numerator of the right-hand side for a given,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' finite number of shots S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we find � 1 −1 f(u)2p(u)du − � 1 −1 �K−1 � k=0 Wk ¯Xk(u) − f(u) �2 p(u)du = − K−1 � k1=0 K−1 � k2=0 Wk1Wk2 � 1 −1 ¯Xk(u) ¯Xk2(u)p(u)du + 2 K−1 � k=0 Wk � 1 −1 ¯Xk(u)f(u)p(u)du ≈ − 1 N K−1 � k1=0 K−1 � k2=0 Wk1Wk2 N � n=1 ¯Xk1(u(n)) ¯Xk2(u(n)) + 2 N K−1 � k=0 Wk N � n=1 ¯Xk(u(n))f(u(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C6) where we have approximated the integral over the input domain by a finite sum in the limit of a large number of inputs N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Next, note that if n ̸= n′, then Xk1(u(n)) and Xk2(u(n′)) are independent random variables (thought not necessarily identically distributed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The sums over N on the right hand side are therefore sums of bounded independent random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In the limit of large N ≫ 1, the deviation between stochastic realizations of these sums and their expectation values is exponentially suppressed, as determined by the Hoeffding inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' with large probability,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' the sums over N may be replaced by their expectation values,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='f(u)2p(u)du − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='�K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk ¯Xk(u) − f(u) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='p(u)du ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='≈ − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k1=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k2=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk1Wk2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='n=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='E[ ¯Xk1(u(n)) ¯Xk2(u(n))] + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='n=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='E[ ¯Xk(u(n))f(u(n))] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='= − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k1=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k2=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk1Wk2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='n=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='xk1(u(n))xk2(u(n)) + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='S Σ(u(n))k1k2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='+ 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='n=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='xk(u(n))f(u(n)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='≈ − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k1=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k2=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk1Wk2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='xk1(u)xk2(u) + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='S Σ(u)k1k2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='p(u)du + 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='K−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='Wk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='xk(u)f(u)p(u)du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C7) The first approximation above comes from the Hoeffding inequality, where terms that are dropped are proportional to 1/ √ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In going from the second to the third line, we have used Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The final expression is obtained by rewriting sums over u as integrals, with an error proportional to 1/ √ N once more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Thus we can say the original integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C5) is approximately equal to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C7) to O(1/ √ N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 12 The first term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C7) does not depend explicitly on the function f(u) being constructed, and introduces quantities that are determined entirely by the response of the quantum system of interest to inputs over the entire domain of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, we introduce the Gram matrix G ∈ RK×K as (G)k1k2 = � 1 −1 xk1(u)xk2(u)p(u)du = ∞ � j1=0 ∞ � j2=0 (T)k1j1 �� 1 −1 uj1+j2p(u)du � (T)k2j2 ≡ (TΛTT )k1k2 (C8) where in the second line we have also introduced the generalized Hilbert matrix Λ ∈ R∞×∞ as (Λ)j1j2 = � 1 −1 uj1+j2p(u)du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C9) Secondly, we introduce the noise matrix V ∈ RK×K, (V)k1k2 = � 1 −1 Σ(u)k1k2 p(u)du = � 1 −1 (xk(u) − xk1(u)xk2(u))p(u)du ≡ (D)k1k2 − (G)k1k2 (C10) for index k satisfying ˆ Mk = ˆ Mk1 ˆ Mk2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Here we have also introduced the second-order-moment matrix D ∈ RK×K such that (D)k1k2 = � 1 −1 xk(u)p(u)du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then, the noise matrix simply defines the covariance of readout features, and is therefore given by V = D − G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C7) depends on f(u) and can be simplified using the Λ matrix as well, � 1 −1 xk(u)f(u)p(u)du = ∞ � j1=0 ∞ � j2=0 (T)kj1 �� 1 −1 uj1+j2p(u)du � (Y)j2 = (TΛY)k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C11) With these definitions, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C5) can be compactly written in matrix form as a Tikhonov regularization problem: C[f] = max W � −W T � TΛTT + 1 S V � W + 2W T TΛY YT ΛY � = 1 − min W � � � ���Λ 1 2 TT W − Λ 1 2 Y ��� 2 + 1 S W T VW YT ΛY � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C12) The least-squares form ensures that the optimal value (argmin) � w of W has closed form � w = � TΛTT + 1 S V �−1 TΛY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C13) Substituting w into the expression for C, we obtain the optimal capacity with which a function f can be constructed, which takes the form of a generalized Rayleigh quotient C[f] = YT ΛTT � G + 1 S V �−1 TΛY YT ΛY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C14) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Eigentasks Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C14) defines the optimal capacity of approximating an arbitrary function f(u) = �∞ j=0(Y)juj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We can therefore naturally ask which functions f maximise this optimal capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To this end, we first note that the denominator of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C14) is simply a normalization factor that can be absorbed into the definition of the function f(u) being approximated, without loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' More precisely, we consider: ⟨f, f⟩p = 1 = � Λ 1 2 Y �T � Λ 1 2 Y � = YT ΛY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C15) Then, we can rewrite the optimal capacity from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C17) as C[f] = YT Λ 1 2 � QΛ 1 2 Y � (C16) 13 Here we have defined the matrix Q ∈ R∞×∞ as Q = B � I + 1 S R �−1 BT , (C17) by introducing the matrix square root of G = G 1 2 G 1 2 , where G 1 2 ∈ RK×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then, R = G− 1 2 VG− 1 2 becomes the noise-to- signal matrix, while the matrix B is given by B = Λ 1 2 TT G− 1 2 , (C18) The decomposition in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C17) may be verified by direct substitution into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The ability to calculate matrix powers and in particular the inverse of G requires constraints on its rank, which we show are satisfied in Appendix C 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We now consider the measure-independent part of the eigenvectors of Q, indexed Y(k), satisfying the standard eigenvalue problem: Q � Λ 1 2 Y(k)� = CkΛ 1 2 Y(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C19) where k = 0, · · · , K − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C16), it is clear that these eigenvectors have a particular meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Consider the function y(k)(u) defined by the eigenvector Y(k), namely y(k)(u) = ∞ � j=0 Y(k) j uj, (C20) which we will refer to from now on as eigentasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Suppose we wish to construct the function y(k)(u) using outputs obtained from the physical system defined by Q in the S → ∞ limit (namely, with deterministic outputs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' At a first glance, before we dive into solving the eigenproblem Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C19), we do not know any relationship between y(k) and x(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='The rest part of this subsection is aiming to prove that y(k) must be a specific linear combination of features x(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then, the physical system’s capacity for this construction is simply given by the corresponding eigenvalue Ck, as may be seen by substituting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C19) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Formally, the y(k)(u) serves as the critical point (or stationary point) of the generalized Rayleigh quotient in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Consequently, the function that is constructed with largest capacity then corresponds to the nontrivial eigenvector with largest eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To obtain these eigentasks, we must solve the eigenproblem defined by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Here, the representation of Q in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C17) becomes useful, as we will see that the eigensystem of Q is related closely to that of the noise-to-signal matrix R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, we first define the eigenproblem of R, R � G 1 2 r(k)� = β2 kG 1 2 r(k) (C21) with NSR eigenvalues β2 k and corresponding eigenvectors r(k), which satisfy the orthogonality relation r(k′)T Gr(k) = δk,k′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Here the r(k) is equivalent to be defined as the solution to generalized eigen-problem: Vr(k) = β2 kGr(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C22) This is because Vr(k) = G 1 2 RG 1 2 r(k) = β2 kG 1 2 G 1 2 r(k) = β2 kGr(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The prefactor G 1 2 is introduced for later convenience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C21) then allows us to define the related eigenproblem � I + 1 S R �−1 G 1 2 r(k) = � 1 + β2 k S �−1 G 1 2 r(k) (C23) Next, we note that Q is related to the matrix in brackets above via a generalized similarity transformation defined by B, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, BT B = G− 1 2 GG− 1 2 = I ∈ RK×K, while we remark that BBT ̸= I since it is in R∞×∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This connection allow us to show that Q � BG 1 2 r(k)� = B � I + 1 S R �−1 BT BG 1 2 r(k) = 1 1 + β2 k/S BG 1 2 r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C24) Comparing with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C19), we can now simply read off both the eigenvalues and eigenvectors of Q, Ck = 1 1+β2 k/S Λ 1 2 Y(k) = BG 1 2 r(k) � =⇒ Y(k) = TT r(k) (C25) 14 where we have used the definition of B from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The functions defined by the eigenvectors Y(k) are automatically orthonormalized: � y(k1), y(k2)� p = � Λ 1 2 Y(k1)�T� Λ 1 2 Y(k2)� = r(k1)T G 1 2 BT BG 1 2 r(k2) = r(k1)T Gr(k2) = δk1k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C26) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Noisy eigentasks from readout features We can now also discuss the interpretation of {β2 k} for a physical system - in this case a quantum circuit - for which {r(k)} are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Consider a single run of the quantum system under finite shots S, which yields a single instance of the readout features ¯ X(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We can simply read off that an noisy version of the kth eigentask, ¯y(k)(u) can be constructed as ¯y(k)(u) = K−1 � k′=0 r(k) k′ ¯Xk′(u) (C27) which is equivalent to requiring the output weights W = r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='The corresponding set of noisy function is also orthogonal, this is because Vr(k) = β2 kGr(k) implies r(k)T Vr(k′) = β2 kδk,k′ and hence � ¯y(k1), ¯y(k2)� p = r(k1)T � G + 1 S V � r(k2) = � 1 + β2 k S � δk1k2 (C28) This equation can be further decomposed into two parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Let the linear transformation of noise ξ(u) by defining ξ(k)(u) = �K−1 k=0 r(k) k′ ζk′(u) Eu[y(k1)y(k2)] = � y(k1), y(k2)� p = r(k1)T Gr(k2) = δk1k2, (C29) Eu[ξ(k1)ξ(k2)] = � ξ(k1), ξ(k2)� p = 1 S r(k1)T Vr(k2) = β2 k1 S δk1k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C30) It means that the combination {r(k) ∈ RK}k∈[K] not only produces orthogonal eigentasks {y(k)(u)} for signal, but also induces a set of orthogonal noise functions {ξ(k)(u)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' If the quantum circuit can be run multiple times for a given S, multiple instances of ¯ X(u) can be obtained, from each of which an estimate of the kth eigentask ¯y(k)(u) can be constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The expectation value of these estimates then simply yields E[¯y(k)(u)] = K−1 � k′=0 r(k) k′ E[ ¯Xk′(u)] = K−1 � k′=0 r(k) k′ xk′(u) = y(k)(u) (C31) If we have access to only a single instance of ¯ X(u), however, and thus only one estimate ¯y(k)(u) (as y(k)(u) and ¯y(k)(u) depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7), it is useful to know the expected error in this estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This error can be extracted from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, requiring Y(k) = TT r(k), we have ���Λ 1 2 TT r(k) − Λ 1 2 Y(k)��� 2 + 1 S r(k)T Vr(k) Y(k)T ΛY(k) = 1 S r(k)T Vr(k) = β2 k S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C32) This mean squared error in using ¯y(k)(u) to estimate y(k)(u) over the domain of u decreases to zero for S → ∞ as expected, since the noise in ¯ X decreases with S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, β2 k defines the S-independent contribution to the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, this indicates that at a given S, certain functions with lowers NSR eigenvalues β2 k may be better approximated using this physical system than others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We present in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7 the measured features ¯ X, the eigentasks y and their S-finite version ¯y in a 6-qubit Hamiltonian based system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The associated eigen-NSR spectrum, expressive capacity, and total correlations are also depicted for both ES J ̸= 0 and PS J = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Expressive capacity Given an arbitrary set of complete orthonormal basis functions fℓ(u) = �∞ j=0(Yℓ)juj, ⟨fℓ, fℓ′⟩p = � Λ 1 2 Yℓ �T � Λ 1 2 Yℓ′ � = δℓℓ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C33) The total capacity is independent of the basis choice CT (S) = ∞ � ℓ=0 C[fℓ] = ∞ � ℓ=0 YT ℓ Λ 1 2 � Λ 1 2 TT � TΛTT + 1 S V �−1 TΛ 1 2 � Λ 1 2 Yℓ = Tr � Λ 1 2 TT � TΛTT + 1 S V �−1 TΛ 1 2 � = Tr �� G + 1 S V �−1 G � = K−1 � k=0 1 1 + β2 k S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C34) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Estimation in case of nonlinear functions after linear output layer Usually, instead of taking the linear transformation W · ¯ X, the training process can involve some complicated nonlinear activation functions or classical kernel, which may also be fed into a non-quadratic nonlinear loss function afterwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' These two processes can be unified to be σNL( ¯ X(u)) with any smooth function σNL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this subsection, we show how to translate our result obtaining from quadratic nonlinear function Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C5) into a more general loss function with form of L = Eu[σNL( ¯ X)] (C35) Now let us first transform all noisy measured features { ¯Xk} into the naturally orthogonal basis of signal {y(k)} and noise {ξ(k)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ¯Xk′(u) ≡ K−1 � k=0 Γk′k(y(k)(u) + ξ(k)(u)), (C36) such transformation of Γ ∈ RK×K must uniquely exist, this is because all K of {r(k)} are linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Recall Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C30) claims that Eu[ξ(k)] = 0 and Eu[ξ(k)ξ(k′)] = β2 kδkk′/S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we can deal with the nonlinearity by taking the quadratic expansion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' where ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we get L = Eu[σNL( ¯ X)] = Eu[σNL(Γ¯y)] = Eu � σNL �� k Γ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k(y(k) + ξ(k)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' � k ΓK−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='k(y(k) + ξ(k)) �� ≈ Eu[σNL(Γy)] + K−1 � k=0 Eu �∂σNL ∂y(k) ξ(k) � + 1 2 K−1 � k1=0 K−1 � k2=0 Eu � ∂2σNL ∂y(k1)∂y(k2) ξ(k1)ξ(k2) � = Eu[σNL(Γy)] + 1 2 K−1 � k1=0 K−1 � k2=0 Eu � ∂2σNL ∂y(k1)∂y(k2) ξ(k1)ξ(k2) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C37) where the first order terms vanish due to Hoeffding inequality again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We then make a further approximation of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C37) by replacing the ξ(k1)ξ(k2) with its u-average Eu[ξ(k1)ξ(k2)] = δk1k2β2 k1/S: L ≈ Eu[σNL(Γy)] + K−1 � k=0 β2 k S · Eu � ∂2σNL (∂y(k))2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C38) In fact, any of the second terms can be further simplified by chain rule: L ≈ Eu[σNL(Γy)] + � k β2 k S · Eu[(ΓT ∇2 xσNLΓ)kk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The approximation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C38) is rough, but it still gives us a sufficient reason to do the following manipulation: for optimized L , the dependence on y(k) with β2 k/S > 1 will be strongly suppressed in large-N limit, hence we can pre-exclude the eigentasks whose β2 k/S > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Let us use one typical example, the widely used logistic regression in classification, to illustrate our argument here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' As what we will introduce in Appendix I, the target function is the conditional probability distribution f(u) := Pr[u ∈ C1|u] in such 16 classification model (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (I4)), and then there is one more layer of softmax and cross-entropy function acting on linear map L = Eu[H(f(u), σ(W · ¯ X(u)))] where σ is sigmoid function (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' softmax function σ(z) = 1/(1 + exp(−z))), and H(p, q) = −p ln q − (1 − p) ln(1 − q) is the cross-entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Especially, any linear combination of { ¯Xk} can be translated into linear combination W · ¯ X(u) ≡ K−1 � k=0 Ωk · (y(k)(u) + ξ(k)(u)), (C39) Again, such vector Ω = ΓT W must also uniquely exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For any σNL = g(W · x), one always have ΓT ∇2 xσNLΓ = g′′(Ω · y)ΩT Ω: L ≈ Eu[H(f, σ(Ω · y))] + �K−1 � k=0 β2 k S Ω2 k � Eu[σ(Ω · y)(1 − σ(Ω · y))] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C40) It helps us read from the prefactor β2 k/S induces a natural regularization on Ωk in loss function, in addition to the S-infinity term limS→∞ L = Eu[H(f, σ(Ω · y))].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We will leave the detailed discussion of this important application in Appendix H and Appendix I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Proof that the Gram matrix G is full rank Recall that before we analytically find the eigenvectors of Q, we first show that the matrix G is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' It comes from that all K readout features {xk(u)}k∈[K] being linear independent is entirely equivalent to the full-rankness of the corresponding Gram matrix Rank(G) = K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Thanks to the linearity of readout, we can show such linear independence by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Suppose on the contrary there exists coefficients {ck}k∈[K] such that K−1 � k=0 ckxk(u) = Tr ��K−1 � k=0 ck ˆ Mk � U(u)ˆρ0 � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C41) However, this means that the quantum observable �K−1 k=0 ck ˆ Mk is a zero-expectation readout-qubit quantity for any state U(u)ˆρ0 under arbitrary input u, which is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This shows the linear independence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Furthermore, we then argue that it ensures G has no non-trivial null space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This is because that any {ck}k∈[K] will satisfy K � k1,k2=1 ck1ck2(G)k1,k2 = � 1 −1 � K � k1=1 ck1xk1(u) �� K � k2=1 ck2xk2(u) � p(u)du = �K−1 � k=0 ckxk, K−1 � k=0 ckxk � p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C42) where the RHS is the norm of function �K−1 k=0 ckxk(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The summation �K k1,k2=1 ck1ck2(G)k1,k2 = 0 vanishes if and only if function �K−1 k=0 ckxk(u) is a zero function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' That is why the linear independence of features {ck}k∈[K] is equivalent to that symmetric matrix G has no zero eigenvalues, namely Rank(G) = K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Numerically speaking, this relation always holds in general as long as assuming this is for the case where N ≫ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Simplifying the noise-to-signal matrix and its eigenproblem We have shown that the problem of obtaining the eigentasks for a generic quantum system, and deducing its expressive capacity under finite measurement resources, can be reduced simply to solving the eigenproblem of its noise-to-signal matrix R, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note that constructing R = G− 1 2 VG− 1 2 requires computing the inverse of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, G can have small (although always nonzero) eigenvalues, especially for larger systems, rendering it ill-conditioned and making the computation of R numerically unstable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fortunately, certain simplifications can be made to derive an equivalent eigenproblem that is much easier to solve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To begin, we first note that so far, we have placed no requirements on the specific form of measurement operators { ˆ Mk}, and thus the readout features xk(u) = Tr{ ˆ Mk ˆρ(u)} are also unspecified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our analysis thus far holds for any set of measurement operators that describe a complete set of commuting observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, specific choices of measurement operators can 17 simplify the form of the matrices G and V involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, if one chooses ˆ Mk to be the projections onto the computational basis, ˆ Mk = |bk⟩ ⟨bk|, then according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (B8), by setting U = I we have x(u) ≡ ⃗ρ(u), which we refer to as the probability representation of readout features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Practically, the probability representation is native to measurement schemes in contemporary quantum processors, and therefore minimizes the required post-processing of readout features obtained from a real device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' More importantly, although it is related to any other readout feature representation via a unitary transformation, the strength of the probability representation lies in the fact that it renders the second-order moment matrix D diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D)k1k2 = � �K−1 k=0 (G)kk1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' if k1 = k2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' if k1 ̸= k2 (in probability representation of readout features) (C43) Using V = D − G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we can rewrite the eigenproblem for R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' R � G 1 2 r(k)� = β2 kG 1 2 r(k) =⇒ G− 1 2 (D − G)G− 1 2 � G 1 2 r(k)� = β2 kG 1 2 r(k) =⇒ G−1Dr(k) = (1 + β2 k)r(k) (C44) Finally,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' considering the inverse of the matrix on the left hand side,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' we obtain the simplified eigenproblem for the matrix D−1G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' D−1Gr(k) = (1 + β2 k)−1r(k) ≡ αkr(k),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C45) which shares eigenvectors with R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' and whose eigenvalues are a simple transformation of the NSR eigenvalues β2 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Impor- tantly, constructing D−1G no longer requires calculating any powers of G, and when further choosing readout features in the probability representation, it relies only on the inversion of a simple diagonal matrix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The matrix D−1G has significance in spectral graph theory, when interpreting the Gram matrix G as the adjacency matrix of a weighted graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This connection is elaborated upon in Appendix C 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Connections to spectral graph theory Let us have a small digression to the graphic theoretic meaning of G and D−1G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Now we consider a weighted graph with adjacency matrix G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In spectral graph theory, the matrix D−1G is exactly the random walk matrix associated with graph G, and then the second order matrix D happens to be the degree matrix of this graph since (D)kk = �K−1 k′=0(G)kk′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then the eigentask combination coefficient r(k) is precisely the right eigenvector of random walk matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Another concept associated with a graph is I − D− 1 2 GD− 1 2 , the normalized Laplacian matrix of G, while the matrix D− 1 2 GD− 1 2 is always referred to be normalized adjacency matrix in many literatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The eigenproblem of normalized adjacency matrix can also be solved easily, because D− 1 2 GD− 1 2 � D 1 2 r(k)� = D 1 2 D−1Gr(k) = αk � D 1 2 r(k)� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C46) From perspective of spectral graph theory, roughly speaking, a reservoir with stronger ability to resist noise are those who has more “bottlenecks” in graph G’s connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The extreme case is supposing that αk = 1 (or 1 − αk = 0) for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' According the basic conclusion in spectral graph theory, the normalized Laplacian matrix has K zero eigenvalues iff the graph G is fully disconnected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This gives us the condition when noisy information capacity obtain its upper bound K: there exists a partition {Domk}k∈[K] of domain Dom = [−1, 1] such that ˆρkk(u) = 1 iff u ∈ Domk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Appendix D: Spectral analysis based on finite statistics While Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C45) is a numerically simpler eigenproblem to solve than Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C21), it still requires the approximation of G (recall that D can be obtained from G) from readout features ¯ X(u) under finite sampling, due to the finiteness of shots S, the number of input points N, and also the number of realizations of readout features for a given S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In what follows, we show how an approximation �GN of G can be constructed from finitely-sampled readout features, as relevant for practical quantum devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Secondly, we also describe an approach to obtain the eigentasks y(k)(u) and corresponding NSR eigenvalues β2 k that avoids explicit construction of the Gram matrix, and is thus even more numerically robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Approximating eigentasks and NSR eigenvalues under finite S and N For practical computations, readout features ¯ X(u) from the quantum system for finite S can be computed for a discrete set of u(n) ∈ [−1, 1] for n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Labelling the corresponding readout features ¯ X(u(n)), we can define the regression matrix constructed from these readout features, �FN ≡ ( ¯ X(u(1)), ¯ X(u(2)), · · · , ¯ X(u(N)))T = � � � ¯X0(u(1)) · · · ¯XK−1(u(1)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ¯X0(u(N)) · · · ¯XK−1(u(N)) � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D1) Here, �FN ∈ RN×K, with subscript N indicating its construction from a finite set of N inputs, is a random matrix due to the stochasticity of readout features;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' in particular it can be written as: �FN = FN + 1 √ S Z(FN) (D2) where (FN)nk = E[ ¯Xk(u(n))] = xk(u(n)), and Z is the centered multinomial stochastic process, so that E[�FN] = FN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Using this regression matrix �FN, we can obtain an estimation of the Gram matrix and second order moment matrix, which we denote �GN and �DN, and whose matrix elements are defined via ( �GN)k1k2 ≡ 1 N N � n=1 ¯Xk1(u(n)) ¯Xk2(u(n)) = 1 N (�FT N �FN)k1k2 ≈ � 1 −1 ¯Xk1(u) ¯Xk2(u)p(u)du, (D3) ( �DN)k1k2 ≡ δk1,k2 1 N N � n=1 ¯Xk1(u(n)) ≈ δk1,k2 � 1 −1 ¯Xk1(u)p(u)du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D4) While the quantities �GN and �DN are computed from stochastic readout features, their stochastic contributions are suppressed in the large N limit by the Hoeffding inequality for sums of bounded stochastic variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In particular, we can define their deterministic limit for N → ∞, according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C7), as �G ≡ lim N→∞ 1 N (�FT N �FN)k1k2 = G + 1 S V = G + 1 S (D − G), (D5) �D ≡ lim N→∞ �DN = D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D6) Inverting the above expressions allow us to express the Gram matrix G and second-order moment matrix D in terms of the estimates �G and �D computed using a finite number of shots S, G = S S − 1 �G − 1 S − 1 �D, (D7) D = �D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D8) We see that to lowest order in 1 S , G ≈ �G and D ≈ �D, which is what one might expect naively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, we clearly see that the estimation of G can be improved by including a higher-order correction in 1 S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This contribution arises due to the highly- correlated nature of noise and signal for quantum systems: we are able to estimate the noise matrix �G and �D using knowledge of the readout features, and correct for the contribution to �G and �D that arises from this noise matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We will see that this contribution will be important in more accurately approximating quantities of interest derived from G, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To this end, we recall that our ultimate aim is not just to estimate G and D, but to solve the eigenproblem of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Using the above relation, we can then establish �D−1 �G = S−1 S D−1G + 1 S I, and write Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C45) in a form entirely in terms of �G and �D, D−1Gr(k) = (1 + β2 k)−1r(k), =⇒ �D−1 �Gr(k) = �S − 1 S (1 + β2 k)−1 + 1 S � r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D9) 19 5 10 15 20 25 30 Order k 100 101 102 103 104 105 Eigen-NSRs β2 k β2 k, S → ∞ ˜β2 N,k, S = 102 ˜β2 k, S = 102 S· ˜β2 N,k (S−1)− ˜β2 N,k, S = 102 S = 102 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Eigen-analysis in L = 5 H-ansatz system by taking S = 102 shots on each of N = 104 samples, with true eigen-NSRs β2 k (black), S-finite sampled ˜β2 N,k (blue) and corrected (S · ˜β2 N,k)/((S − 1) − ˜β2 N,k) (purple).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜β2 k, the large N limit of ˜β2 N,k is also plotted in red for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The data correction is necessary since all ˜β2 N,k are below the S = 102, and the corrected data show much better performance even if β2 k ≫ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The estimated line (in purple) are cutoff at k = 25 since all sampled ˜β2 N,k after that are larger the S − 1 so that they are not correctable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note that the final form is conveniently another eigenproblem, now for the finite-S matrix �D−1 �G: �D−1 �G˜r(k) = (1 + ˜β2 k)−1˜r(k) ≡ ˜αk ˜r(k), (D10) whose eigenvalues and eigenvectors can be easily related to the desired eigenvalues β2 k and eigenvectors r(k) of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (C45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Following some algebra, we find: β2 k = S (S − 1) − ˜β2 k ˜β2 k = ˜β2 k + ∞ � j=1 ˜β2 k � 1 + ˜β2 k �j � 1 S �j , (D11) r(k) = ˜r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D12) From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D11), we see that to lowest order in 1 S , β2 k ≈ ˜β2 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, this expression also supplies corrections to higher orders in 1 S , which are non-negligible even for β2 k < S, as we see in example of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In contrast, the estimated eigenvectors ˜r(k) to any order in 1 S equal the desired eigenvectors r(k) without any corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Of course, in practice we do not have access to the matrices �G and �D, as these are only defined precisely in the limit where N → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' However, for large enough N, we can approximate these matrices to lowest order by their finite N values, �G = �GN + O � 1 N � and �D = �DN + O � 1 N � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then, the eigenproblem in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D10) can be expressed in the final form, �D−1 N �GN ˜r(k) N = (1 + ˜β2 N,k)−1˜r(k) N ≡ ˜αN,k ˜r(k) N , (D13) where the eigenvalues ˜β2 N,k, ˜αN,k and eigenvectors ˜r(k) N in the large N limit must satisfy lim N→∞ ˜β2 N,k = ˜β2 k, lim N→∞ ˜αN,k = ˜αk, lim N→∞ ˜r(k) N = ˜r(k) ≡ r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D14) Here the invertibility of the empirically-computed matrix �DN required for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D13) is numerically checked, based on which we can establish a better numerical method in Appendix D 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D13) represents the eigenproblem whose eigenvalues ˜β2 N,k and eigenvectors ˜r(k) N we actually calculate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For large enough N and under finite S, we can use these as valid approximations to the eigenvalues and eigenvectors of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This finally enables us to directly estimate the N, S → ∞ quantities β2 k and r(k) using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D11), (D12): β2 k ≈ S · ˜β2 N,k (S − 1) − ˜β2 N,k = 1 − ˜αN,k ˜αN,k − 1 S , (D15) r(k) ≈ ˜r(k) N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D16) 20 0 5 10 15 −1 0 1 Coefficient r(k) r(1): β2 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(1) N : 1−˜αN,1 ˜αN,1−1/S = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 Eigenvector of D−1G Eigenvector of ˜D−1 N ˜GN 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='25 r(2): β2 2 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='656 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(2) N : 1−˜αN,2 ˜αN,2−1/S = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='663 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 r(3): β2 3 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='898 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(3) N : 1−˜αN,3 ˜αN,3−1/S = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='03 0 5 10 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(4): β2 4 = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='661 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(4) N : 1−˜αN,4 ˜αN,4−1/S = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='824 0 5 10 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 Coefficient r(k) r(5): β2 5 = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='548 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(5) N : 1−˜αN,5 ˜αN,5−1/S = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='571 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(6): β2 6 = 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='166 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(6) N : 1−˜αN,6 ˜αN,6−1/S = 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='382 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 r(7): β2 7 = 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='809 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(7) N : 1−˜αN,7 ˜αN,7−1/S = 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='513 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 r(8): β2 8 = 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='107 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(8) N : 1−˜αN,8 ˜αN,8−1/S = 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='635 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 Coefficient r(k) r(9): β2 9 = 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='874 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(9) N : 1−˜αN,9 ˜αN,9−1/S = 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='21 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(10): β2 10 = 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='001 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(10) N : 1−˜αN,10 ˜αN,10−1/S = 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='021 0 5 10 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(11): β2 11 = 151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='254 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(11) N : 1−˜αN,11 ˜αN,11−1/S = 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='208 0 5 10 15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(12): β2 12 = 248.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='423 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(12) N : 1−˜αN,12 ˜αN,12−1/S = 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='445 0 5 10 15 Index k′ of r(k) k′ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 Coefficient r(k) r(13): β2 13 = 333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='471 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(13) N : 1−˜αN,13 ˜αN,13−1/S = 348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='828 0 5 10 15 Index k′ of r(k) k′ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 r(14): β2 14 = 416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='321 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(14) N : 1−˜αN,14 ˜αN,14−1/S = 409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='548 0 5 10 15 Index k′ of r(k) k′ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(15): β2 15 = 655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='346 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(15) N : 1−˜αN,15 ˜αN,15−1/S = 743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='085 0 5 10 15 Index k′ of r(k) k′ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 r(16): β2 16 = 2191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='863 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ˜r(16) N : 1−˜αN,16 ˜αN,16−1/S = 1945.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='381 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Estimating NSR eigenvalues and corresponding eigentask coefficients under finite statistics (N = 300, S = 1000) in a 4-qubit H-encoding system, and comparison with theoretical value for N → ∞, S → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' It is clear that the approximation of β2 k to lowest order will be an underestimate, as the contribution of order 1 S is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 6, we plot the estimated eigenvectors ˜r(k) N computed under finite statistics (N = 300, S = 1000, where these two numbers are relevant for IBM quantum processors) in H-encoding, together with the N, S → ∞ eigenvectors r(k), and the estimated eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Gram matrix-free construction to approximate eigentasks and NSR eigenvalues If we consider Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (D13) and multiply through by D − 1 2 N , the resulting equation can be written as an equivalent eigenproblem, 1 N �D − 1 2 N �FT N �FN �D − 1 2 N � �D 1 2 N ˜r(k) N � = ˜αN,k � �D − 1 2 N ˜r(k) N � (D17) where we have also written �GN = 1 N �FT N �FN as in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note that as written above, the eigenproblem is entirely equivalent to obtaining the singular value decomposition of the matrix 1 √ N �D − 1 2 N �FT N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This particular normalization factor 1 √ N �D − 1 2 N is different from the standard z-score of principal components analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' To obtain the combination coefficients r(k), let t(k) ∈ RK be the left singular vector of 1 √ N �D − 1 2 N �FT N (which is also the eigenvector of 1 N �D − 1 2 N �FT N �FN �D − 1 2 N ≈ D− 1 2 �GD− 1 2 in the large N limit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then r(k) = �D − 1 2 N t(k) ∈ RK can be treated as the combination prefactor of ˆ Mk, to obtain the observables which correspond to the eigentasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The merit of SVD analysis of 1 √ N �D − 1 2 N �FT N is that we only need to work with a K-by-N matrix of features �FN, which is numerically cheaper than further constructing a Gram matrix 1 N �FT N �FN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We will explore more about the usage of our technique in sense of PCA in Appendix H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 21 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Eigen analysis in a 6-qubit H-ansatz system (with N = 5000 and S = 1000) forming a 1D ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The Hamiltonian parameters are chosen randomly with zero-mean and variance (hx rms, hz rms, hI rms) = (20, 5, 5), and t = 5 (See Appendix B 1 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Coupling strength is uniformly J ̸= 0 (ES) or J = 0 (PS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (a) All 2L = 64 noisy features ¯ Xk(u) and (b) noisy eigentasks ¯y(k)(u) = r(k) · ¯ X(u) for selected k from the features in (a), as well as their expected values y(k)(u) = limS→∞ ¯y(k)(u) = r(k) · x(u) (black).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (c) NSR spectrum β2 k and (d) CT vs shots S for both ES and PS encodings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (e) CT at S = 105 and (f) ETC, ¯T (ˆρM) in representative random 6-qubit H-ansatz, as a function of coupling strength J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The peaks of capacity and correlation coincide, around J ∼ hx rms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Appendix E: H-ansatz quantum systems: NSR spectra, expressive capacity, and eigentasks In this section, we evaluate the EC for quantum systems described by the H-ansatz introduced in Appendix B 1, as an example of how EC can be efficiently computed for a variety of general quantum systems, and is not just restricted to parameterized quantum circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The results of the analysis are compiled in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7, and discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7(a) presents the set of features { ¯Xk(u)} for typical L = 6 qubit ES and PS at S = 1000 with randomly chosen parameters (referred to as encodings, see caption).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The resultant noisy eigentasks {¯y(k)(u)} and NSR spectra {β2 k} extracted via the eigenvalue analysis are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7(b) and 7(c) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In the side-by-side comparison in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7(b), we clearly see the J = 0 ansatz transitioning to a regime with more noise at much lower k than the J ̸= 0 ansatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This is reflected in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7(c), the β2 k spectrum, having a much flatter slope for larger k (note the plot is semilog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Finally, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7(d) shows the EC of both systems as a function of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' EC rapidly rises for small S for both systems, but the rise of the J = 0 system is steeper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' After a certain threshold in S, however, the ES grows more rapidly, approaching the upper bound 26 = 64 with S ∼ 108;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' in contrast, the PS has a significantly lower CT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For J → ∞ we also have ¯T = 0 because ˆρ0 = |0⟩⟨0|⊗L is an eigenstate of the encoding (ˆρ(u) = ˆρ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This implies there must be a peak at some intermediate J, which for both EC and ETC occurs when the coupling is proportional to the transverse field J ∼ hx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Our results elucidate the same kind of improvement, as can be observed when we consider how the EC C changes with J, and compare it to the total correlation ETC ¯T , as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 7(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For J → 0 we have a PS with ¯T = 0, whereas in the J → ∞ we also have ¯T = 0 because ˆρ0 = |0⟩⟨0|⊗L is an eigenstate of the encoding (ˆρ(u) = ˆρ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This implies there must be a peak at some intermediate J, which for both EC and ETC occurs when the coupling is proportional to the transverse field J ∼ hx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' At finite S, increased ETC is directly related to a higher EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Another interesting aspect is the clear trend seen in the maximization of EC around J ∼ hx rms for various hx rms, possibly hinting at the role of increased entanglement around the MBL phase transition in random spin systems [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This trend is consistent with results in quantum metrology – in general, the SNR obtained from averaging L uncorrelated probes scales as 1/ √ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' This scaling can become favorable in the presence of entanglement and other non-classical correlations, in which case the scaling of the SNR can show up to a quadratic improvement 1/L [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' For even larger J, we find that ˆρ(u) → ˆρ0 = |0⟩⟨0|⊗L, which clearly reduces ¯T , but also CT as the quantum system state becomes u-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' ES PSES PS10 20 30 50 4010 20 30 40 50W >>>>>>>>>>>>>>> >>>>>>>>>22 Appendix F: Scaling with quantum system size An important question in quantum machine learning applications is the possible advantage of using larger quantum systems for information processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this section, we present preliminary results of scaling with quantum system size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 8 shows EC vs L at select S values for H-ansatz, while the right panel shows two encodings in the C-ansatz device, as well as their noisy simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In both plots, the dashed line indicates the S → ∞ result CT = 2L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We see that the EC increases when adding more qubits into the Ising chain for the H-ansatz, or when increasing the number of circuit qubits L for the C- ansatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note, however, that at any finite S the noise-constrained EC falls off the exponential bound for S → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The dropoff is particularly severe for the IBMQ device, where we are limited to just S ∼ 104, which significantly suppresses the EC even for L = 7 qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Note, however, that even if one is well below CT = 2L due to this finite sampling constraint, increasing the dimension of the quantum system is always an effective way to increase the EC, particularly when compared to the logarithmic growth with S of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 2 of Main Text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 3 4 5 6 7 Qubit numbers L 0 32 64 96 128 EC CT S = 101 S = 102 S = 103 S = 104 S = 105 S = 106 S = 107 S → ∞ 3 4 5 6 7 Qubit numbers L 0 20 40 EC CT S =10 S =27 S =210 S =214 S → ∞ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (a) H-ansatz and (b) C-ansatz at finite S as a function of qubit number L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Various colours indicate different S values, with the S → ∞ bound in dashed black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Individual noisy simulations are indicated in small and transparent dots, with their average as a thick line, and the EC of the C-ansatz device for encoding 1 and 2 are indicated with ‘×’ and ‘+’ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Appendix G: Quantum correlation metrics There is no one standard metric to quantify entanglement or correlation in a many-body state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The metric we introduce here, the quantum total correlation, is a quantity inspired by the classical total correlation of L random variables (b1, · · · , bL), that is �L l=1 H(bl) − H(b1, · · · , bL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Using chain rule of Shannon entropy H(b1, b2, · · · , bL) = H(b1) + H(b2|b1) + · · · + H(bL|b1, b2, · · · , bL−1) L � l=2 H(bl) − H(b1, b2, · · · , bL) = L � l=1 H(bl) − L � l=1 H(bl|b1, b2, · · · , bl−1) = L � l=2 I(b1, · · · , bl−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' bl) ∈ [0, L − 1], (G1) we can see that the classical total correlation tells us how a set of random variables reveals information of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Similarly, quantum total correlation can be defined as [26, 27] T (ˆρ) = L � l=1 S(ˆρl) − S(ˆρ) (G2) where S is von Neumann entropy and ˆρl := Tr[L]\\{l} {ˆρ} is the subsystem state at qubit l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Due to the subadditivity of von- Neumann entropy �L l=1 S(ˆρl) ≥ S(ˆρ), we conclude that the quantum total correlation is non-negative, and is zero iff the state ˆρ = �L l=1 ˆρl is a product state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In this paper’s measurement scheme, the specific readout POVMs are the projectors onto the computational states {|bk⟩ ⟨bk|}k∈[K].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Thus, we are in particular interested in analyzing the post-measurement state ˆρM(u) = � k ρkk(u) |bk⟩ ⟨bk| 23 whose subsystems are correspondingly in states ˆρM l (u) = Tr[L]\\{l} � ˆρM(u) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We compute the average quantum total correla- tion over the input domain u with respect to the input probability distribution p(u): ¯T � ˆρM� = Eu � L � l=1 S(ˆρM l (u)) − S(ˆρM(u)) � = Eu � L � l=1 H(bl(u)) − H(b1(u), · · · , bL(u)) � (G3) where the second equality comes from the diagonal nature of post-measurement state which reduces the quantum total correlation to a normal classical total correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The post-measurement quantum total correlation always reaches its maximum L − 1 when the diagonal terms of the state is a GHZ-type state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Also as a comparison, for a W-state |W⟩ = 1 √ L (|10 · · · 0⟩ + |01 · · · 0⟩ + · · · + |00 · · · 1⟩), then post- measurement quantum total correlation T(|W⟩) is L � − � 1 L � log2 � 1 L � − �L − 1 L � log2 �L − 1 L �� − L � − � 1 L � log2 � 1 L �� = (L − 1) log2 � L L − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' (G4) which is upper bounded by limL→∞ T (|W⟩) = 1 ln(2) ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Appendix H: Guidance from EC theory: principal component analysis with respect to quantum noise Another fundamental use of the capacity spectrum analysis we propose is giving a natural truncation of eigentask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In machine learning theory, the technique of projection of a high-dimensional data to a far lower subspace is called principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Within the computing architecture we are discussing, we are trying to use some K′-dimensional data where K′ ≪ K to approximate the original data as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' More specifically, consider a given function f(u), we hope to find K′ functions {G(k)(u)}k∈[K′] where G(k)(u) = �K−1 k′=0 g(k) k′ xk′(u) lies in the space spanned by measured features G(k)(u) ∈ Span{x}, such that the relative mean square error min W Eu ����f − �K′ k=1 Wk ��K−1 k′=0 g(k) k′ ¯Xk′ ���� 2� Eu[|f|2] (H1) is much smaller as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' According to Appendix C, the solution to {g(k)}k∈[K′] is exactly g(k) = r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 9 supplies a concrete example of fitting linear function f(u) = u, by setting K′ = 40 in a 6-qubit system (and thus K = 64).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 Input u −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 6-qubit, 40 principal xk(u), with retrain Combination of ¯Xk(u) Combination of xk(u) Target function f(u) = u −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 Input u −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content='5 6-qubit, 40 principal y(k)(u), no retrain Combination of ¯Xk(u) Combination of xk(u) Target function f(u) = u FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Projection onto 40-dimensional space spanned by 40 principal xk(u) vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' spanned by 40 principal y(k), in a 6-qubit H-encoding system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The number of shots is fixed as S = 5000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' 9(a) shows the projection onto the space spanned by the dominant 40 readout features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Here, by “dominant” we mean one can first train by least square regression to get an output weight w ∈ RK, and then select corresponding wk with the leading K′ largest w2 k · Eu[|xk|2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Then we need to use these K′ features to retrain and obtain a new output weight w′ ∈ RK′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In such particular example, g(k) are some one-hot vectors where the index of 1 are chosen by the sorting K′ largest w2 k · Eu[|xk|2] as we 24 described before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' We can compare the the relative mean square error with the case of g(k) = r(k), the eigentasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' The latter one shows an approximation function with conspicuously much smaller relative mean square error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' One fundamental question is: what will be an appropriate selection of K′ in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' In Appendix D we claim that those β2 k has stronger noise than signal itself, which should be excluded when taking the linear combination of measured features (or equivalently taking the linear combination of eigentasks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfQPaq/content/2301.00042v1.pdf'} +page_content=' Namely we should defined the cut-off Kc(S) such that Kc(S) = max β2 k 0. We remark that our analysis does not change, as +one replaces cubes with balls in the above definition. However, it is worth +mentioning that the notion with cubes is in general not equivalent to hat +with balls, unless K = 1, and local K-minimizers with cubes are known to +be less restrictive; see [Giu03, Example 6.5]. +In the framework of standard functionals (i.e., those without break across +some level set), the universal H¨older regularity is established for quasi- +minimzers (those with K > 1 any, and Q in (1.2) replaced with spt(u − v)), +as the essential arguments for the proof of the H¨older regularity for exact +minimizers remain unchanged upon the extension; see [Giu03]. In contrast, +thanks to the particular break across the zero-level set in Jp,q, many impor- +tant steps in the proof of [CKS21, Theorem 1.2] for the H¨older regularity of +exact minimizers to our functional Jp,q are destroyed when applied to quasi- +minimzers. Still, we were able to extend the argument to (1+ε)-minimizers, +when ε is universally small. +Theorem 1.2. There are constants ε > 0 and σ ∈ (0, 1), depending only on +n, p+, and p−, such that if u ∈ W 1,p+∧p−(Q2) is a local (1 + ε)-minimizer +of Jp+,p−, then u± ∈ C0,σ± +loc (Q1) with σ+ = σ, σ− = 1 − (1 − σ)p− +p+ , and +[u±]C0,σ±(Q1) ≤ c +�ˆ +Q2 +((u+)p+ + (u−)p−) dx +� 1 +p± , +where c depends only on n, p+, and p−. +We remark that the above theorem also shows the exact relation between +the H¨older exponents for each phase; this was not contained in the authors +earlier collaboration [CKS21, Theorem 1.2] with M. Colombo. Our proof +involves a careful extension of the main ingredients for [CKS21, Theorem +1.2] to local (1 + ε)-minimizers, and a compactness argument. +A key feature of local (1 + ε)-minimizers, ε ≥ 0, for the functional Jp,q +is that the positive and negative phase scales differently from each other. +Namely if u is a local (1+ε)-minimizer in Q2, then one needs ∥u+∥X compa- +rable with ∥u−∥q/p +X , with X = Lp(Q1) or L∞(Q1). As for the case of the local +minimizers, i.e., ε = 0, the comparability was proved by a Harnack inequal- +ity argument [CKS21, Lemma 3.7, Corollary 3.8], which played an essential +role in the proof of their universal H¨older regularity [CKS21, Theorem 1.2]. +The main difference, which also amounts to the challenges here, for the +case of local (1+ε)-minimizers, ε > 0, is the lack of such a Harnack inequality + +3 +argument. More fundamentally, local (1 + ε)-minimizers do not possess the +subsolution properties as opposed to local minimizers (see [CKS21, Lemma +3.4]). One of the consequences is that the basic estimates for one phase, +such as the Cacciopoli inequality (Lemma 2.2) and the comparison lemma +(Lemma 3.1) for local (1+ε)-minimizers, involve an additional ε-factor of the +other phase. Hence, our main task here is to effectively control the additional +ε-term, which amounts to some technical difficulties. It is worthwhile to +mention that the absence of the Harnack inequality argument is overcome +by a careful compactness argument, by which both phases, although scaled +differently, survive at the limit. The latter part is new, to the best of the +authors’ knowledge, and can be applied to a wider range of problems. +Our second result is about the almost Lipschitz regularity for local (1+ε)- +minimizers for the functional Jp,q, when |p − q| ≪ 1 and ε ≪ 1. +Theorem 1.3. Let 1 < p+ < ∞ and σ ∈ (0, 1) be given. +Then there +exist ε, δ > 0, depending only on n, p+ and σ, such that for any p− ∈ +(p+−δ, p+ +δ) and any local (1+ε)-minimizer u ∈ W 1,p+∧p−(Q2) of Jp+,p−, +one has u± ∈ C0,σ±(Q1), with σ+ = σ, σ− = 1 − (1 − σ)p− +p+ , and +[u]C0,σ±(Q1) ≤ c +�ˆ +Q2 +((u+)p± + (u−)p−) dx +� 1 +p± , +where c depends only on n, p+ and σ. +A similar statement is proved in [AT15] for uniformly elliptic function- +als when governing conductivity matrices are close with each other; [AT15] +however considers local minimizers (i.e., ε = 0) only. Our problem is philo- +sophically the same, as the limit case is clean, thus possess better regularity. +On the technical level, our argument is needs slight more care than that +of [AT15, Theorem 7.1], as the proof for the growth of the functional Jp,q +changes as (p, q) varies. Moreover, one needs to make sure that the argument +works well regardless of the relation between p (or q) and the dimension n. +These are all rigorously treated in Sect. 4. +Recently, free boundaries for almost minimizers are investigated in various +settings, see e.g., [DET19], [DS20], and [DJS22] to mention a few. There +is a possibility of extending the approach with viscosity solutions employed +in [DS20], but it is beyond the scope of this paper. It would be already +interesting to extend the result for the clean case, p = q. +In [CKS21], the authors analyze the free boundary of local minimizers for +Jp,q, using the measure ∆pu+, which is nonnegative and supported on the +free boundary, ∂{u > 0}(=∂{u < 0}). This is mainly due to the subsolu- +tion property of u+, which is no longer valid for almost minimizers. The +same issue appears in the case of the two-phase Alt-Caffarelli functional +(see [DET19, Section 4]), which is resolved by the NTA property of the free +boundary and a clever use of barriers. The NTA property was obtained +there by the use of the ACF monotonicity formula, which is absent in our + +4 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +regime. The construction of the barriers and the comparison with the al- +most minimizers require some regularity of the free boundary, which in the +case of [DET19] was the NTA property. However, in our problem, none of +these seems to be analogously carried out. For this reason, we leave out the +analysis of the free boundary for our almost minimizers to the interested +reader. +The paper is organized as follows. In Section 2, we collect some technical +tools to prepare the proof of Theorem 1.2. In Section 3, we prove Theorem +1.2. In Section 4, we prove Theorem 1.3. +We follow the standard notation and terminology. In particular, n denotes +the dimension of the underlying space, and there is no restriction other than +n ≥ 1. By Qr(x0), we denote the cube centered at x0 with side-length r, +i.e., Qr(x0) := {x ∈ Rn : |xi − x0i| < r, 1 ≤ i ≤ n}. For simplicity, we set +Qr := Qr(0). Given a set A ⊂ Rn, by |A| we denote the Lebesgue measure +of A. The function spaces C0,σ and W 1,p are standard H¨older and Sobolev +spaces, and C0,σ +loc , W 1,p +loc are their local versions. +2. Technical Tools +In this section, we shall present and verify some technical tools, most of +which generalize those appeared in [CKS21, Sect. 4–5]. The main goal of +this section is to prove the following proposition, which roughly tells us that +negative values cannot penetrate the interior if a local (1 + ε)-minimizer +attains large positive values in most of the domain. +Let us remark that +this proposition corresponds to [CKS21, Proposition 5.2] for the case of +minimizers. +The main difference here is that (1 + ε)-minimizers do not +possess in general the subsolution properties. Here we exploit the techniques +to circumvent this issue. Unless stated otherwise, the constant c throughout +this section is a positive constant that may differ at each occurrence, and +will depend at most on n, p, and q. Moreover, the parameter ε will be a +small constant, whose smallness is determined solely by n, p, and q. +Proposition 2.1. There exist ε > 0 and µ > 0, depending only on n, p, and +q, such that if u ∈ W 1,p∧q(Q1) is a local (1 + ε)-minimizer of the functional +J, satisfyingˆ +Q1 +((u+)p + (u−)q) dx ≤ 1, +|{u ≤ 1/2} ∩ Q1| ≤ ε, +then u > 0 a.e. in Qµ. +The proof for this proposition will be postponed to the end of this section. +Let us begin with the Cacciopoli-type inequality. +Lemma 2.2. Let u ∈ W 1,p∧q(Q2) be a local (1 + ε)-minimizer of the func- +tional J. There exists ¯ε ∈ (0, 1), depending only on n, p, and q, such that if +ε ≤ ¯ε, then +(2.1) +ˆ +Q1 +|Du+|p dx ≤ c +ˆ +Q2 +((u+)p + ε(u−)q) dx, + +5 +where c depends only on n, p, and q. +Proof. Fix r, R with 1 < r < R < 2, and choose any s, t with r < s < t < R. +Let η ∈ C1 +c (Qt) be a cutoff function such that η ≡ 1 in Qs, |Dη| ≤ +2c +t−s in +Qt, and spt(η) ⊂ Q(t+s)/2. Set w := (1 − η)u+ − u− ∈ W 1,p∧q(Qt). Since +w+ = (1 − η)u+, w− = u−, and spt(u − w) ⊂ spt(η) ⊂ Q(t+s)/2, we derive +from the (1 + ε)-minimizerslity of u for Jp,q in Qt that +ˆ +Qr +|Du+|p dx ≤ (1 + ε) +ˆ +Qt +|D((1 − η)u+)|p dx + ε +ˆ +Qt +|Du−|q dx. +Applying H¨older’s inequality and Young’s inequality, and then using spt(η) ⊂ +Q(t+s)/2 and |Dη| ≤ c/(t − s), we deduce that +ˆ +Qs +|Du+|p dx ≤ c +ˆ +Qt +� (u+)p +(t − s)p + ε|Du−|q +� +dx + cε +ˆ +Qt +|Du+|p dx. +Since this part is by now standard, we omit the details. Note that the last +display holds for all s, t, r < s < t < R. Hence, choosing ε small enough such +that cε < 1 +2, we can employ the standard iteration lemma [Giu03, Lemma +6.1] to derive that +(2.2) +ˆ +Qr +|Du+|p dx ≤ c +ˆ +QR +� (u+)p +(R − r)p + ε|Du−|q +� +dx. +Now replace QR in the right-hand side with Q(R+r)/2, and then apply +the same argument above to (−u) with Qr replaced with Q(R+r)/2; note +that (−u) is a local (1 + ε)-minimizer of Jq,p in place of Jp,q. Then we may +proceed as follows, +ˆ +Qr +|Du+|p dx ≤ c +ˆ +Q(R+r)/2 +� (u+)p +(R − r)p + ε|Du−|q +� +dx +≤ c +ˆ +QR +� (u+)p +(R − r)p + cε (u−)q +(R − r)q +� +dx + c2ε2 +ˆ +QR +|Du+|p dx. +Recall that r, R were any numbers between 1 and 2. Hence, taking ε smaller +if necessary such that c2ε2 < 1 +2, we can make use of the iteration lemma +once again to arrive at (2.1). +□ +Remark 2.3. In what follows, we shall always assume that ε < ¯ε, with ¯ε +as in Lemma 2.2. +Let us remark that the above Cacciopoli inequality is too weak to bring +forth a local L∞-estimate. Besides, local quasi-minimizers are not neces- +sarily bounded, even for functionals under standard growth condition (of +course, only if p ≤ n). Nevertheless, with the aid of the Cacciopoli inequal- +ity above, we shall observe that the blowup rate of local (1 + ε)-minimizers +can be made arbitrarily small, for small ε, in case p ≤ n. + +6 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +Lemma 2.4. Let u ∈ W 1,p∧q(Q1) be a local (1 + ε)-minimizer of the func- +tional J. Suppose that +∥u+∥Lp(Q1) ≤ 1, +sup +r∈(0,1) +∥u−∥Lq(Qr) +r1− p +q ∥u+∥ +p +q +Lp(Qr) +≤ κ, +for some constant κ > 0. Then for any δ > 0, there exists a positive constant +εκ,δ, depending only on n, p, q, κ and δ, such that if ε ≤ εκ,δ, then +sup +r∈(0,1) +1 +rn−δp +ˆ +Qr +(u+)p dx ≤ cκ,δ, +where cκ,δ depends only on n, p, q, Λ, δ and κ. +Proof. We remark that the conclusion is trivial for p > n, due to the Sobolev +embedding theorem. Henceforth, we shall assume that 1 < p ≤ n. +Let κ and δ be arbitrary positive constants, and suppose the conclusion +of the lemma is false. Then for each j = 1, 2, · · · , one can find some positive +constant εj ց 0, and a local (1 + εj)-minimizer uj ∈ W 1,p∧q(Q1) of the +functional J, such that +∥u+ +j ∥Lp(Q1) ≤ 1, +sup +r∈(0,1) +∥u− +j ∥Lq(Qr) +r1− p +q ∥u+ +j ∥ +p +q +Lp(Qr) +≤ κ, +but +Sj = +sup +rj≤r≤1 +1 +rn−δp +ˆ +Qr +(u+ +j )p dx → ∞, +for some constant rj ∈ (0, 1). In order to have Sj → ∞ to be compatible +with ∥u+ +j ∥Lp(Q1) = 1, we must have rj → 0. +Consider an auxiliary function vj : Qr−1 +j +→ R, defined by +vj(y) = +u+ +j (rjy) +r +− n +p +j +∥u+ +j ∥Lp(Qrj ) +− +u− +j (rjy) +r +1− p +q − n +q +j +∥u+ +j ∥ +p +q +Lp(Qrj ) +. +One easily verifies that vj ∈ W 1,p∧q(Qr−1 +j ) is a local (1 + εj)-minimizer of +the functional J, and +(2.3) +sup +1≤R≤r−1 +j +1 +Rn−δp +ˆ +QR +(v+ +j )p dy = 1, +where the supremum is attained at R = 1, and +(2.4) +sup +1≤R≤r−1 +j +1 +Rn+q−(1+δ)p +ˆ +QR +(v− +j )q dy ≤ κq. +Due to Lemma 2.2, along with (2.3) and (2.4), +(2.5) +ˆ +QR +(|Dv+ +j |p + |Dv− +j |q) dx ≤ cRn−(1+δ)p, + +7 +where c depends only on n, p and q, whenever 2Rrj ≤ 1. By the Sobolev em- +bedding theory, there exists a function v ∈ W 1,p∧q +loc +(Rn) with v+ ∈ W 1,p +loc (Rn) +and v− ∈ W 1,q +loc (Rn) such that v+ +j → v+ and v− +j → v− +j weakly in W 1,p +loc (Rn) +and respectively W 1,q +loc (Rn), after extracting a subsequence if necessary; we +shall denote this subsequence by vj, for brevity. The weak convergence im- +plies that v ∈ W 1,p∧q(BR) is a minimizer of the functional J. Since v+ +j → v+ +strongly in Lp(BR) and v− +j → v− strongly in Lq(BR), letting j → ∞ in (2.3) +yields that +(2.6) +sup +R≥1 +1 +Rn−δp +ˆ +QR +(v+)p dy = 1. +However, since v is a minimizer of the functional J, by [CKS21, Lemma +3.4], v+ is a weak p-subsolution. As a result, the local L∞-estimates [Giu03, +Theorem 7.3] applies to v+, which along with (2.6) yields +∥v+∥L∞(QR) ≤ c +Rδ . +Hence, letting R → ∞ yields that v+ = 0 a.e. in Rn. This yields a contra- +diction against (2.6). +□ +We also have a growth estimate for the p-th Dirichlet energy of the positive +phase. The idea is the same as in [CKS21, Lemma 4.5], which is based on +some approximation by positive p-harmonic functions of the positive phase +of local quasi-minimizers, in terms of the size of the negative phase. +Lemma 2.5. Let u ∈ W 1,p∧q +loc +(Q2) be a local (1 + ε)-minimizer of the func- +tional J, and v ∈ u+ + W 1,p +0 (Q1) be the p-harmonic function. Then +0 ≤ +ˆ +Q1 +(|Du+|p − |Dv|p) dx ≤ c +ˆ +Q2 +((u−)q + ε|Du+|p) dx, +and +ˆ +Qr +|Du+|p dx ≤ c +ˆ +Q1 +((rn + ε)|Du+|p + (u−)q) dx, +∀r ∈ (0, 1), +where c depends only on n, p and q. +Proof. The proof is essentially the same as that of [CKS21, Lemma 4.5]. +The additional term ε +´ +Q2 |Du+|p dx appears due to the different Cacciopoli +inequality; more exactly, we use (2.2) with u replaced with −u. We shall +not repeat this argument here. +□ +The following lemma corresponds to [CKS21, Lemma 4.8]. The key in- +gredient of the proof there is the Poincar´e inequality, and Lemma 2.5, which +corresponds to [CKS21, Lemma 4.5]. As noted above, Lemma 2.5 differs +from [CKS21, Lemma 4.5] by the additional term, ε +´ +Q2 |Du+|p dx. How- +ever, this does not make any difference in the proof of the lemma below. +Thus, we shall skip the proof. + +8 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +Lemma 2.6 (Essentially due to [CKS21, Lemma 4.8]). Let u ∈ W 1,p∧q(Q4) +be a local 2-minimizer for the functional J, satisfying +ˆ +Q4 +(u+)p dx = 1, +ˆ +Q4 +((u−)q + |Du+|p) dx ≤ ε, +for some ε > 0. Then +|{u ≤ 1/2} ∩ Q1| ≤ cε, +where c depends only on n, p and q. +Let us prove Proposition 2.1 with additional assumptions that ∥u−∥Lq(Q1) +and ∥Du+∥Lp(Q!) are sufficiently small. The proof follows the idea of that +of [CKS21, Lemma 5.5], with some modifications addressing the lack of +subsolution properties of each phase. +Lemma 2.7. There exists ε > 0, depending only on n, p and q, such that if +u ∈ W 1,p∧q(Q4) is a local (1 + ε)-minimizer of the functional J, satisfying +ˆ +Q4 +(u+)p dx = 1, +ˆ +Q4 +((u−)q + |Du+|p) dx ≤ ε, +then u > 0 a.e. in Q1. +Proof. Let us consider the case q < n first. Following the proof of [CKS21, +Lemma 4.3], we obtain that for σ ∈ (0, 1), +(2.7) +ˆ +Qr +�(u−)q +rq ++ |Du+|p +� +dx ≤ cεr−(1−σ)p +ˆ +Qr +(u+)p dx, +∀r ∈ (0, 1), +where c depends only on n, p, q and σ. The proof is essentially the same, +as Lemma 2.5 and 2.6 replace [CKS21, Lemma 3.5–3.7], which are the key +ingredients of the proof there; moreover Lemma 2.2 replaces the usual Cac- +ciopoli inequality for weak q-subsolutions. These lemmas have additional +ε-term, which arise from the (1 + ε)-local minimizerslity of u, but this does +not contribute any major difference from the proof for [CKS21, Lemma 4.3]. +Hence, we shall omit the details. +We observe that due to (2.7) (as well as the assumption +´ +Q4(u+)p dx = 1), +the hypothesis of Lemma 2.4 is satisfied (with κ = 1 > εrσp). Thus, choosing +ε ≤ εδ with εδ as in Lemma 2.4 with δ < σ, we deduce +(2.8) +ˆ +Qr +(u+)p dx ≤ cr−δp, +∀r ∈ (0, 1). +Inserting (2.8) into (2.7) yields that +(2.9) +ˆ +Qr +|Du+|p dx ≤ cεr−(1−(σ−δ))p, +∀r ∈ (0, 1); +now c depends only on n, p, q, σ and δ. Let us remark that this step does +not appear for the case of minimizers [CKS21, Lemma 4.3] because for the +latter case we can use the subsolution property [CKS21, Lemma 3.4] for u+ +to obtain its local boundedness. + +9 +The growth estimate in (2.9) is obtained by choosing ε sufficiently small. +Taking ε even smaller if necessary, we may repeat the above argument +around any point z ∈ Q1, and obtain +ˆ +Qr(z) +|Du+|p dx ≤ cεr−(1−(σ−δ))p, +∀r ∈ (0, 1), ∀z ∈ Q1, +possibly with a larger constant c. Therefore, by Morrey’s lemma, we deduce +that u+ ∈ C0,σ−δ(Q1) and +(2.10) +[u+]C0,σ−δ(Q1) ≤ cε +1 +p . +Finally, by Lemma 2.6, |{u ≤ 1 +2} ∩ Q1| ≤ cε. Hence, with cε ≤ 2−2n−1, we +have |{u > 1 +2} ∩ Q1| > 0, which now implies via (2.10) that +inf +Q1 u+ ≥ 1 +2 − cε +1 +p > 0, +provided that we choose ε even smaller. Note that the smallness condition +for ε at this stage can be determined solely by n, p and q, by for instance +selecting σ = 1 +2 and δ = 1 +4. This finishes the proof for the case q < n. +The case for q ≥ n can be treated similarly, following the proof of [CKS21, +Lemma 4.3]; we omit the details. +□ +We are ready to prove Proposition 2.1. +Proof of Proposition 2.1. Let ¯ε be as in Lemma 2.7, and suppose that cε ≤ ¯ε. +Using |{u ≤ 1 +2} ∩ Q1| ≤ ε, we may follow the proof of [CKS21, Proposition +4.2] to find a constant ρ, depending only on n, p and q, such that +(2.11) +ˆ +Q4ρ +�(u−)q +ρq ++ |Du+|p +� +dx ≤ cερq−p +ˆ +Q4ρ +(u+)p dx. +Therefore, defining uρ : Q4 → R by +uρ(x) = +u+(ρx) +(4ρ)− n +p ∥u+∥Lp(Q4ρ) +− +u−(ρx) +4− n +q ρ1− p +q − n +q ∥u+∥ +p +q +Lp(Q4ρ) +, +we see that uρ ∈ W 1,p∧q(Q4) is a local (1 + ε)-minimizer of the functional +J, such that +ˆ +Q4 +(u+ +ρ )p dx = 1, +ˆ +Q4 +((u− +ρ )q + |Du+ +ρ |p) dx ≤ cε. +Since cε ≤ ¯ε, with ¯ε as in Lemma 2.6, we obtain +uρ > 0 +a.e. in Q1. +Rescaling back, we obtain that u > 0 a.e. in Q4ρ as desired. +□ + +10 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +3. H¨older regularity +In this section, we study the universal H¨older regularity of local (1 + ε)- +minimizers for the functional Jp,q, and prove our first main result, Theorem +1.2. Let us begin with a lemma that tells us how each phase of local mini- +mizers for the functional Jp,q should scale relatively to one another. +Lemma 3.1. Let u ∈ W 1,p∧q(Q1) be a local minimizer of the functional J, +such that ∥u+∥Lp(Q1) = 1 and u(0) = 0. If ∥u+∥Lp(Q1/2) ≥ β for some β > 0, +then ∥u−∥Lq(Q1) ≥ cβ, for some positive constant cβ depending only on n, +p, q and β. +Proof. Let β be any constant, with 0 < β < 1. Assume by way of contradic- +tion that there exists a minimizer uj ∈ W 1,p∧q(Q1) of the functional J, such +that ∥u+ +j ∥Lp(Q1) = 1, ∥u+ +j ∥Lp(Q1/2) ≥ β, uj(0) = 0 but ∥u− +j ∥Lq(Q1) ≤ 1 +j . By +[CKS21, Theorem 1.1], uj ∈ C0,σ(Q1/2) and ∥u+ +j ∥C0,σ(Q1/2) ≤ c∥u+ +j ∥Lp(Q1) ≤ +c, and similarly, ∥u− +j ∥C0,σ(Q1/2) ≤ c +j, where both c and σ depend only on n, p +and q. This together with the Cacciopoli inequality (Lemma 2.2 with ε = 0) +implies that u+ +j → u0 weakly in W 1,p(Q1/2) and uniformly in Q1/2, while +u− +j → 0 weakly in W 1,q(Q1/2) and uniformly in Q1/2, for some nonnegative +function u0 ∈ W 1,p(Q1/2). The uniform convergence along with uj(0) = 0 +implies that u0(0) = 0. In addition, passing to the limit in ∥u+ +j ∥Lp(Q1/2) ≥ β +ensures that ∥u0∥Lp(Q1/2) ≥ β. However, the weak convergence of the gradi- +ent of uj implies that u0 is also a minimizer of the functional J. As u0 ≥ 0 +in Q1/2, u0 is a p-harmonic function, but then it violates the minimizer +principle, as ∥u0∥Lp(Q1/2) ≥ β > 0. +□ +Lemma 3.2. Let u ∈ W 1,p∧q(Q1) be a local minimizer of the functional J, +such that +∥u+∥Lp(Q1) ≤ 1, +u(0) = 0, +sup +0 0 and σ− ∈ (0, 1]. Then with σ+ = 1 − (1 − σ−) q +p, +sup +0 q, +and +ˆ +Q1 +((u+)p + (u+)q) dx = 1. +By [CKS21, Theorem 1.1], we already know that u ∈ C0,σ(Q1) and that +[u]C0,σ(Q1) ≤ c, where both c > 0 and σ ∈ (0, 1) depend only on n, p and q. +Hence, if u(z) = 0 at some z ∈ Q1/2, then +sup +0 q, 1 − (1 − σ) q +p > σ > 0. Now setting σ− = σ and σ+ = 1 − (1 − σ) q +p, +we immediately verify the relation required between σ+ and σ−. Since the +above growth estimates hold uniformly around all z ∈ {u = 0} ∩ Q1, and +since ∆pu = 0 in {u > 0}∩Q1 and ∆qu = 0 in {u < 0}∩Q1, one may arrive +at the conclusion via some standard manipulation. We skip the detail. +□ + +12 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +Given a measurable function u : Ω → R, define D+(u), D−(u) and Γ(u) +by the subset of Ω as follows: +D+(u) = {z ∈ Ω : u > 0 a.e. in some Qr(z) ⊂ Ω}, +D−(u) = D+(−u), +and +Γ(u) = Ω \ (D+(u) ∪ D−(u)). +By definition, both D+(u) and D−(u) are open and hence Γ(u) is closed +(relative to the topology of Ω). Moreover, z ∈ Γ(u) if and only if |{u ≥ +0} ∩ Qr(z)||{u ≤ 0} ∩ Qr(z)| > 0 for any cube Qr(z) ⊂ Ω. +With Proposition 2.1 at hand, we shall obtain, as a contraposition along +with Lemma 3.4 below, that if a local (1 + ε)-minimizer vanishes (in an ap- +propriate Lebesgue sense) at certain point in the interior, then each phase +exhibits certain universal H¨older growth. More exactly, we assert the fol- +lowing. +Proposition 3.3. There exists a constant ¯σ ∈ (0, 1), depending only on +n, p, and q, for which the following holds: for each σ ∈ (0, ¯σ), one can +find a constant εσ ∈ (0, 1), depending only on n, p, q, and σ, such that if +u ∈ W 1,p∧q(Q1) is a local (1 + εσ)-minimizer of the functional J satisfying +ˆ +Q1 +((u+)p + (u−)q) dx ≤ 1, +0 ∈ Γ(u), +then with σ+ = σ and σ− = 1 − (1 − σ)p +q, one has +sup +0 1. As σ+ = σ < ¯σ+ and σ− = 1 − (1 − σ) q +p < ¯σ−, sending +R → ∞ implies that both v+ and v− must be constant. Then by (3.9), +|v| ≤ 1 +2 everywhere in Q1, whence +´ +Q1((v+)p + (v+)q) dx ≤ 2−p + 2−q < 1, a +contradiction to the observation that the supremum in (3.10) is attained at +R = 1. +□ +We are ready to prove Proposition 3.3 +Proof of Proposition 3.3. As 0 ∈ Γ(u), there are three cases to consider: (i) +|{u > 0} ∩ Qρ||{u < 0} ∩ Qρ| > 0 for all ρ ∈ (0, 1), (ii) u ≥ 0 a.e. in Qρ +for some small ρ > 0, and (iii) u ≤ 0 a.e. in Qρ for some small ρ > 0. The +last two cases are symmetric, and in those cases u becomes a local (1 + ε)- +minimizer for the functional Jp,p, or Jq,q depending on its sign. Thus, the +growth estimate follows easily, once we establish the estimate for the first +case. We leave out this part as an exercise for the reader. +Henceforth, let us assume that the first case holds. Let (ε, τ, µ) be the +triple of constants from Proposition 2.1 that are determined solely by n, p +and q. Fix any r ∈ (0, 1). Since |{u > 0} ∩ Qµr| · |{u < 0} ∩ Qµr| > 0, +as a contraposition (applied to both u and −u, after suitable rescaling), we +obtain that +(3.11) +|E+(u, Qr)| +|Qr| +∧ |E−(u, Qr)| +|Qr| +≥ τ, +with E+(u, Qr) and E−(u, Qr) defined as in Lemma 3.4. As τ being a con- +stant depending only on n, p and q, the conclusion of this proposition follows +immediately from Lemma 3.4; this final step introduces another condition +on the size of ε, which through the dependence of τ would be determined +again solely by n, p, q, and σ. +□ +4. Almost Lipschitz regularity +Here we prove almost Lipschitz regularity of almost minimizers to J = +Jp,q, when p and q are close. Our proof is based on the compactness argu- +ment. The basic ingredient is the universal H¨older estimate for local mini- +mizers of the functional Jp,q, see [CKS21, Theorem 1.3]. Although it is not +specified in the statement, one can observe from the higher integrability of +each phase that the H¨older regularity is uniform when p (or q) is close to n. + +15 +We record this fact as a lemma below, as the proof of [CKS21, Theorem 1.3] +makes use of the local boundedness and the Harnack inequality for weak p- +harmonic functions, and the constants involved in the latter assertions may +vary as p → n. +Lemma 4.1. Let u ∈ W 1,p+∧p−(Q2) be a local minimizer of Jp+,p−. There +exists ¯δ > 0, depending only on n, such that if |n − p±| ≤ ¯δ, then +[u±]C0,¯σ(Q1) ≤ ¯c∥u±∥Lp±(Q2), +where ¯σ ∈ (0, 1) and ¯c > 1 depend only on n. +Proof. Since u is a local minimizer (instead of (1 + ε)-minimizer) of Jp+,p−, +u± is a weak p±-subsolution in Q2, according to [CKS21, Lemma 3.4]. Hence, +by [GG82, Corollary 4.2], there exist constants ¯δ > 0 and ¯γ ∈ (0, 1), both +depending only on n, such that if |p± − n| < ¯δ, then u± ∈ W 1,p±+¯δ(Q1) ⊂ +W 1,n+¯γ¯δ(Q1). Now setting ¯σ := 1 − +n +n+¯γ¯δ, it follows from the Sobolev em- +bedding, the higher integrability and the Cacciopoli inequality for weak +p±-subsolutions that +[u±]C0,¯σ(Q1) ≤ c1(n) +�ˆ +Q1 +|Du±|n+¯γ¯δ dx +� +1 +n+¯γ¯δ +≤ c1(n)c2(n, p±) +�ˆ +Q3/2 +|Du±|p± dx +� 1 +p± +≤ c1(n)c2(n, p±)c3(n, p±) +�ˆ +Q2 +(u±)p± dx +� 1 +p± . +Note that c2(n, p±), and c3(n, p±) are constants from the higher integrabil- +ity and respectively the Cacciopoli inequality, and these are all uniformly +bounded by a constant c(n), as p → p±. Hence, our proof is finished. +□ +Let us first verify the uniform growth of order σ at free boundary points +for minimizers. We prove it by compactness. +Lemma 4.2. Let u ∈ W 1,p∧q(Q1) be a local minimizer of Jp,q such that +(4.1) +ˆ +Q1 +((u+)p + (u−)q) dx ≤ 1, +u(0) = 0. +Then for any σ ∈ (0, 1), there exists δ > 0, depending only on n, p, and σ, +such that if |p − q| < δ, then with σ+ = σ and σ− = 1 − (1 − σ)p +q, +1 +rn+σ+p +ˆ +Qr +(u+)p dx + +1 +rn+σ−q +ˆ +Qr +(u−)q dx ≤ c, +∀r ∈ (0, 1), +where c > 1 depends only on n, p, and σ. +Proof. Let σ > 0 and p ∈ (1, ∞) be given. Suppose that the conclusion of +this lemma does not hold. Then for each j = 1, 2, · · · , there must exist an + +16 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +exponent qj > 1 with |qj − p| ց 0, a local minimizer uj ∈ W 1,p∧qj(Q1) of +the functional Jp,qj, and a scale rj ∈ (0, 1), such that +(4.2) +ˆ +Q1 +((u+ +j )p + (u− +j )qj) dx ≤ 1, +uj(0) = 0, +but with σ+ = σ and σj,− = 1 − (1 − σ) p +qj → σ, +(4.3) +Sj := +sup +rj≤r≤1 +� +1 +rσ+p +ˆ +Qr +dx + +1 +rσj,−qj +ˆ +Qr +(u− +j )qj +� +dx ր ∞. +To have the first inequality in (4.2) and (4.3) to be compatible, we must have +rj ց 0 up to a subsequence. As in the proof of Lemma 3.4, we consider the +rescaling +vj(y) := +u+ +j (rjy) +S +1 +p +j rσ+ +j +− +u− +j (rjy) +S +1 +qj +j rσj,− +j +. +Then vj is a minimizer of Jp,qj in Q1/rj and that +(4.4) +sup +1≤R≤ 1 +rj +� +1 +Rσ+p +ˆ +QR +(v+ +j )p dx + +1 +Rσj,−qj +ˆ +QR +(v− +j )qj dx +� += 1. +Then by [CKS21, Theorem 1.2], we have +(4.5) +sup +j +∥vj∥C0,¯σ(QR) < ∞, +where both c > 1 and ¯σ ∈ (0, 1) depend only on n and p; see Lemma +4.1 for the stability of ¯σ and c for the case p = n. Moreover, by [CKS21, +Lemma 3.4], v+ +j (and v− +j ) is a weak p-(resp. qj-)subsolution, so the higher +integrability [GG82, Theorem 4.1] applies. Utilizing |qj−p| ց 0, there exists +η > 0, depending only on n and p, such that +(4.6) +sup +j +ˆ +QR +|Dvj|p+η dx < ∞. +Also observe from (4.2) that +(4.7) +vj(0) = 0. +By (4.5) and (4.6), we can extract a subsequence of {vj}∞ +j=1 along which +vj → v weakly in W 1,p+η +loc +(Rn) and locally uniformly in Rn, for some v ∈ +W 1,p+η +loc +∩ C0,σ +loc (Rn). Let us continue to denote this subsequence by {vj}∞ +j=1. +The uniform convergence along with (4.7) implies that +(4.8) +v(0) = 0. +We claim that v is a (weak) p-harmonic function in Rn. +For any large j, we have qj ∈ (p − η, p + η). By (4.6) and the compact +embedding, vj → w strongly in W 1,p +loc (Rn). Now fix R ≥ 1, and let ϕ ∈ +W 1,p+η +0 +(QR) be arbitrary. Then since |qj − p| ց 0, |Dv− +j |qj → |Dv−|p and + +17 +|D(vj+ϕ)−|qj → |D(v+ϕ)|p a.e. in QR. Then by the dominated convergence +theorem and the minimizerslity of Jp,qj(vj, QR), +(4.9) +ˆ +QR +|Dv|p dx = lim +k→∞ +ˆ +QR +(|Dv+ +j |p + |Dv− +j |qj) dx +≤ lim +k→∞ +ˆ +QR +(|D(vj + ϕ)+|p + |D(vj + ϕ)−|qj) dx += +ˆ +QR +|D(v + ϕ)|p dx. +Thus, v minimizes Jp,p(·, QR) over all variations v+ϕ with ϕ ∈ W 1,p+η +0 +(QR). +This suffices to guarantee v to be (weak) p-harmonic in QR, see [Lin19]. +Since R was any number larger than 1, the claim is now verified. +Now letting k → ∞ in (4.4) and using qj → p, we obtain +(4.10) +sup +R≥1 +1 +Rσp +ˆ +QR +|v|p dx = 1. +By the interior Lipschitz estimate for p-harmonic functions, +(4.11) +[v]C0,1(QR) ≤ +c +R1−σ , +for some c independent of R. Taking R → ∞ in (4.11), we derive that v is +constant in Rn, which together with (4.8) implies v ≡ 0. This is yields a +contradiction against (4.10), and the proof is finished. +□ +Next we extend the above lemma to local (1 + ε)-minimizers. +Lemma 4.3. For any σ ∈ (0, 1), there exists ε, δ > 0, depending only on n, +p, and σ, such that for any q ∈ (1, ∞) with |p − q| < δ, and any local local +(1 + ε)-minimizer u ∈ W 1,p∧q(Q1) satisfying (4.1), one has, with σ+ = σ +and σ− = 1 − (1 − σ)p +q, that +1 +rn+σ+p +ˆ +Qr +(u+)p dx + +1 +rn+σ−q +ˆ +Qr +(u−)q dx ≤ c, +∀r ∈ (0, 1), +where c > 1 depends only on n, p, and σ. +Proof. As already observed in the proof of Proposition 3.3, the assumption +u(0) = 0 implies (3.11) for every r ∈ (0, 1). Hence, the assumption (4.1) +implies (3.4). The rest of the proof is the same with that of Lemma 3.4. More +exactly, given σ ∈ (0, 1) and p > 1, we first choose δ > 0 sufficiently small +such that Lemma 4.2 holds with 1+σ +2 +in place of σ, for all local minimizers +for functional Jp,q for any q ∈ (1, ∞) with |p − q| < δ. Then we can take +ε > 0 small enough such that Lemma 3.4 holds with τ as in (3.11), σ+ = σ +and σ− = 1 − (1 − σ)p +q, ¯σ+ = 1+σ +2 +> σ = σ−, and ¯σ− = 1 − (1−σ +2 )p +q > +1 − (1 − σ)p +q = σ−. We skip the details. +□ +We are ready to prove the almost Lipschitz regularity for almost mini- +mizers, when |p − q| ≪ 1. + +18 +SUNGHAN KIM AND HENRIK SHAHGHOLIAN +Proof of Theorem 1.3. With the same (and simpler) compactness argument, +we can also prove that local (1 + ε)-minimizers for Jp,p(w) ≡ +´ +|Dw|p dx is +of class C0,σ, for any σ ∈ (0, 1) and every ε ∈ (0, εσ), since p-harmonic +functions are of class C1,α ⊂ C0,1. Moreover, we can obtain a uniform C0,σ- +estimates, with this compactness argument, and the smallness constant εσ +depends only on n, p, and σ. Thus, the passage from Lemma 4.3 to Theorem +1.3 is standard. We shall not present the obvious details here. +□ +Declarations +Data availability statement: All data needed are contained in the man- +uscript. +Funding and/or Conflicts of interests/Competing interests: The +authors declare that there are no financial, competing or conflict of interests. +References +[AT15] +M. D. Amaral and E. V. Teixeira, Free transmission problems, Comm. Math. +Phys. 337 (2015), 1465–1489. +[CKS21] M. Colombo, S. Kim and H. Shahgholian, A transmission problem for (p, q)- +Laplacian, to appear in Comm. in Partial Differential Equations. +[DET19] G. David, M. Engelstein, and T. Toro, Free boundary regularity for almost min- +imizers, Adv. Math. 350 (2019), 1109–1192. +[DS20] +D. De Silva and O. Savin, Almost minimizers of the one-phase free boundary +problem, Comm. Partial Differential Equations 45 (2020), 913–930. +[DJS22] D. De Silva, S. Jeon and H. Shahgholian, Almost minimizers for a singular system +with free boundary, J. Differential Equations 336 (2022), 167–203. +[GG82] +M. Giaquinta and E. Giusti, On the regularity of the minimizers of variational +integrals, Acta Math. 148 (1982), 31–46. +[Giu03] +E. Giusti, Direct methods in the Calculus of Variations, World Scientific, 2003. +[Lin19] +P. Lindqvist, Notes on the Stationary p-Laplace Equation, Springer International +Publishing, 2019. +Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden +Email address: sunghan.kim@math.uu.se +Department of Mathematics, Royal Institute of Technology, 100 44 Stock- +holm, Sweden +Email address: henriksh@kth.se + diff --git a/5dFAT4oBgHgl3EQfmh3P/content/tmp_files/load_file.txt b/5dFAT4oBgHgl3EQfmh3P/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..af0ee547e514fdff4c72f1db605709dcc6da47d4 --- /dev/null +++ b/5dFAT4oBgHgl3EQfmh3P/content/tmp_files/load_file.txt @@ -0,0 +1,570 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf,len=569 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='08624v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='AP] 20 Jan 2023 ALMOST MINIMIZERS TO A TRANSMISSION PROBLEM FOR (p, q)-LAPLACIAN SUNGHAN KIM AND HENRIK SHAHGHOLIAN Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' This paper concerns almost minimizers of the functional J(v, Ω) = ˆ Ω � |Dv+|p + |Dv−|q� dx, where 1 < p ̸= q < ∞ and Ω is a bounded domain of Rn, n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We prove the universal H¨older regularity of local (1 + ε)-minimizers, when ε is universally small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Moreover, we prove almost Lipschitz regularity of the local (1 + ε)-minimizers, when |p − q| ≪ 1 and ε ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Technical Tools 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' H¨older regularity 10 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Almost Lipschitz regularity 14 Declarations 18 References 18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Introduction In this paper, we study regularity properties of almost minimizers to the functional (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1) J(u, Ω) ≡ Jp,q(u, Ω) := ˆ Ω (|Du+|p + |Du−|q) dx, where Ω ⊂ Rn is a bounded domain and 1 < p, q < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Our primary goal is to prove a universal H¨older estimate for the almost minimizers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We shall also study various scenarios, on the relation between p and q, to see if the regularity can be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In particular, we aim at proving almost Lipschitz regularity provided that p and q are close to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The notion of local K-minimizers is given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Shahgholian was supported in part by Swedish Research Council.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' This project was finalized during the program Geometric aspects of nonlinear PDE at Institute Mittag Leffler, Stockholm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 1 2 SUNGHAN KIM AND HENRIK SHAHGHOLIAN Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1 (Local K-minimizers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let K ≥ 1 be a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We shall call u ∈ W 1,p∧q loc (Ω) a local K-minimizer of the functional J, if for any cube Q ⊂ Ω, J(u, Q) < ∞, and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2) J(u, Q) ≤ KJ(v, Q), for any v ∈ u + W 1,p∧q 0 (Q) such that J(v, Q) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In the course of this paper, we shall be interested in the case K = 1 + ε, for some small ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We remark that our analysis does not change, as one replaces cubes with balls in the above definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' However, it is worth mentioning that the notion with cubes is in general not equivalent to hat with balls, unless K = 1, and local K-minimizers with cubes are known to be less restrictive;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' see [Giu03, Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In the framework of standard functionals (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=', those without break across some level set), the universal H¨older regularity is established for quasi- minimzers (those with K > 1 any, and Q in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2) replaced with spt(u − v)), as the essential arguments for the proof of the H¨older regularity for exact minimizers remain unchanged upon the extension;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' see [Giu03].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In contrast, thanks to the particular break across the zero-level set in Jp,q, many impor- tant steps in the proof of [CKS21, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2] for the H¨older regularity of exact minimizers to our functional Jp,q are destroyed when applied to quasi- minimzers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Still, we were able to extend the argument to (1+ε)-minimizers, when ε is universally small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' There are constants ε > 0 and σ ∈ (0, 1), depending only on n, p+, and p−, such that if u ∈ W 1,p+∧p−(Q2) is a local (1 + ε)-minimizer of Jp+,p−, then u± ∈ C0,σ± loc (Q1) with σ+ = σ, σ− = 1 − (1 − σ)p− p+ , and [u±]C0,σ±(Q1) ≤ c �ˆ Q2 ((u+)p+ + (u−)p−) dx � 1 p± , where c depends only on n, p+, and p−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We remark that the above theorem also shows the exact relation between the H¨older exponents for each phase;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' this was not contained in the authors earlier collaboration [CKS21, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2] with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Colombo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Our proof involves a careful extension of the main ingredients for [CKS21, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2] to local (1 + ε)-minimizers, and a compactness argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' A key feature of local (1 + ε)-minimizers, ε ≥ 0, for the functional Jp,q is that the positive and negative phase scales differently from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Namely if u is a local (1+ε)-minimizer in Q2, then one needs ∥u+∥X compa- rable with ∥u−∥q/p X , with X = Lp(Q1) or L∞(Q1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' As for the case of the local minimizers, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=', ε = 0, the comparability was proved by a Harnack inequal- ity argument [CKS21, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='8], which played an essential role in the proof of their universal H¨older regularity [CKS21, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The main difference, which also amounts to the challenges here, for the case of local (1+ε)-minimizers, ε > 0, is the lack of such a Harnack inequality 3 argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' More fundamentally, local (1 + ε)-minimizers do not possess the subsolution properties as opposed to local minimizers (see [CKS21, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' One of the consequences is that the basic estimates for one phase, such as the Cacciopoli inequality (Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2) and the comparison lemma (Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1) for local (1+ε)-minimizers, involve an additional ε-factor of the other phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Hence, our main task here is to effectively control the additional ε-term, which amounts to some technical difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' It is worthwhile to mention that the absence of the Harnack inequality argument is overcome by a careful compactness argument, by which both phases, although scaled differently, survive at the limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The latter part is new, to the best of the authors’ knowledge, and can be applied to a wider range of problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Our second result is about the almost Lipschitz regularity for local (1+ε)- minimizers for the functional Jp,q, when |p − q| ≪ 1 and ε ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let 1 < p+ < ∞ and σ ∈ (0, 1) be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then there exist ε, δ > 0, depending only on n, p+ and σ, such that for any p− ∈ (p+−δ, p+ +δ) and any local (1+ε)-minimizer u ∈ W 1,p+∧p−(Q2) of Jp+,p−, one has u± ∈ C0,σ±(Q1), with σ+ = σ, σ− = 1 − (1 − σ)p− p+ , and [u]C0,σ±(Q1) ≤ c �ˆ Q2 ((u+)p± + (u−)p−) dx � 1 p± , where c depends only on n, p+ and σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' A similar statement is proved in [AT15] for uniformly elliptic function- als when governing conductivity matrices are close with each other;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' [AT15] however considers local minimizers (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=', ε = 0) only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Our problem is philo- sophically the same, as the limit case is clean, thus possess better regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' On the technical level, our argument is needs slight more care than that of [AT15, Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1], as the proof for the growth of the functional Jp,q changes as (p, q) varies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Moreover, one needs to make sure that the argument works well regardless of the relation between p (or q) and the dimension n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' These are all rigorously treated in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Recently, free boundaries for almost minimizers are investigated in various settings, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=', [DET19], [DS20], and [DJS22] to mention a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' There is a possibility of extending the approach with viscosity solutions employed in [DS20], but it is beyond the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' It would be already interesting to extend the result for the clean case, p = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In [CKS21], the authors analyze the free boundary of local minimizers for Jp,q, using the measure ∆pu+, which is nonnegative and supported on the free boundary, ∂{u > 0}(=∂{u < 0}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' This is mainly due to the subsolu- tion property of u+, which is no longer valid for almost minimizers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The same issue appears in the case of the two-phase Alt-Caffarelli functional (see [DET19, Section 4]), which is resolved by the NTA property of the free boundary and a clever use of barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The NTA property was obtained there by the use of the ACF monotonicity formula, which is absent in our 4 SUNGHAN KIM AND HENRIK SHAHGHOLIAN regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The construction of the barriers and the comparison with the al- most minimizers require some regularity of the free boundary, which in the case of [DET19] was the NTA property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' However, in our problem, none of these seems to be analogously carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' For this reason, we leave out the analysis of the free boundary for our almost minimizers to the interested reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In Section 2, we collect some technical tools to prepare the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In Section 3, we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In Section 4, we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We follow the standard notation and terminology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In particular, n denotes the dimension of the underlying space, and there is no restriction other than n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' By Qr(x0), we denote the cube centered at x0 with side-length r, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=', Qr(x0) := {x ∈ Rn : |xi − x0i| < r, 1 ≤ i ≤ n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' For simplicity, we set Qr := Qr(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Given a set A ⊂ Rn, by |A| we denote the Lebesgue measure of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The function spaces C0,σ and W 1,p are standard H¨older and Sobolev spaces, and C0,σ loc , W 1,p loc are their local versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Technical Tools In this section, we shall present and verify some technical tools, most of which generalize those appeared in [CKS21, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 4–5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The main goal of this section is to prove the following proposition, which roughly tells us that negative values cannot penetrate the interior if a local (1 + ε)-minimizer attains large positive values in most of the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us remark that this proposition corresponds to [CKS21, Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2] for the case of minimizers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The main difference here is that (1 + ε)-minimizers do not possess in general the subsolution properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Here we exploit the techniques to circumvent this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Unless stated otherwise, the constant c throughout this section is a positive constant that may differ at each occurrence, and will depend at most on n, p, and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Moreover, the parameter ε will be a small constant, whose smallness is determined solely by n, p, and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' There exist ε > 0 and µ > 0, depending only on n, p, and q, such that if u ∈ W 1,p∧q(Q1) is a local (1 + ε)-minimizer of the functional J, satisfyingˆ Q1 ((u+)p + (u−)q) dx ≤ 1, |{u ≤ 1/2} ∩ Q1| ≤ ε, then u > 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' in Qµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The proof for this proposition will be postponed to the end of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us begin with the Cacciopoli-type inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let u ∈ W 1,p∧q(Q2) be a local (1 + ε)-minimizer of the func- tional J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' There exists ¯ε ∈ (0, 1), depending only on n, p, and q, such that if ε ≤ ¯ε, then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1) ˆ Q1 |Du+|p dx ≤ c ˆ Q2 ((u+)p + ε(u−)q) dx, 5 where c depends only on n, p, and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Fix r, R with 1 < r < R < 2, and choose any s, t with r < s < t < R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let η ∈ C1 c (Qt) be a cutoff function such that η ≡ 1 in Qs, |Dη| ≤ 2c t−s in Qt, and spt(η) ⊂ Q(t+s)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Set w := (1 − η)u+ − u− ∈ W 1,p∧q(Qt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Since w+ = (1 − η)u+, w− = u−, and spt(u − w) ⊂ spt(η) ⊂ Q(t+s)/2, we derive from the (1 + ε)-minimizerslity of u for Jp,q in Qt that ˆ Qr |Du+|p dx ≤ (1 + ε) ˆ Qt |D((1 − η)u+)|p dx + ε ˆ Qt |Du−|q dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Applying H¨older’s inequality and Young’s inequality, and then using spt(η) ⊂ Q(t+s)/2 and |Dη| ≤ c/(t − s), we deduce that ˆ Qs |Du+|p dx ≤ c ˆ Qt � (u+)p (t − s)p + ε|Du−|q � dx + cε ˆ Qt |Du+|p dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Since this part is by now standard, we omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Note that the last display holds for all s, t, r < s < t < R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Hence, choosing ε small enough such that cε < 1 2, we can employ the standard iteration lemma [Giu03, Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1] to derive that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2) ˆ Qr |Du+|p dx ≤ c ˆ QR � (u+)p (R − r)p + ε|Du−|q � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Now replace QR in the right-hand side with Q(R+r)/2, and then apply the same argument above to (−u) with Qr replaced with Q(R+r)/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' note that (−u) is a local (1 + ε)-minimizer of Jq,p in place of Jp,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then we may proceed as follows, ˆ Qr |Du+|p dx ≤ c ˆ Q(R+r)/2 � (u+)p (R − r)p + ε|Du−|q � dx ≤ c ˆ QR � (u+)p (R − r)p + cε (u−)q (R − r)q � dx + c2ε2 ˆ QR |Du+|p dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Recall that r, R were any numbers between 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Hence, taking ε smaller if necessary such that c2ε2 < 1 2, we can make use of the iteration lemma once again to arrive at (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In what follows, we shall always assume that ε < ¯ε, with ¯ε as in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us remark that the above Cacciopoli inequality is too weak to bring forth a local L∞-estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Besides, local quasi-minimizers are not neces- sarily bounded, even for functionals under standard growth condition (of course, only if p ≤ n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Nevertheless, with the aid of the Cacciopoli inequal- ity above, we shall observe that the blowup rate of local (1 + ε)-minimizers can be made arbitrarily small, for small ε, in case p ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 6 SUNGHAN KIM AND HENRIK SHAHGHOLIAN Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let u ∈ W 1,p∧q(Q1) be a local (1 + ε)-minimizer of the func- tional J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Suppose that ∥u+∥Lp(Q1) ≤ 1, sup r∈(0,1) ∥u−∥Lq(Qr) r1− p q ∥u+∥ p q Lp(Qr) ≤ κ, for some constant κ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then for any δ > 0, there exists a positive constant εκ,δ, depending only on n, p, q, κ and δ, such that if ε ≤ εκ,δ, then sup r∈(0,1) 1 rn−δp ˆ Qr (u+)p dx ≤ cκ,δ, where cκ,δ depends only on n, p, q, Λ, δ and κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We remark that the conclusion is trivial for p > n, due to the Sobolev embedding theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Henceforth, we shall assume that 1 < p ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let κ and δ be arbitrary positive constants, and suppose the conclusion of the lemma is false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then for each j = 1, 2, · · · , one can find some positive constant εj ց 0, and a local (1 + εj)-minimizer uj ∈ W 1,p∧q(Q1) of the functional J, such that ∥u+ j ∥Lp(Q1) ≤ 1, sup r∈(0,1) ∥u− j ∥Lq(Qr) r1− p q ∥u+ j ∥ p q Lp(Qr) ≤ κ, but Sj = sup rj≤r≤1 1 rn−δp ˆ Qr (u+ j )p dx → ∞, for some constant rj ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In order to have Sj → ∞ to be compatible with ∥u+ j ∥Lp(Q1) = 1, we must have rj → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Consider an auxiliary function vj : Qr−1 j → R, defined by vj(y) = u+ j (rjy) r − n p j ∥u+ j ∥Lp(Qrj ) − u− j (rjy) r 1− p q − n q j ∥u+ j ∥ p q Lp(Qrj ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' One easily verifies that vj ∈ W 1,p∧q(Qr−1 j ) is a local (1 + εj)-minimizer of the functional J, and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3) sup 1≤R≤r−1 j 1 Rn−δp ˆ QR (v+ j )p dy = 1, where the supremum is attained at R = 1, and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4) sup 1≤R≤r−1 j 1 Rn+q−(1+δ)p ˆ QR (v− j )q dy ≤ κq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Due to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2, along with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5) ˆ QR (|Dv+ j |p + |Dv− j |q) dx ≤ cRn−(1+δ)p, 7 where c depends only on n, p and q, whenever 2Rrj ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' By the Sobolev em- bedding theory, there exists a function v ∈ W 1,p∧q loc (Rn) with v+ ∈ W 1,p loc (Rn) and v− ∈ W 1,q loc (Rn) such that v+ j → v+ and v− j → v− j weakly in W 1,p loc (Rn) and respectively W 1,q loc (Rn), after extracting a subsequence if necessary;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' we shall denote this subsequence by vj, for brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The weak convergence im- plies that v ∈ W 1,p∧q(BR) is a minimizer of the functional J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Since v+ j → v+ strongly in Lp(BR) and v− j → v− strongly in Lq(BR), letting j → ∞ in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3) yields that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6) sup R≥1 1 Rn−δp ˆ QR (v+)p dy = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' However, since v is a minimizer of the functional J, by [CKS21, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4], v+ is a weak p-subsolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' As a result, the local L∞-estimates [Giu03, Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3] applies to v+, which along with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6) yields ∥v+∥L∞(QR) ≤ c Rδ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Hence, letting R → ∞ yields that v+ = 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' This yields a contra- diction against (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' □ We also have a growth estimate for the p-th Dirichlet energy of the positive phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The idea is the same as in [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5], which is based on some approximation by positive p-harmonic functions of the positive phase of local quasi-minimizers, in terms of the size of the negative phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let u ∈ W 1,p∧q loc (Q2) be a local (1 + ε)-minimizer of the func- tional J, and v ∈ u+ + W 1,p 0 (Q1) be the p-harmonic function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then 0 ≤ ˆ Q1 (|Du+|p − |Dv|p) dx ≤ c ˆ Q2 ((u−)q + ε|Du+|p) dx, and ˆ Qr |Du+|p dx ≤ c ˆ Q1 ((rn + ε)|Du+|p + (u−)q) dx, ∀r ∈ (0, 1), where c depends only on n, p and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The proof is essentially the same as that of [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The additional term ε ´ Q2 |Du+|p dx appears due to the different Cacciopoli inequality;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' more exactly, we use (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2) with u replaced with −u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We shall not repeat this argument here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' □ The following lemma corresponds to [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The key in- gredient of the proof there is the Poincar´e inequality, and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5, which corresponds to [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' As noted above, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5 differs from [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5] by the additional term, ε ´ Q2 |Du+|p dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' How- ever, this does not make any difference in the proof of the lemma below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Thus, we shall skip the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 8 SUNGHAN KIM AND HENRIK SHAHGHOLIAN Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6 (Essentially due to [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let u ∈ W 1,p∧q(Q4) be a local 2-minimizer for the functional J, satisfying ˆ Q4 (u+)p dx = 1, ˆ Q4 ((u−)q + |Du+|p) dx ≤ ε, for some ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then |{u ≤ 1/2} ∩ Q1| ≤ cε, where c depends only on n, p and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us prove Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1 with additional assumptions that ∥u−∥Lq(Q1) and ∥Du+∥Lp(Q!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=') are sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The proof follows the idea of that of [CKS21, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5], with some modifications addressing the lack of subsolution properties of each phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' There exists ε > 0, depending only on n, p and q, such that if u ∈ W 1,p∧q(Q4) is a local (1 + ε)-minimizer of the functional J, satisfying ˆ Q4 (u+)p dx = 1, ˆ Q4 ((u−)q + |Du+|p) dx ≤ ε, then u > 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' in Q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us consider the case q < n first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Following the proof of [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3], we obtain that for σ ∈ (0, 1), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7) ˆ Qr �(u−)q rq + |Du+|p � dx ≤ cεr−(1−σ)p ˆ Qr (u+)p dx, ∀r ∈ (0, 1), where c depends only on n, p, q and σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The proof is essentially the same, as Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6 replace [CKS21, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='5–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7], which are the key ingredients of the proof there;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' moreover Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2 replaces the usual Cac- ciopoli inequality for weak q-subsolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' These lemmas have additional ε-term, which arise from the (1 + ε)-local minimizerslity of u, but this does not contribute any major difference from the proof for [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Hence, we shall omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' We observe that due to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7) (as well as the assumption ´ Q4(u+)p dx = 1), the hypothesis of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4 is satisfied (with κ = 1 > εrσp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Thus, choosing ε ≤ εδ with εδ as in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4 with δ < σ, we deduce (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='8) ˆ Qr (u+)p dx ≤ cr−δp, ∀r ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Inserting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='8) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7) yields that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='9) ˆ Qr |Du+|p dx ≤ cεr−(1−(σ−δ))p, ∀r ∈ (0, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' now c depends only on n, p, q, σ and δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us remark that this step does not appear for the case of minimizers [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3] because for the latter case we can use the subsolution property [CKS21, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='4] for u+ to obtain its local boundedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' 9 The growth estimate in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='9) is obtained by choosing ε sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Taking ε even smaller if necessary, we may repeat the above argument around any point z ∈ Q1, and obtain ˆ Qr(z) |Du+|p dx ≤ cεr−(1−(σ−δ))p, ∀r ∈ (0, 1), ∀z ∈ Q1, possibly with a larger constant c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Therefore, by Morrey’s lemma, we deduce that u+ ∈ C0,σ−δ(Q1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='10) [u+]C0,σ−δ(Q1) ≤ cε 1 p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Finally, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6, |{u ≤ 1 2} ∩ Q1| ≤ cε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Hence, with cε ≤ 2−2n−1, we have |{u > 1 2} ∩ Q1| > 0, which now implies via (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='10) that inf Q1 u+ ≥ 1 2 − cε 1 p > 0, provided that we choose ε even smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Note that the smallness condition for ε at this stage can be determined solely by n, p and q, by for instance selecting σ = 1 2 and δ = 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' This finishes the proof for the case q < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The case for q ≥ n can be treated similarly, following the proof of [CKS21, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='3];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' we omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' □ We are ready to prove Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let ¯ε be as in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='7, and suppose that cε ≤ ¯ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Using |{u ≤ 1 2} ∩ Q1| ≤ ε, we may follow the proof of [CKS21, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2] to find a constant ρ, depending only on n, p and q, such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='11) ˆ Q4ρ �(u−)q ρq + |Du+|p � dx ≤ cερq−p ˆ Q4ρ (u+)p dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Therefore, defining uρ : Q4 → R by uρ(x) = u+(ρx) (4ρ)− n p ∥u+∥Lp(Q4ρ) − u−(ρx) 4− n q ρ1− p q − n q ∥u+∥ p q Lp(Q4ρ) , we see that uρ ∈ W 1,p∧q(Q4) is a local (1 + ε)-minimizer of the functional J, such that ˆ Q4 (u+ ρ )p dx = 1, ˆ Q4 ((u− ρ )q + |Du+ ρ |p) dx ≤ cε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Since cε ≤ ¯ε, with ¯ε as in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='6, we obtain uρ > 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' in Q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Rescaling back, we obtain that u > 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' in Q4ρ as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' □ 10 SUNGHAN KIM AND HENRIK SHAHGHOLIAN 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' H¨older regularity In this section, we study the universal H¨older regularity of local (1 + ε)- minimizers for the functional Jp,q, and prove our first main result, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let us begin with a lemma that tells us how each phase of local mini- mizers for the functional Jp,q should scale relatively to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let u ∈ W 1,p∧q(Q1) be a local minimizer of the functional J, such that ∥u+∥Lp(Q1) = 1 and u(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' If ∥u+∥Lp(Q1/2) ≥ β for some β > 0, then ∥u−∥Lq(Q1) ≥ cβ, for some positive constant cβ depending only on n, p, q and β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let β be any constant, with 0 < β < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Assume by way of contradic- tion that there exists a minimizer uj ∈ W 1,p∧q(Q1) of the functional J, such that ∥u+ j ∥Lp(Q1) = 1, ∥u+ j ∥Lp(Q1/2) ≥ β, uj(0) = 0 but ∥u− j ∥Lq(Q1) ≤ 1 j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' By [CKS21, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='1], uj ∈ C0,σ(Q1/2) and ∥u+ j ∥C0,σ(Q1/2) ≤ c∥u+ j ∥Lp(Q1) ≤ c, and similarly, ∥u− j ∥C0,σ(Q1/2) ≤ c j, where both c and σ depend only on n, p and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' This together with the Cacciopoli inequality (Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2 with ε = 0) implies that u+ j → u0 weakly in W 1,p(Q1/2) and uniformly in Q1/2, while u− j → 0 weakly in W 1,q(Q1/2) and uniformly in Q1/2, for some nonnegative function u0 ∈ W 1,p(Q1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' The uniform convergence along with uj(0) = 0 implies that u0(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' In addition, passing to the limit in ∥u+ j ∥Lp(Q1/2) ≥ β ensures that ∥u0∥Lp(Q1/2) ≥ β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' However, the weak convergence of the gradi- ent of uj implies that u0 is also a minimizer of the functional J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' As u0 ≥ 0 in Q1/2, u0 is a p-harmonic function, but then it violates the minimizer principle, as ∥u0∥Lp(Q1/2) ≥ β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Let u ∈ W 1,p∧q(Q1) be a local minimizer of the functional J, such that ∥u+∥Lp(Q1) ≤ 1, u(0) = 0, sup 0 0 and σ− ∈ (0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFAT4oBgHgl3EQfmh3P/content/2301.08624v1.pdf'} +page_content=' Then with σ+ = 1 − (1 − σ−) q p, sup 0